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Background )

« Stress-strain data from tensile tests are used to determine and/or infer many
things about the material properties and response (from elastic modulus to failure
criteria)

« Converting measured engineering stress-strain data to true stress-strain data
used in FE simulations requires some method of converting data beyond the
necking instability point

« Converted true stress-true strain data used in FE simulations of structural
response can produce large prediction errors if important material responses that
occur during the tensile test are not properly taken into account

» Strain rate dependence

» Temperature dependence (isothermal — adiabatic)
» Temperature dependence (softening)

» Geometric evolution of deformation and necking



Effect of Assumptions ) .

Local stress and strain are affected by the rate dependence assumption.

Neglecting rate dependence when modeling a rate-dependent material will result
in the simulation necking/localizing much sooner than it does in reality, predicting
much higher local stresses and strains.
= Substantial impact on the failure criteria inferred from the experiments
= Leads to non-conservative failure predictions when using the
characterization to model other loading conditions.

Similar errors can result if the effect of temperature increases due to plastic
dissipation is ignored in simulations of moderate to high-rate testing.

We will use 304L stainless steel as an example of a rate dependent, ductile
material to show the effect of ignoring material strain rate dependence, history
dependence, thermal changes, and geometric evolution.




Examples of Tensile Material Behavior ) i,
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Examples Material Behavior (Compression) ()=,
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304L Stainless Steel - Bar Stock and Tube Material

The data below are comparing two different material forms of 30
one is 3.5” DIA bar stock and the other is 3.5” DIA, 0.25” wall thickness
tube (for PB). Both materials were annealed after machining. The
main difference here comes from material form, not heat treatment.
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At every
temperature, the
304L tube material
behavior was
substantially
different from the
bar stock material
behavior

Comparing tube to
bar stock:

» Higher yield
stress, especially
at lower temps

» Higher flow
stress

» Substantially
lower strain to
failure (lower
ductility)




304L Stainless Steel: A Complex Material that is
Sensitive to Form, Composition and Processing
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Comparison of Different 304L Materials - Axial Orientation
Room Temperature, strain rate = 0.001/s
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Material Starting Condition — Fully Annealed or is state
evolving ?
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304L 3.5" DIA, Bar Stock Material - PCAP
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304L Stainless Steel - Tube Material
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Non-uniqueness of characterization @&:.
= | then optimized the yield and hardening parameters to the tube material (see below)

= With rate dependence, the neck formation is delayed
= Asthe neck starts to form, the local strain rate increases
= The higher local rate increases the local yield stress, which inhibits necking
* The resulting local strains and stresses are much lower when rate dependence is included
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Non-uniqueness of characterization @&:.
= | then optimized the yield and hardening parameters to the tube material (see below)

= With rate dependence, the neck formation is delayed
= Asthe neck starts to form, the local strain rate increases
= The higher local rate increases the local yield stress, which inhibits necking
* The resulting local strains and stresses are much lower when rate dependence is included
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304L Stainless Steel - Tube Material rl'l e
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Rate dependence has a large impact on neck (s
shape and estimated local strain at failure

MLEP _ BCJ MEM
(no rate dependence) (rate dependent)
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Pictures from
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Pipe Bomb Tube Characterization

=  After all of the work in the previous slides was completed, we performed two additional tension
tests at higher rates (0.01/s and 0.1/s) for 700C

= Kyle Karlson’s parameter optimization tool, MatCal, was used to optimize the rate-dependent
parameters to the experimental data for the three rates at 700C

= Using the actual rate dependence of the tube material, BC)_MEM gave a similar neck profile

Results Plot for Component Model 1

Strain rate (0.001/s)
Expt Simulation
F

Experimentally
measured peak
stress varies
with rate

T 1.751670e+03", 0.00100 5" - Simulation
* 17516706403, 0.00100 5™ - Experiment
== =1.751670e+03", 0.01000 5" - Simulation
9 1.751670e+03", 0.01000 s™' - Experiment
““““ 1.7516708+03", 0.10000 5™ - Simulation
1 *  1.751670e+03", 0,10000 5" - Experiment




Examples of Temperature Evolution during )
Deformation
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A Closer Look: Temperature Events Leading to Failure (rh)

Laboratories

Increasing plasticity ——

Heat generation occurs near Heat diffuses through the bulk Near failure heat moves quickly

features appearing to be grain material from a few select to an edge feature.
boundaries boundaries.

600 Ib to 1000 Ib 600 Ib to 1000 Ib 600 Ib to 1000 Ib

With high plastic work, grain boundaries appear to begin heating (see white circle above). Heat
nucleates from this region in the sample and propagates to an edge feature (see white arrow).

Near failure heat moves quickly Detector saturation can occur Typical failure temperatures can
to an edge feature. due to large dynamic range of be near 100 °C.

heating.

600 Ib to 1000 Ib 600 Ib to 1000 Ib 600 Ib to 1000 Ib

During failure, temperatures >100 °C can be reached.




Experimental History Dependence @&

Laboratories

= History dependence is evident in rate-change or temperature-change tests

. .
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These three data points all
have the same temperature,
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very different stresses due to
history effects

History effects on response
can be substantial

These data points all have
the same temperature, same
strain, and same strain rate,
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Model Comparisons ) ..
Tanner and McDowell, IJP (1999) for OFHC copper

= Optimization of material parameters
Johnson-Cook Mechanical Threshold Stress (MTS) BCJ (without recrystallization)
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displayed using short dashed [lines.

= Validation (prefiction using parameters from|above)
Johnson-Cook Mechanical Threshold Stregs (MTS) BCJ (without recrystallization)

400 - - ™— —T T | 400 | i | 350 | lﬂ’«b‘ wx-ﬂ""*nd'lﬂj-l-"_
| i s’ i
| | \ |
e | = 30 e =]
i | [ ! 1_§'C'.0.{ll}|_us' A_p.:ﬂ” |1 5 m‘w(e delny
300 |_zs=c,- 00004 5" | 25°C; 00004 5 fhen 269°C; 0.0004 5~ 300 ~ | - .“ ) i
7 o™ independint of hold dme z I M 25°C; 0.0004 5" thef 269°C; 0.0004 5™ ) .-’- 20 minute delay
:E xxxxxx / H,.-- ; a | indtpcndent bfhuldnmc { |
= L = | ¥ i — - | . S
P e - . J
¥ 200 e . P N R | ] I Mm*m‘i’
¢ : . 2 ‘
- - JENCY. - | g 20 = e W b
:ﬁu -'aa e W‘p‘maeﬂ o ) - xhwnr e :.‘ﬁ%‘! ‘?:“._fj*fg — ﬁ | lg!{ pobos=s* ezt on n:-oo:c-moo g, oa mg” \Mmf( ! Pt
H g e o :Egﬂi‘.;;:g,;ﬁ R g 3 I J hanoe® o - //'] *-m—_.:-: Ll 2y | 5
= P . # i = | & a0t 1 min hald time L | o 1 |
100 o 269°C; 0.0004 57 i I e P 269°C; 0.0004 5 :
o I E— L R PP [ R — 15 l_ n.nmus t
s | | x? I Doyt i = | iy |20m|r1hu|dlrne T
| | | w| | | | uin x | — 1
_.e . | i «| | i |f i ‘ M / ! —
o+ ; N 02‘ | oA . 1 ! : |
0 ol 0 0l 04 05 06 D 08 09 1 0 ol 02 03 o4 05 o6 07 WPos o9 1 o 01 02 03 04 05 06 7 08 08 1
True Steain True Steain True Strain

JC has no history dependence (i.e. has MTS has history dependence, butno ~ BCJ has history dependence and softens
same hardening regardless of prior loading)  softening due to recovery due to recovery




Model Validation )

= OFHC Copper Tanner and McDowell, IJP (1999)

= Optimization of material parameters to dynamic recrystallization data
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= Validation (prediction of static and dynamic recrystallization using same parameter set)
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Example:Glass-to-Metal Seals (GTM) @&

=  Dynamic strain aging is evident
= Model not capable of capturing this mechanism yet

For now, this latest parameter set focuses on the 3e-5/s data

Rate dependence is fit to the relaxation curves (instead of to the 3e-6/s data)
The model will underpredict the yield at lower rates until DSA is included

= Later, the model will be enhanced to account for DSA

Antoun, Emery, Chambers
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GTM

= \alidation
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Engineering strain
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Summary )

= Determining meaningful parameters for most ductile materials requires a
temperature and rate dependent material constitutive model
= We have demonstrated the major areas of concern, there are others

= Temperature measurements (full-field) should be included on key experiment

= Substantial errors will be propagated throughout other simulations if parameters
are not determined properly (model or method)

= Using a history dependent model is necessary for simulating complex events
= Non-constant applied loading rates
= Change in strain rate during deformation
= Any variation in temperature

= Qveruse of tensile test data is discouraged

= Does it reflect the correct stress state to be simulated? Shear, compression, multi-axial
loading

= Triaxiality limited

= Many more meaningful characterization experiments that are possible today that are much

more efficient (material use and number of experiments) and can be tailored to extract data
meaningful to the application of interest 23



