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Two-Step Thermochemical Fuel Production
A theoretically simple process: “pouring water on a hot rock” TM
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STC converts heat to chemical work.
The trick is doing it efficiently.

STC converts heat to chemical work.
The trick is doing it efficiently.
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Solar Heat Engine: Thermodynamic Limits
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Solar Heat Engine: Thermodynamic Limits
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Solar Heat Engine: Thermodynamic Limits
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Specifics of Reactor Efficiency

Includes all major energy requirements and lossesIncludes all major energy requirements and losses
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Efficiency Peak in (Un)expected Place
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Peak efficiency: Oxide and steam heating loads are roughly equal.Peak efficiency: Oxide and steam heating loads are roughly equal.
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Key Material Requirements: Steam
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Key Material Requirements: Reactive Oxide
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Efficiency Peak in (Un)expected Place

Carnot predicts efficiency terribly!
(But it’s not his fault.)

Carnot predicts efficiency terribly!
(But it’s not his fault.)
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TWS is Not the “Real” Cold Reservoir…

Carnot predicts efficiency terribly…
because of the explicit use of output heat for work.

Carnot predicts efficiency terribly…
because of the explicit use of output heat for work.
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Lowering TWS would approach the ideal Carnot process
and increase efficiency.

Lowering TWS would approach the ideal Carnot process
and increase efficiency.
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…But it Should Be
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Chasing Carnot: Solid Heat Recovery
PTR

More heat recovery brings the process 
somewhat closer to the ideal Carnot 
cycle – at the cost of engineering 
unfeasibility.

More heat recovery brings the process 
somewhat closer to the ideal Carnot 
cycle – at the cost of engineering 
unfeasibility.
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Reactor Chasing Stefan-Boltzmann – No Gain
PTR

Decreasing TTR decreases efficiency, 
despite the opposite theoretical 
prediction. The problem? CeO2.

Decreasing TTR decreases efficiency, 
despite the opposite theoretical 
prediction. The problem? CeO2.
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PTR

A material with the right thermodynamic 
properties can help approach the ideal 
Carnot cycle and increase efficiency.

A material with the right thermodynamic 
properties can help approach the ideal 
Carnot cycle and increase efficiency.
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Theoretical material
TTR=1400°C
C=3000
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Material Chasing Stefan-Boltzmann
Theoretical material:
pTR: ceria x 1000
TTR: ceria-100°C
cp: 140 J/mol K (vs. 80 J/mol K for ceria)
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A material with the right thermodynamic 
properties can help approach the ideal 
Carnot cycle and increase efficiency.

A material with the right thermodynamic 
properties can help approach the ideal 
Carnot cycle and increase efficiency.

Theoretical material
TTR=1400°C
C=3000

PTR

Material Chasing Stefan-Boltzmann
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Staged Reduction Reactor for Low Pressure

Incrementally pumping O2 reduces the overall flow volume and velocity
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Summary/Interesting questions

• Materials with low  pose a mass flow challenge

• Optimal T can be found to maximize efficiency

• Thermal reduction pressure limited by O2 flow

• A >10x pressure decrease feasible in staged reduction

• Best results by combining Topt, staged pumping and 
advanced reactive oxides

• Field design for multiple chambers?

• Operation control to maintain optimal T for variable 
DNI?
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Key Material Requirements: Reactive Oxide
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Key Material Requirements: Reactive Oxide
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Maximizing Efficiency: Solid/Steam Heating 
Balance and a Low Reduction Pressure

Efficiency is the highest when:
• Oxide and steam heating loads are roughly equal
• Thermal reduction pressure is low
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O2 Pressure Limits: Flow Volume and Speed
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and velocities are astronomical!
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Staged Reduction for Low Pressure
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Efficiency is the highest when:
• 10x pressure decrease possible with as few as 5 chambers
• Decreased pump work and size



 Perovskite compounds split H2O in a thermochemical cycle.
 First of a kind observation, also demonstrated durability

 Kinetics benchmarked against CeO2.
 Similarly fast oxidation rates

 Make 9 more H2 than CeO2 at TTR = 1350 C.

Next Generation Redox Active Materials
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Staged Reduction Reactor for Low Pressure

• Direct solar absorption
• Internal heat recovery between TTR and TWS

• Continuous on-sun operation
• Temperature and product separation
• Pressure separation (thermal reduction step 

vacuum pumping )
• Non-monolithic oxide
• Reaction kinetics decoupled from reactor 

operation

• Thermal reduction pressure (0.1-10Pa)
• Decreased solid-solid heat recovery 

requirement
• Decreased pump work requirement
• Compatibility with MW-scale plant

An improvement of an earlier moving packed bed concept


