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Two-Step Thermochemical Fuel Production

A theoretically simple process: “pouring water on a hot rock” ™

solar input
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heat recovery

STC converts heat to chemical work.
The trick is doing it efficiently.
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Solar Heat Engine: Thermodynamic Limits

Stefan-Boltzmann: P, ., = UTTR4

S-B x Carnot Efficiency
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Solar Heat Engine: Thermodynamic Limits

Stefan-Boltzmann: P, ., = UTTR4
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Solar Heat Engine: Thermodynamic Limits

solar input

Stefan-Boltzmann: P, ., = UTTR4

TTR o TWS
Carnot: 1) =
TTR

0.80

0.70 A
0.60 -+
0.50 A
0.40 -

S-B x Carnot Efficiency

** 1 Grey body (¢=0.9)
T,s=800°C

0.20 A

0.10 +

In trouble...

0.00

1100 1200 1300 1400 1500

T [C]
Sandia
7 National
Laboratories

700 800 900 1000



Solar Heat Engine: Thermodynamic Limits

Stefan-Boltzmann: P, ., = UTTR4

S-B x Carnot Efficiency
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Specifics of Reactor Efficiency

— Hy HHVHZ - ) multiple thermal
MR : reduction stages
Qa
/
» pumped
. (o)
Qryy = AQ4 — Prag oxide ?
internal i 3 r solar
Qmot = Qrr T Us + Qaux neat -S4 \E . 0t
QTH recovery I 3
Ny =
Hz Qmot Qaux = (QH20 + Qpump + Qmecn + QSGP) ressure separation
— (Qrox + Qs + Qo,) by packed bed

H,/H,0

Qs = AT(l — &)

A5 water splitting \HZO

QHZO = nw/h[Cp,L(pr - TO)(1 - SL) + Ava(l - SG)
+ Cp,G (TWS - pr)(l - SG) + qump,vp]

Includes all major energy requirements and losses
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Efficiency Peak in (Un)expected Place
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Peak efficiency: Oxide and steam heating loads are roughly equal.
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Key Material Requirements: Steam

How much steam per mole H,?

solar input

Low AT or high reduction pressure leads to a high steam/H, ratio

Sandia
National
Laboratories



Key Material Requirements: Reactive Oxide
How much CeO, per mole H,?

solar input
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The reversible oxygen capacity can be very low!
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Reactor Efficiency ng [%]
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Carnot predicts efficiency terribly!
(But it’s not his fault.)
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Reactor Efficiency ng [%]
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T\ IS Not the “Real” Cold Reservoir...
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Carnot predicts efficiency terribly...
because of the explicit use of output heat for work.
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Chasing Carnot: Solid Heat Recovery
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Reactor Chasing Stefan-Boltzmann — No Gain
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Material Chasing Stefan-Boltzmann
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A material with the right thermodynamic
properties can help approach the ideal

Theoretical material| €arnot cycle and increase efficiency.
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Material Chasing Stefan-Boltzmann
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Staged Reduction Reactor for Low Pressure

multiple thermal
reduction stages

/

» pumped

oxide 0,
return
internal solar
heat input

recovery h

by packed bed
H,/H,O

water splitting \HZO

Incrementally pumping O, reduces the overall flow volume and velocity
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Summary/Interesting questions

Materials with low Ao pose a mass flow challenge
Optimal AT can be found to maximize efficiency
Thermal reduction pressure limited by O, flow

A >10x pressure decrease feasible in staged reduction

Best results by combining AT, ,,, staged pumping and
advanced reactive oxides

Field design for multiple chambers?

Operation control to maintain optimal AT for variable
DNI?
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Key Material Requirements: Reactive Oxide

How much CeO, per mole H,?

solar input
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A low reversible oxygen capacity leads to a very high oxide/H, ratio and
excessive oxide mass flow and heat recovery requirements
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Key Material Requirements: Reactive Oxide

How much CeO, per mole H,?

solar input
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A low reversible oxygen capacity leads to a very high oxide/H, ratio and
excessive oxide mass flow and heat recovery requirements
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Maximizing Efficiency: Solid/Steam Heating
Balance and a Low Reduction Pressure
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Efficiency is the highest when:
* Oxide and steam heating loads are roughly equal
* Thermal reduction pressure is low ;
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O, Pressure Limits: Flow Volume and Speed

Is 1Pa accessible?

10000 - .
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At low pressure required flow volumes
and velocities are astronomical!
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Staged Reduction for Low Pressure
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Efficiency is the highest when:
e 10x pressure decrease possible with as few as 5 chambers

* Decreased pump work and size .
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Next Generation Redox Active Materials
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= Perovskite compounds split H,O in a thermochemical cycle.

= First of a kind observation, also demonstrated durability .

= Kinetics benchmarked against CeO.,.

= Similarly fast oxidation rates
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Staged Reduction Reactor for Low Pressure

An improvement of an earlier moving packed bed concept

Direct solar absorption

Internal heat recovery between T.; and T
Continuous on-sun operation

Temperature and product separation
Pressure separation (thermal reduction step
vacuum pumping )

Non-monolithic oxide

Reaction kinetics decoupled from reactor
operation

Thermal reduction pressure (0.1-10Pa)
Decreased solid-solid heat recovery
requirement

Decreased pump work requirement
Compatibility with MW-scale plant

TR chambers
TR 1673K

. O
particle or 2
return S
\"
N
internal E radiant
Q
heat energy
recovery sources

pressure separation
by packed bed

H,/H,0

WS chamber \HZO
Tws =1173K
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