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Zp MOTIVATION 1 — Liquid fuel injection

Rl

% | In Diesel and Gasoline engines

|

f * Inlet is turbulent (+ cavitation)

~ Re~105, d =90um 0

0 10

. . — -
* High pressure chamber and sonic flow Scale (mm) (J.E. Dec, 1997]
~ P =60bar, u,=600m/s I Liquid Fuel [ Fuel-Rich Premixed Flame
[ Rich Vapor- Initial Soot Formation
. . — ;‘,’f?l/e" N::nlxture [ Thermal NO Production Zone
- Atomization process not understood fluson Flame - E888 Soot Oxidaton Zone
— We ~ 104, 1|.|m < r < 100”m Low . High
Soot Concentration

= MULTI-SCALE&MULTI-PHYSICS drive MIXING&COMBUSTION

Sandia High-Pressure
Combustion Vessel

s Hi Need for a
R Rt High Fidelity Simulation
that is affordable

Experimental background
High pressure vessels
[Pickett 2010, Skeen 2014]
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Z»  MOTIVATION 2 — Kinetic problems

¢ e Versatility of coupled Boltzmann equation

*Kinetic equations

—Boltzmann
—Vlasov
—Williams
*With many applications *and possibly coupled
—gases —multicomponent Boltzmann
—plasmas —Maxwell or subset

—sprays —Navier-Stokes
—astrophysics

Kinetic theory to translate non-equilibrium/unknown equilibrium

Complex behavior

eLarge dimensionality

*Strong couplings

*Requires a dedicated approach
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Zr= MOTIVATION 3 - Rain formation

Atmospheric sciences

« Raindrop formation/fall depends on:
— Thermodynamics
— Turbulence
— Coalescence dynamics

- Empirical models not accurate enough

* Need for detailed+large scale
computations

/ coalescence
L] H 3 : -._.;
l\' |
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& State of the art — Particle solvers

Transport for out-of-equilibrium systems

*Direct Simulation Monte-Carlo (aka stochastic Lagrangian)
—straightforward equations
—can handle any correlations
—converges as n1/2
—noise
—unexpected errors related to non-linearity
—load-balancing problem
—coupling to a Eulerian fluid difficult

*Eulerian resolution (aka Moment Methods)
—deterministic
—coupling to Eulerian fluids straightforward
—predictable load
—solves for some moments
—requires assumptions/presumed pdfs
—unexpected errors related to the assumptions

—requires a dedicated numerical scheme (realizability, robustness)
—Kinetic [Bouchut 2003, de Chaisemartin 2009]
—MUSCL [Le Touze 2012, Vie 2015]
—Semi-Lagrangian [Cheng 1976, Besse 2003]
—Discontinuous Galerkin [Sabat 2014]
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Zrr MODEL - Kinetic theory for sprays

A high-fidelity description

Point particles with velocity ¢, temperature 0, surface S

Number density function NDF : describes the disperse phase

dN = f(¢,x, ¢, S,0)dxdcdSdf \

NDF satisfies a Boltzmann-like PDE [williams, 1958]

0if +0x- (cf) + 8¢+ (Ff) +0p(Hf) = B +¢

Closures : all the physical modeling job

@ Drag force F

@ Heat transfer H
@ Break-up ‘B

@ Collisions €
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Zrr MODEL - Kinetic theory for sprays

A high-fidelity description

Inertial droplet coalescence :

@ integral
f f(t,x,¢°, 00 f(t,x,c*, V") ReoaJdv* dc™ ° drati
v*€l0,v] quadratic
¢ f f I(t x,c,V)f(tx, c*, v*)ﬁCo dv*dc* @ multivariate kernel
@ non-linear kernel J
Balistic coalescence kernel modeling
*\2 *
Reoal = (T + 1) [lu—u™|| €......)
Efficiency € models
@ collision efficiency [Langmuir, 1948, Beard and Grover, 1974]
. . . . = closed )
@ coalescence efficiency [Brazier-Smith et al., 1972, Ashgriz and Poo, 1990] J
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g\i}F MODEL - Kinetic theory for sprays

S

: | A high-fidelity description

* Reduction of kinetic theory is
— Crucial
— Problem dependent

 Two approaches considered
— Lagrangian (Direct simulation Monte-Carlo)
— Eulerian Multi-Fluid (Sectional)

* Objectives

— Numerical strategy for strongly coupled massively parallel
simulations

— Hybrid approach for wide spectrum of droplet sizes
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Zrr  MODEL - Sectional method (EULERIAN)

/ ; A cost-efficient way to capture polydispersity

(/ * Various drop sizes are treated as a continuum:
Multi-Fluid [Laurent 2001, Doisneau 2013]

O Coalescence

Break-up

/ Evapotration
<=
Sk-1 Sk >3
atnk+6x- (nruy) = 2CZ+ ZBZ + 2EE
NSGC atmk+ax'(mkuk) =2C27+ 2BZ¢ + 2E11<n

Navier-Stokes with
systems at(mkuk)"'ax'(mkuk®uk)=mkpk+2Cu+23%+2EE ~— INavier-stokes witnh sources

Lat(mkhk)'*‘ax'(mkhkuk) =myH+ 2C§+ ZBZ + ZE}l:

...many integral source terms to compute
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& MODEL - Sectional method (EULERIAN)

A cost-efficient way to capture polydispersity

Coalescence terms : quadratic sums of 2D elementary integrals

ZCI’H—_Z Zl—lQljk
20m+ _ k 1—1
C zz IZ] 1 l]k k)

2 u+ k i—1
CEr =X T wQfy

+u]Q k)

ch— _zN ZNl Qk]l
2 m— N N <>
=Xim) Z (Qk]l kj?
2 u 2 m
Ck = Up. Ck ]

Elementary integrals

1

Qf 3
a{ PLg*3 |, *12 012 3ok
ng (Lx):ff@ 67 Ki(t,x,8™) K]-(t,x,S°)|ui— ]IQS( I (r* +r°)~ds*ds®
Q. ijk|  pg so% +10%
l&k 67 e i i
>z, y =
ah’
Da . 0%
v +1°=v 4
”ﬁs’??‘z ™
N oy, ~10%
v +v _Uk lv] rl[%.ﬂ
vji_1 e ijk o 0 10 20 30 40 50
0 UVi—1 vj Relative error of integrals for Exp-TSM with (NC5)
13 sections, sizes in radius (um) ; + quadrature nodes. )
General case = integration at all times!

) 10

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



Zrr  MODEL - Sectional method (EULERIAN)

A cost-efficient way to capture polydispersity

-+ The coupled NS-PGD system

atpgy-'i . ampg},iug
Otpgttg + Oz pgug@uUy =

m+1+Bm++Cm+ 771+E771 Q+Bm— Cm—)

up+1EpL + By T+ O — (Em m q—i—B’"‘ Ci) }

Ef +BE +Cpt — M BP + By "+B’”“+C}?)

sections

pressureless

Needs to be closed

« Key parameter: number of sections
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MODEL - DS Monte-Carlo (LAGRANGIAN)

A reference for particle resolution

* The coupled NS-parcel system

O1pgYs + OzpgYiug = wys+ ZE'" /

dtqu + dmquuq =w; , NS :1§ *'Vspccic-slls i # f
Otpgttg + Oepgttg®@ug = —0ap + Z (_FA + By q)

thk: = Uy, dtuk — Fk; Cp,ldtes = H, , dt’l“k — Rk;

\

« Collision step is split

- Key parameter: number of parcels
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MODEL - DS Monte-Carlo (LAGRANGIAN)

A reference for particle resolution

.« Stochastic Lagrangian coalescence step
— Pick N/2 random pairs in a control volume
— Collision probyability

b

P(vp) = =2 exp(—A12)

Vp! '»' S ﬁ”z.dh*’
np1(Nj—1)At
with )\12 = -F (V(CJ) ) ﬁcoal(|up1 — Up2 |an1an2)

— Variable update

Mp1 = Tipl = Tip2

, : A ,.A,.,,,,,,..:..:.A..,,,,._.,
, ] /l] 2 2 —_ /l] 1 1 ,,.,.,_,.,_....,.,
2 . e
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& NUMERICS - Euler-Euler coupling needs

Effort on numerical methods for multi-scale coupled flows

¢ 1) Time integration Gas transport .7, =
tailored splitting Coupling %
T+ N+ E
Section transport 7 = + | Spray sources
B+C
« 2) Space transport
novel semi-Lagrangian scheme
rho_g
l23.2 wj(:&x’m” *
—322.8
224 + + +

-22

I21.6
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| @F NUMERICS - PGD transport

A robust and accurate answer to PGD peculiarities

Oympuy + Oxmipuruy = 0 Eulerian
6tmkhk + @,,mkhkuk =0 (coupling)

PN
{ ormy + Opgmpur =0

Lp
; m
Projection Scatte.r - P (t)
:l:iqi:‘l,j-}-l +$ J+ + on the grid (Ifrom fIXe? up
ocations T.
p

Lagrangian
transport

* Novel semi-Lagrangian PGD transport scheme
— Deterministic: no noise

— Localizes spray info at mesh nodes: good for coupling
— Easier load balancing

— No fluxes to be computed: reduce cost and numerical diffusion .
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 Zrr NUMERICS - PGD transport

2D test with prescribed flow field

 Obtained cost-efficient and accurate results

Mass concentration

(Eulerian)
0 10 20 310 40 50 60 70 80
0-shock?
noise
1
101!
10—2
1073 Mass concentration
10~ (Lagrangian)
10—°
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CRE,

=3

NUMERICS - PGD transport

Transport is 2" order in space

¢
k 1 I ‘co'nv_gaus.dat’ using 1:2 —
- ~ ‘conv_gaus_deformed.dat’ using 11/1 K-
| No CFL constraint o1} ~ ik — 1
X X *

(unconditionally stable) oo
* Handles vacuum S oo |
CTJ 1e-05 - l ‘
 Handles d-shocks |
1e-07 ‘
* Predictable load -
Exact for
" integer CFL S
# of cells
over- o 10°
sampled 2 -
0 Number of
_ ; - : 100 numerical parcels
under- —2 : i e s S S S S S R EE PSR .

AAAAA - 17
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crr APPLICATIONS

1) Test cases for fuel injection
2) Coalescence studies
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TEST 1 — Momentum Coupling

Comparison between E-ES and CLSVOF

v Supersonic dense injection (toy problem)

— Large liquid/gas loading ratio (35/1)
— velocity plug-flow boundary
— no thermal transfer

— Teng = 4Us
Raptor E-ES
AX=12.5 um, At=8 ns
Liquid mass fraction [-] Gas axial velocity [m/s] Gas radial velocity [m/s]
, b -~
- 4 "‘
0 02 04 06 08 0919 -100 0 100
NN T
Liquid mass fraction [-] Gas radial velocity [m/s]
<
£ 4
-100 0 100
[ U EEEEEES

CLSVOF
Ax=13.3 um, At~6 ns

2.5

v

*

Agreement on gas
entrainment

Liquid density
discrepancy from
pressureless
assumption

Jet tip is different
because of lack of
surface tension
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& TEST 2 — Induced turbulence

Entrainment and induced turbulence by jet injection

"« Executed with RAPTOR E-ES

— Box 3x3x10mm — 50Mcells (cartesian mesh)
— d;,=90um, T ,=40us — Ax=12.5um, At=8ns, T, ,=40us
— quiescent gas at 60bar, 900K — 1 section (prescribed initial size)
— n-dodecane at 702kg/m3, 600m/s — PGD transport (3-shocks)

Liquid density [kg/m?3]
1

100
— - B
. 0.01 5e+03

Axial velocity [m/s]

e e e il it e — 0 ||| \\2?9]\ L1 IOH
-100 600
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& TEST 3 — Fuel vaporization

Fuel vapor footprint

 Executed with RAPTOR E- ES

— Box 3x3x10mm 50Mcells (cartesian mesh)
— diy=90um, T,,y=40ps —~ Ax=12.5pm, At=8ns, T,,;~40ps
— quiescent gas at 60bar, 900K — 1 section (prescribed initial size)
— n-dodecane at 702kg/m3, 600m/s - PzGD transport (5-shocks)

— d4%law

fuel_vap rho_|

1000

RRR1 mm.

F

0.1 100
i 10
001

£ -1
“.0.001 -

u_g
100

0 I2F [ | 5}O||||75|
5
m o .
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& TEST 4 — Weak scaling

Towards massively parallel computations

* Executed with RAPTOR E-ES

— Injection case, 50Mcells

— resolution of the full length of the jet (maximum number of “particles”)

— including I/O

1800

1600

1400

100%

- 90%

[ 80%

1200

1000

800

600

400 -

200 -+

0 0%

0 200 400 600 800 1000 1200 1400 1600 1800

- 70%
- 60%
- 50%
- a0%
- 20%
- 20%

F10%

e=gm=Speed up
===|deal

Parallel efficiency
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crr APPLICATIONS

1) Test cases for fuel injection
2) Coalescence studies
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g\'}eF The D’Herbigny coalescence problem

Rt

/ ' A benchmark for coalescence

’

|

» Linearized coalescence problem

— Big drops (150um) falling — Analytical solutions for various regimes [Doisneau 2013]
— Mist of small drops (3um) — Early (exact poisson)
— No auto-coalescence — Linear increase of radius and dispersion

— Variation of cross-section

H<— Monodisperse injector - -
LI - -
O B -
8 : : :
° [ i
Transparent 4 i
© ' tunnel (5m)
o
Granulometry
P measurement .
Laminarization |
Grid — -
N 150 150.1 150.2 g 150.3 150.4 15(
radius
Fog generator (rs, C,, uy)
Transition from Poisson to Gaussian and

refined sectional approximation (200 sections)
24
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' & D’Herbigny — Stochastic Lagrangian

A costly approach

« Executed with in-house code
— Cv=60ppm,L=5m — 2x20,000 parcels

_ Random pair algorithm ~0(n) - ~400 parce|S/CO||iSi0na| ce"
— Algorithm verified

0.1
220 0.2
$hs
o 0%
@ : o 210
O 006 i
+ e 200 o g
Q004 -
all &2 5
0.02 &k ) 190 3
A 2 @
. S <
180
170 0.1 T &U 2
e wy\ 2} 170 g
U) 165 0.08 ) ;:‘;::(ézg}", ? (' :
AR CD
5 160 0.06 A 160
©
Y 155 0.04
150
¥ 1 1 L L 0
150 0.02 MR L IO 0 1 2 3 4 5
. ARSIV Distance (m)
145 0 1 2 3 4 5 25
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Efficient approach for low inertia droplets

c/%\?F D’Herbigny — Deterministic sectional

« Executed with RAPTOR E-ES

— Cv=60ppm,L=5m — Standard sectional approach
— Cartesian mesh (200 cells) — Code verified
— 11 sections

. | /-\ | -

- 230

-4 220
1.5e-12 |-

-4 210

- 200

le-12 |

- 190

- 180

Volume deviation
nipey abelany

5e-13 -

f

-1 170

Mass in the last section:
- 160 overestimates size

0 1 1 1 1 150
0 50 100 150 200

Distance (cells) 26
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& D’Herbigny — Hybrid Sectional-Lagrangian

/ " A versatile method

« Executed with RAPTOR E-ES

— When mass outflows the last section, — Good agreement on average radius
it is injected in the cell as a cloud of — Needs more parcels for dispersion
stochastic parcels

2e-12 T T T n 240
-4 230
5 1.5e-12 | 12% 2
E -4 210 C_E
.S m
[ 4 200 “8
-c le-12
2 {io
S Q.
—_— - 180 cC
& »
> Se-13 |- ..
1 170 1 parcel injected:
Kills size dispersion
0 L 150
Distance (cells) 27
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‘ ; vorticity

2\\\ 1 cell-wide injection (Raptor-E-ES) S
CRE CONCLUSION %« - = o
| -5e+054 ™"

10 20 30 40 50 60 70 80 90

* The semi-Lagrangian formalism is efficient for two-way coupled LES
— Provides all qualities of Eulerian solvers
— Robust at high liquid/gas density ratio
— Provide fluctuating data to avoid relying on RANS models

* Flexibility
— Can host spray models (here coalescence) AG-QMOM with RAPTOR
— Dynamically interfaced to Lagrangian approach for inertial droplets
— Other interfacings possible (high order velocity moments)

Perspectives
= Verification = Validation vs ECN results (spray A)

= vs CLSVOF
= vs stochastic Lagrangian

= vs Real-Gas solver

28
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