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Future of Many-Core Processors

Future Intel Many-Core, 60+
cores, 300W+

NoC, SoC etc

GPU, 2496+ Cuda cores, 240W+

Coding styles and techniques vary greatly with device

The execution pattern (time, hardware components used, power) vary for same
code.



DVFS Techniques

Goals

Detecting if code has area with poor performance

Identifying code segments for optimize
Characterizing interaction with hardware leading to performance, power, and
scalability.

Value of time investment

Current Techniques

Time-Driven
Samples taken at regular interval
Can be applied to a multitude of device components
Can it scale ?

Compiler-Driven
Critical path analysis
Hard problem, Integer Linear Programming
What about applications that very greatly with input?

Can We Do Better?



Phases

Phase

All goals can reworded in terms of Phase

Phase: a segment of an application characterized with an unique performance
and power

Even short application have multiple phases

Long running HPC application having many!

Phase detection is difficult

Statistical Models

Have been shown to be able to identify Phase

Many different statistical models and levels of depth that can taken

Need a model that can discover interaction of measurable observations



Hidden Markov Models for Phase Detection

Hidden Markov Models (HMMs)

A form of Dynamic Bayesian Network

Model time at t from t-1

Have been used in many areas such as bioinformatics, robotics, etc

Model contains both observable and unobservable states

Hidden states combine unobservable interactions

Flexibility of user defined observable states

Smoothing, disregarding outliers

Weighting, can weigh phases based on number of occurrences
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Phase-Based DVFS PVFS

Steps to Apply PVFS

Parametrization

Training

Applying

Parametrization

System Metric, a simple measurement of
system

Free Parameter Set, a collection of
system metrics to describe perfomance
and power

Discretization, a distribution that matches
the system metric and application



Phase-Based DVFS PVFS

Training

Tag used to collect observation

Tags placement can be automated
Initial placement

Beginning/End of function
Beginning/End of loops
Beginning/End of large blocks

Update tag placement
Use of Viterbi Path to decide if
need additional tags
Hidden state found with low
probability and contains multiple
tags with diverse
performance/power
When a tag id is semi-uniformaly
distributed between hidden states

Evaluation of Model

Probability the sequence of the
Viterbi Path mates a sample trace

No new tags needed



Phase-Based DVFS PVFS

Applying

Hidden states (Phases) with power performance and high power

Tags can be used to signal DVFS

Discussion
Hardware

Multiple levels of controller - HMM for each control
Heterogeneous processors - Tag based on device and HMM for each
GPU - Breaking execution into warps, thread blocks, etc

Complexity
Let T be the number of time steps
Let S be the number of hidden states
Traditional Baum-Welsh, O(TS2)
Long codes will increase the training time in a linear fashion
S tends to be small, will be on discretization of system metrics
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Experimental Setup

Simulation

Chip simulation, Sniper

Memory Simulation, McPAT

NoC simulation, DSENT

Comparison Methods

Energy Limit (EL)
EL(app,p) = T(app,p,baseline)×
min(P(app,p,baseline))

Energy Delay Product (EDP)
Time-Driven DVFS,
Swaminathen et al. a

Change at every epoch
Fixed epoch size
Tuned tolerance parameter γ

aImproving energy efficiency of multi-threaded
applications using heterogeneous CMOS-TFET

Simulated chip description.

Core 22nm Ivybridge
L1 cache 32KB, 8-way associative,

Access Latency: 4 cycles
L2 Cache 256KB, 8-way associative,

Access Latency: 8 cycles
Coherence MESI
L3 Cache 2MB/core, Shared, 16-way,

Access Latency: 30 cycles
NoC 2 cycles latency; 64 bits/cycle

16 cores (4x4); 32 cores (8x4)
DVFS Latency 2 usecs (Both core and NoC)
DRAM 45 nsecs Latency; DDR3-1600;

per-controller b/w: 7.6 GB/sec;
4-8 cores use 1 controller;
16-32 cores use 4 controllers



Experimental Setup
Benchmark Suite

Freqmine , Frequent itemset mining, PARSEC
Tree and sorting algorithms. Common in data mining.

Dedup , Data deduplication compression, PARSEC
Compression algorithm using pthreads.

Mgrid , Multigrid solver, SPECOMP
V-cycle, has variable levels of parallelism through V-cycle.

Wupwise , Quantum chromodynamics, SPECOMP
Lattice based quark propagation.

XSBench(MC) , Monte-Carlo transport, CORAL
Monte Carlo neutronics, read/write intensive. Low performance.

LCALS , Collection of loops, CORAL
Loops that represents float-point execution patterns from multiple applications.

CoMD , Molecular dynamics, MANTEVO
Execution pattern varies as molecules between cells. Different patterns in and
between cells.

HPCCG , Irregular conjugate gradients, MANTEVO
Test system sparse computation. Gives a comparison bound to LINPACK



HMM of Freqmine

HMM with Core

5 hidden states

h1 and h2 to reduce power

Tags correspond to irregular
date access and thread
barriers

Reduced by .8v

+

HMM with Network

Power due to network
contention is a small fraction
of the power

Due to this model DVFS
would be applied to h2

Tags do not coordinate to
those in the core model



HMM of Freqmine

HMM of Core and Network

DVFS on h2

These tags are slighlty different than those of both models

Reduce to .8V

Reduce energy by 8.78%



HMM of LCALS

HMM of Core

15 Tags to capture the 7 unique
loops

4 Tags to apply DVFS, irregular
long strided access

A reduction of 7.1%

HMM of Core and Network

A network only model will only
have one phase, similar network
contention

Both together, 16 Tags, 2 tags for
DVFS

A reduction of 7.9%



HMM of CoMD

HMM of Core and Network

Most complicated model of test suite

14 tags are found and used

2 Phases to apply DVFS

Reducing 9.8% energy



Raw Effect on Dynamic Power
Dynamic Power with and without PVFS

Baseline without DVFS and PVFS dynamic power

Reduction of maximum and average power for all applications

Reduction of 97 Watts for maximum power and 62 Watts on average on 32 cores

Leakage Power is fixed, energy will go up with time penalty

4-Core 8-Core 16-Core 32-Core
Leakage Power 1.82W 3.15W 7.53W 15.27W

Leakage power of simulated processors in Watts (W).



Core Energy Improvement
Relative Energy Improvement (REI)

REI(app,p,m) =
E(app,p,baseline)−E(app,p,m)

E(app,p,baseline)

With only 32 core DVFS, can achieve over 6% on 4 applications

EL provides guide for the best possible energy use of an application

PVFS in worst case achieves 64% of EL and 94% of EL for Dedup



Core+NoC Energy Improvement

Relative Energy Improvement

Larger saving using DVFS on NoC, No Lose is hard.

Worst case achieves 75% of EL

Best case achieves 95% of EL



Time Impact

Relative time increase RTI(app,p,m) chip and network

RTI(app,p,m) =
T(app,p,m)−T(app,p,baseline)

T(app,p,baseline)

Every DVFS method has some impact on performance

EDP has slightly higher time increase



Conclusion

Hidden Markov Models provides a generic framework for phase detection

This framework is flexible enough to fit any future manycore system

DVFS with Phase (PVFS) can achieve a large percent of the energy limit

PVFS can model energy use of multiple controllers
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