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Marmousi2: Elastic Upgrade
to the Marmousi Model
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After Martin et al.,The Leading Edge, Feb. 2006. SNL 3D elastic modeling

conducted with 5 m spatial grid interval = ~1.2 billion gridpoints



The Mathematical Basis:
Coupled Systems of Linear First-Order PDEs

Elastic Velocity-Stress System:
9 equations with 9 unknowns
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Variables: Parameters:

vi(x,t) - velocity vector b(x) - mass buoyancy
cj(x,1) - stress tensor  A(x)

p(x)

-elastic moduli

Acoustic Velocity-Pressure System:
4 equations with 4 unknowns
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Variables: Parameters:
vi(x,t) - velocity vector  b(x) - mass buoyancy
p(x,t) - pressure k(X) - bulk modulus

Seismic Body Sources:

fi(x,t) —
m;(x,t) —

force density vector
moment density tensor

Systems derived from fundamental principles of continuum mechanics (conservation
of mass, linear, and angular momentum), and linear, time-invariant and local stress-

strain constitutive relations.



The Algorithmic Basis:
Explicit, Time-Domain, Finite-Difference Solution
on Staggered Spatial and Temporal Grids
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Numerical Dispersion: Phase and

Phase Speed

Group Speed Curves
Group Speed
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3D O(2,4) FD solution of 1storder velocity-stress elastic and velocity-pressure acoustic
systems on staggered temporal/spatial grids. Stability parameter n ranges from 0 to 1.

Vertical red line: conventional “5 grid intervals per wavelength” rule of thumb for

for minimal dispersion. Horizontal green line: ideal (no dispersion) case.



TDFD Algorithm Comparisons:
3D O(2,4) Temporal / Spatial Staggered Solution of
1st-order Coupled PDE Systems
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Run Time Comparison/Scalability

Thunderbird
— Dell PowerEdge cluster

— 4480 compute nodes

» Dual 3.6 GHz Intel EM64T processors
+ 6 GBRAM

— 3.6GHz Infiniband interconnect
— Currently 6 on the Top500
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Pressure Trace Comparison

Velocity-pressure
(acoustic) algorithm

Velocity-stress
(elastic) algorithm

X (km)

1501 hydrophones, 5 m below sea-surface, arrayed from x =1 kmto x = 16 .
km. Note strong similarity of calculated responses. @ ﬁg{}gﬁm
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Ocean Bottom Seismometer
Trace Comparison

Velocity-pressure
(acoustic) algorithm

Velocity-stress
(elastic) algorithm

X (km)

1501 vertical component (Vz) ocean bottom seismometers, located 450 m belom
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sea-surface, arrayed from x = 1 km to x = 16 km. Note strong differences in
calculated responses.



Timeslice Comparisons:
Pressure and Vz Particle Velocity

VP (acoustic) algorithm VS (elastic) algorithm
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Pressure timeslices;
t=1.37 s.

(note similarity)

Vz Velocity Timeslices;
t=1.37s.

(note difference)
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Acoustic/Elastic Record Sections

Acoustic; X 1000m

Elastic
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AVO Comparisons

* Select 2 target regions

 Create a smooth version of the model for
ray-tracing
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Ray-Tracing and Amplitude Extraction

 (Calculate travel-times

outward from the CRP
Follow the steepest- -descent:
travel-time gradient from the™ ™

source to CRP
Determine the angle of

incidence to the target g st —
£ o\
Calculate the specular |
reﬂectlo_n angl_e | E——— —
Determine which receiver .l . . . |

generates a ray with this | e
angle to the target

Trace from that receiver to the target

Add times on source and receiver rays to get the primary PP
reflection travel-time

» Index into the trace that corresponds to the receiver and
calculated travel-time

« Amplitude is the mean of 0.1s window around this time Sandia

' National
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AVO Data Target 1
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AVO Data Target 2

Flattened Horizon; Acoustic

This is the

dipping target o.of
In the more '
structurally

complex middle 0
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Target 2 Extraction

Source at 8000; Offset 2940m
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Upper Plot

— Thisis the
nearly
horizontal
target on
the left side
of the model

Lower Plot

— This target
is steeply
dipping
down to the
left

— Much more
structurally
complex
part of the
model

AVO Results
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Conclusions

Modeling is a lot easier when someone else builds the
model

— Gary Martin, Robert Wiley, and Kurt Marfurt have put together an
excellent model

— Useful for a variety of algorithm/modeled data tests

If we are interested in marine seismic hydrophone -
(pressure) data acoustic modeling is probably sufficient
— Elastic modeling reproduces some fine details

— AVO responses are very similar
» Difference is probably below the noise floor for real data

Acoustic models run much faster
— The difference is greater than shown in our run-time comparison

— We could have run the acoustic model with a higher-frequency
source or a coarser grid spacing since the lowest velocities are
higher

* Frequency and grid spacing were limited by the need to keep numerical
dispersion to a minimum
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