
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Paul S. Davids

1

Si Photonics for Advanced Communications 

SAND2015-5298C



Silicon Photonics Research Directions

Integrated Optical Technology for Communication and 
Signal Processing

 High Performance Computing

 Optical Interconnect

 XGC Grand Challenge FY12-14 (wavelength stabilization, 
heterogeneous integration, low-power comm. link 
modeling/design)

 RF Photonics

 110 Channel Cueing Receiver FY12-15 (low-loss waveguide, phase 
correction)

 DARPA MESO FY12-15 (photon-phonon coupling, RF filters)

 High speed optical modulator FY15-16 (nonlinear material)

 Quantum Photonics

 SECANT Grand Challenge FY14-16 (QKD transceivers)

 Continuous and Discrete Variable Quantum Key Distribution.

 Chip-scale Quantum Coherent Feedback and Control.

Transmitter

Receiver



Sandia Si Photonics Integrated Circuits

Si Photonics Multi-user project chip for
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Silicon-based Optical Communication Devices

 Active Components: Linear and digital Mach-Zehnder modulators, ring and disk ultra-low energy modulators 
with/without integral micro-heaters for resonant wavelength stabilization, high-freq. and high power integrated 
germanium detectors, integration with rad-hard CMOS, 2 x 2 wavelength selective switches and broad-band 
switches, and tunable filters

 Passive Components: wavelength division multiplexers using resonant filters and arrayed grating routers, surface 
normal and in-plane polarization beam splitters, polarization rotators, polarization mode filters, directional 
couplers and splitters, integral SiN second photonics routing layer, Sagnac interferometers, AWG RF channelizers

 Demonstrated Circuits: transmitters, receivers, on-chip links, resonant wavelength stabilization circuits for both 
modulators and filters, optical active beam steering, optical logic (matrix multiply), low noise oscillators, optical 
network add-drop node (CIAN), optical channel monitor (spectrum analyzer) (CIAN)



Photonics Enabled System Applications

High Performance Computing
RF Sensing and Communication

Secure Quantum Communication

Transmitter

Receiver



SNL Silicon Photonics Process

 CMOS compatible
 Passive and active photonics devices

 Silicon and silicon nitride waveguides, couplers, splitters, 
gratings, filters, modulators, Germanium detectors, switches, etc.
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Optical modulator  
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10Gbps Resonant Heater Modulator
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• FSR covers entire C-band
• Low footprint of ~14μm2, CMOS-compatible
• Differential signaling compatibility
• Lowest intrinsic tuning energy

7μW/GHz (0.7fJ/bit-GHz) 

W. Zortman, et. al., OFC , OW4I.5 (March 2012)

1,2 – heater contacts 
3,4 – modulator contacts

Frequency Shifts for 
different Heater BiasesModulation Energy Heater Power

Similar eye diagrams achieved at different tuning temperatures

Cross-section of modulator with 
vertical P-N junction 



Stabilization of Modulators

• Lock to zero: No calibration or 
reference level needed for locking

• Amplitude insensitive: Locking 
point not influenced by optical 
intensity

• Precision locking: 
Resonator is not disturbed 

• Minimum circuit complexity: 
Power and area consumption of 
control electronics is minimized
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1.25 THz, 125C equivalent!

J.A. Cox et. al., Opt. Express 22, 11279-11289 (2014)



Electronics – Photonics Integration

Official Use Only

2.5 mm

3.9 mm

Vdd

GND

Vm

Modulated optical output at 5 Gbps

Heterogeneous Integration
 Independent optimization of 

electronics & photonics

 Challenge: Need high yields 
and small bond size

Photonic Layer Fiber 
Interface

CMOS 
Bond Pad

Package/Printed Circuit Board.

80 fJ/bit measured



SNL RF Si Photonics Technologies
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Silicon Photonics

Silicon / SiN Nano-Optomechanics
Photon-phonon transduction for signal processing with up to 20GHz BW

Array Waveguide 
Grating Coupler 

 New paradigm for RF signal processing (ex. filtering) in optical domain 
to reduce size, weight, and power, and improve performance

Mach-Zehnder Modulator with 
Traveling-Wave Electrodes 
20GHz, Vpi x L = 0.8Vcm

Suspended Si waveguides 
with phononic crystals

Optical modulation and spectrum analysis up to 100GHz

Micro-ring Tunable 
Filter (MHz – GHz)



Photonic-Phononic RF Filter

H. Shin et. al., Nature Communications 6 (6427), Mar. 2015

 Center frequency may be tunable between 1-20GHz;
 Q and filter shape may also be tunable
 Parallel / serial configurations to build filter banks/spectrum analyzer 

with significant size, weight, power, and performance benefits 



SNL RF Si Photonics Technologies

Mach-Zehnder Modulator with 
Traveling-Wave Electrodes

 High-bandwidth linear modulator  

 23GHz, Vpi x L = 0.8Vcm, 108 dB/Hz2/3

 Analog to Digital Conversion, RF Filtering and 
Antenna Remoting

 Side-band modulation in chip-scaled 
Continuous-Variable QKD

 Next step – CMOS integration to control drive 
voltages and minimize signal attenuation

 High-power optical detector

 Waveguide coupled

 20mW power-handling

 1500-1600nm operating wavelength



Chip-scale Quantum Tx/Rx for QKD
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Paul Davids                                                

QKD ReceiverTransmitter

Receiver

Develop new building blocks to enable quantum optics.
Using Si Photonics platform for integration. 



Quantum Key Distribution (QKD)

 A secure way to distribute a key that is Eve proof. 

 Quantum state of photon 
 A photon is  a quantum object (discrete state with wavefunction).

 No cloning of unknown quantum state (cannot be perfectly copied). 

 Measuring quantum state perturbs state.

 Uses Physical principle (QM) to guarantee security

13

Alice:
Private key1

Bob:
Private Key2

Eve
Use QBER to determine
if eavesdropped



BB84 (Bennett and Brassard)

 Polarization state of photon:

 Two orthogonal bases: A (x-y) & B (rotated by 450)

 Alice and Bob define bases and define 0 & 1 in A & B

Alice Bob

A

B

Alice’s bits 0101100010101100

Alice’s bases BAABAABAAAABBBBA

States sent +10-10+0101+--+0

Bob’s bases ABAABAAABABBBBAB
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 Alice and Bob define bases and define 0 & 1 in A & B

Alice Bob

A

B
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BB84 (Bennett and Brassard)

 Polarization state of photon:

 Two orthogonal bases: A (x-y) & B (rotated by 450)

 Alice and Bob define bases and define 0 & 1 in A & B

Paul Davids                                               SECANT QKD EAB Meeting  Dec 17, 2013 

Alice Bob

A

B

Alice’s bits 0101100010101100

Alice’s bases BAABAABAAAABBBBA

States sent +10-10+0101+--+0

Bob’s bases ABAABAAABABBBBAB

Bob’s results 1-00-0+0+0-+--1+

Alice and Bob compare bases and Bob discards
Bits where bases are different.



BB84 (Bennett and Brassard)

 Polarization state of photon:

 Two orthogonal bases: A (x-y) & B (rotated by 450)

 Alice and Bob define bases and define 0 & 1 in A & B

Alice Bob

A

B

Alice’s bits 0101100010101100

Alice’s bases BAABAABAAAABBBBA

States sent +10-10+0101+--+0

Bob’s bases ABAABAAABABBBBAB

Bob’s results 1-00-0+0+0-+--1+

Bob on average   has 50% of bits  .
7 out of 16 bits   **0**0*0*0*+--**



BB84 (Bennett and Brassard)

 Eve is in the middle

 Eve random selects  polarization 

 Based on Eve’s measure and basis she sends photon.
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A

B

Eve

A

B



BB84 (Bennett and Brassard)

 Eve has 50% correct basis with Alice.

 Bob has 25% correct bits with Alice during reconciliation.

 No attack obtaining full information about the key can 
introduce less than 11% QBER.
Alice Bob
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B
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DV-QKD Transceiver 
 Free-space DV QKD Tx/Rx design complete using BB84 

polarization.

 New chip-scale polarization components designed, 
fabricated and tested.
 Polarization gratings, rotators and splitters. 14 dB grating loss at 

1520 nm.

 1800 grating measured.  

 Issues: DV-Tx/Rx run delayed due to cost overrun. Merge 
with MPW. No current integrated SPAD is risk of DV-RX



Free-space DV Tx/Rx
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Alice: Chip-scale transmitter

Bob:Receiver with 
Integrated SPAD



Waveguide polarization gratings
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Paul Davids

New polarization components developed for Free-space DV QKD with BB84

3dB split for blue polarization



-5dBm applied

SPAD Development 

Ge 

Si

High responsivity design 



SPAD Development

Ge 

Si

Low Dark Current design 



Integrated SPAD Development

 Pad re-design (GSSG) on new SPAD  devices enable high speed 
testing for lateral APDs.  
 High speed testing on probe station possible for lateral APDs.

 New pulsed laser will enable jitter measurements through sync.

 DCR measurements on new lateral APD chips underway.

 Tested 1st evanescent ntirde coupled vertical APDs.

 2nd Ge Epi source qualification evaluation.
 Preliminary results not promising for Ge epi.

 Si Epi looks good.

 Issues: CMP over-polish of Ge on vertical Epi Si/Ge structures 
removed nearly all Ge.  Need  new process runs with full Ge 
to develop process.



Time Bin Encoding
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Time bin encoding
ss ls ll

N.Gisin, et. al. “Quantum Cryptography, Rev. Mod Phys,75 2002 

Long delay (ns)  in waveguides leads to large loss
Must reduce loss for chip-scale time-bin encoding



Current State of the Art CVQKD link using coherent state source

Bench-top CV-QKD link

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. 
Diamanti. Experimental demonstration of long-distance 
continuous-variable quantum key distribution. Nature Photonics, 

7(5):378–381, 2013.

AM PM

VA

1/99

50/50
VA

FM

20 m
Delay line

PBS

Alice

PIN

Fiber link

PBS

L

Bob PM

PBS

PIN 50/50

Homodyne 
detection

FM
20 m

Delay line
PBS

DPC10/99



On-Chip CV-QKD System
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 Using frequency shifter and 
WDM to eliminate 
requirement for time delayed 
optical pulses

 System size is less than 4mm2

 Implementation using 
demonstrated devices. 

7/8/2015

Paul S. Davids Sandia National Labs



Chip-scale CV-QKD Transciever

 Modified from Granger-Diamanti
bench-top design due to difficulty in 
long delays on chip.

 Uses well-characterized existing 
devices within Sandia’s Si Photonics 
platform.

 Can use coherent states or 
squeezed states.

 Need to develop simple package for 
protocol testing.



CV-TX/RX Layout

7/8/2015

Paul S. Davids Sandia National Labs
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Alice CV-Tx

7/8/2015

Paul S. Davids Sandia National Labs
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Wire-Bonded CV-TX

Fiber input

High speed board
> 25 GHz

DC /Low speed
< 1MHz

7/8/2015

Paul S. Davids Sandia National Labs
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CV-TX/RX Layout

7/8/2015

Paul S. Davids Sandia National Labs
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Bob CV-Rx

7/8/2015

Paul S. Davids Sandia National Labs
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CV-Receiver



Summary

 Reviewed Sandia’s Si Photonics platform.

 Highlighted Quantum Communications research 
direction.

 Chip-scale Quantum Key Distribution as a 
demonstration vehicle.

 Two different chip-scale protocols

 Free-space BB84 using new chip-scale polarization control 
devices.

 Requires integrated Single Photon detection capability.

 Fiber Continuous variable QKD

 New Protocol development for on-chip CV.

 Designed & Testing Transceivers! 36

Paul S. Davids


