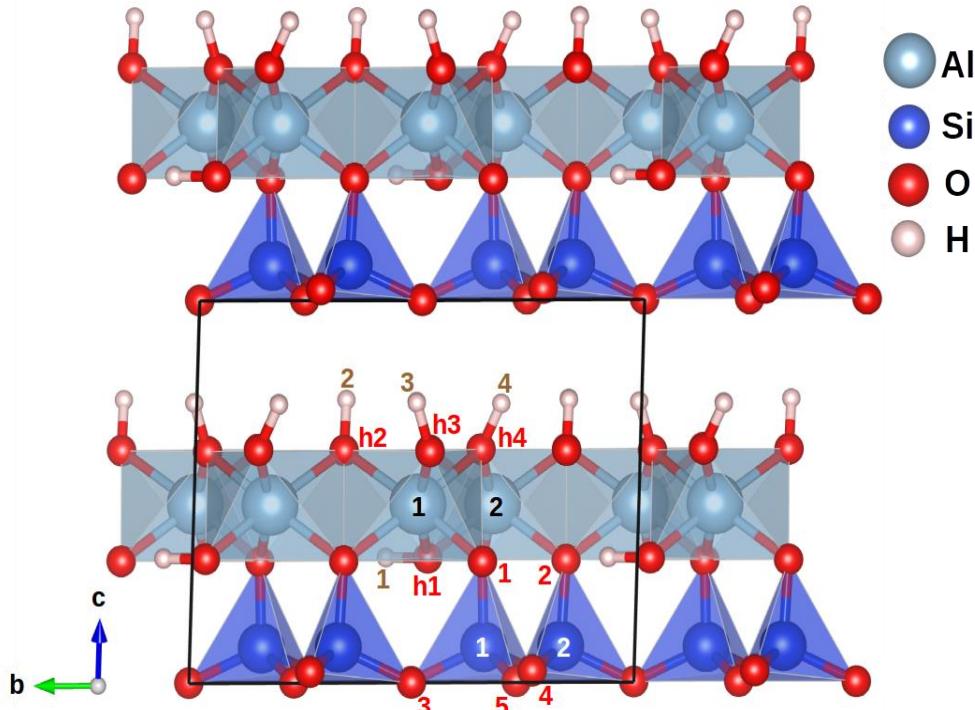


Used Fuel Disposition Campaign

Thermal-Mechanical Data for Argillite Disposal Systems: Beyond Standard Density Functional Theory


Philippe F. Weck, Carlos F. Jove-Colon
Sandia National Laboratories

Eunja Kim, University of Nevada Las Vegas

Used Fuel Disposition Working Group Meeting
Las Vegas, June 9-11, 2015

- **Thermal-mechanical data for natural system (NS) minerals and engineered barrier systems (EBS) materials** are critical to assess their stability and behavior in geologic disposal environments for safety assessments.
- **Data Gaps and Research Needs:** NS minerals surrounding the waste package (e.g. clays, complex salts, granite...).
- **Objectives:** Using parameter-free first-principles methods to:
 - Calculate missing thermodynamic data needed for geochemical & SNF degradation models, as a **fast and systematic way to predict materials properties and to complement experiments**.
 - Provide an **independent assessment** of existing experimental thermodynamic data and resolve contradictions in existing calorimetric data.
 - Validate our computational approach using high-quality calorimetric data.
- **Approach**
 - Structural optimization using density functional theory (DFT) [VASP code].
 - Use density functional perturbation theory (DF-PT) to calculate the phonon properties of materials relaxed with DFT and derive their thermal properties.

Structure of Kaolinite ($\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$)

Layered crystal structure of kaolinite, $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$, relaxed with DFT-D2. The unit cell is indicated by solid black lines.

■ Expt.: $V = 328.708 \text{ \AA}^3$

$a = 5.153 \text{ \AA}$, $b = 8.942 \text{ \AA}$, $c = 7.391 \text{ \AA}$
 $\alpha = 91.93^\circ$, $\beta = 105.05^\circ$, $\gamma = 89.80^\circ$.

■ Standard DFT: $V = 340.11 \text{ \AA}^3$

$a = 5.21 \text{ \AA}$, $b = 9.05 \text{ \AA}$, $c = 7.48 \text{ \AA}$
 $\alpha = 91.8^\circ$, $\beta = 105.1^\circ$, $\gamma = 89.7^\circ$.

■ DFT + van der Waals correction

(DFT-D2): $V = 329.03 \text{ \AA}^3$

$a = 5.18 \text{ \AA}$, $b = 8.99 \text{ \AA}$, $c = 7.33 \text{ \AA}$
 $\alpha = 91.6^\circ$, $\beta = 105.1^\circ$, $\gamma = 89.8^\circ$.

Volume calculated with DFT-D2 agrees with experiment within ca. 1% (while standard DFT overestimates expt. by ca. 3.5 %).

Thermal evolution of the bulk modulus computed for single-crystal kaolinite with:

1. Birch-Murnaghan 3rd-order (BM3) equation of state (EOS):

$$P(V) = \frac{3K_0}{2} \left[\left(\frac{V_0}{V}\right)^{\frac{7}{3}} - \left(\frac{V_0}{V}\right)^{\frac{5}{3}} \right] \left\{ 1 + \frac{3}{4} (K'_0 - 4) \left[\left(\frac{V_0}{V}\right)^{\frac{2}{3}} - 1 \right] \right\},$$

where P is the pressure, V_0 is the reference volume, V is the deformed volume, and

$$K_0(T) = -V \left(\frac{\partial P}{\partial V} \right)_{P=0} \quad \text{and} \quad K'_0(T) = \left(\frac{\partial K}{\partial P} \right)_{P=0}.$$

2. Universal Vinet EOS:

$$P(V) = 3K_0 \frac{(1-x)}{x^2} \exp \left[\frac{3}{2} (K'_0 - 1)(1 - x) \right],$$

$$\text{where } x = \left(\frac{V}{V_0} \right)^{\frac{1}{3}}.$$

Elastic properties and bulk modulus computed for polycrystalline kaolinite:

Elastic constants (C_{ij}) calculated with DFPT as the second derivatives of the energy with respect to the strain:

$$C_{ij} = \frac{1}{V} \left(\frac{\partial^2 U}{\partial \varepsilon_i \partial \varepsilon_j} \right) \rightarrow \text{elastic compliances } (S_{ij}) \text{ obtained by } S = C^{-1}$$

with volume V , total energy U of the system, and infinitesimal displacement ε .

1. Voigt approximation: Fixed strain and average over stress \rightarrow **upper limit**

Bulk modulus: $K_V = \frac{C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})}{9}$

Shear modulus: $G_V = \frac{C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23} + 3(C_{44} + C_{55} + C_{66})}{15}$

2. Reuss approximation: Fixed stress and average over strain \rightarrow **lower limit**

Bulk modulus: $K_R = [S_{11} + S_{22} + S_{33} + 2(S_{12} + S_{13} + S_{23})]^{-1}$

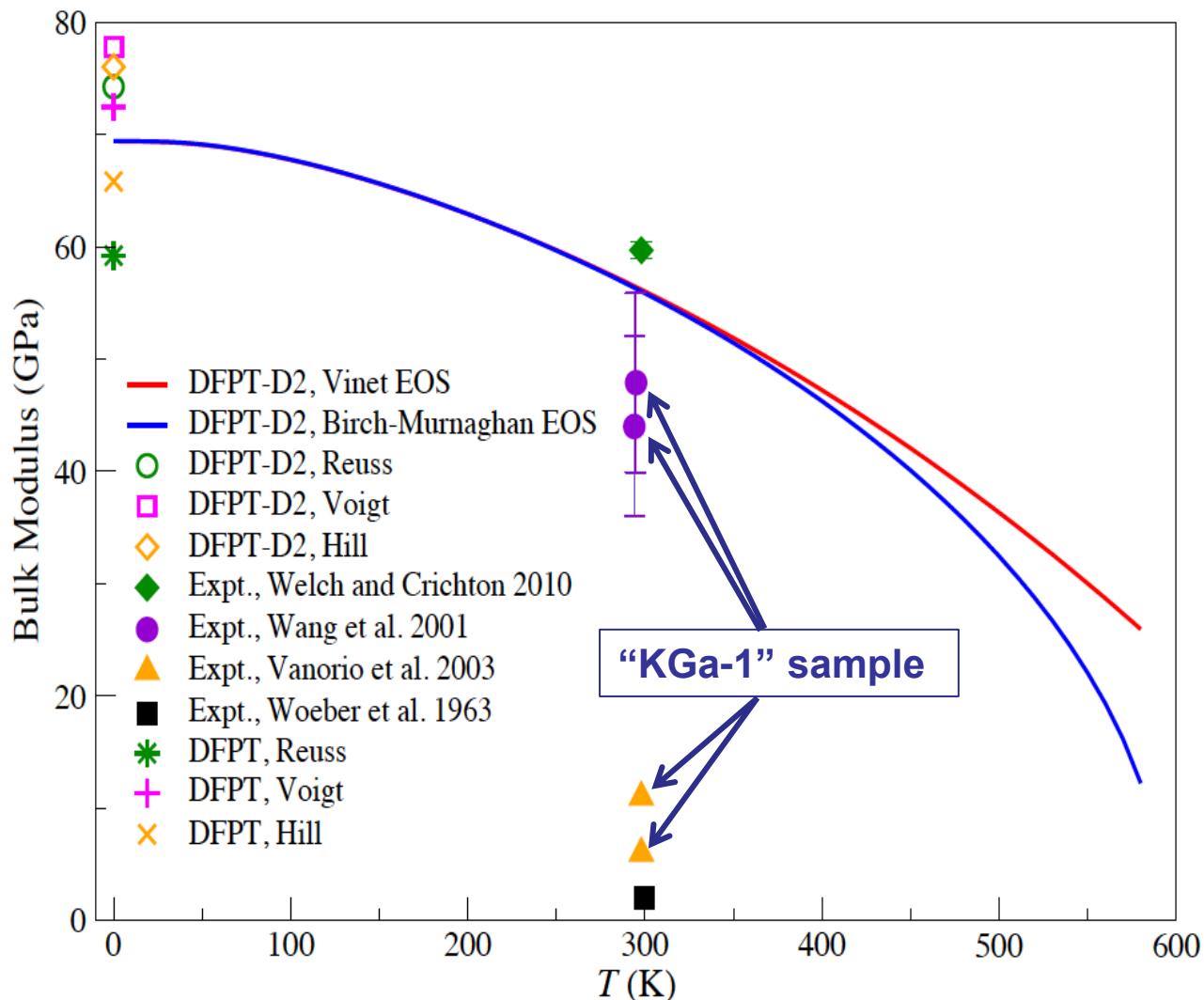
Shear modulus: $G_R = \frac{15}{4(S_{11} + S_{22} + S_{33} - S_{12} - S_{13} - S_{23}) + 3(S_{44} + S_{55} + S_{66})}$

3. Hill approximation: Average of Voigt and Reuss values

Thermal-Mechanical Properties of Kaolinite ($\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$)

C_{ij}	DFT	DFT-D2	Experiments						
C_{11}	187.20	175.16	171.51 ^a	48.1 ^b	79.3 ^b	121.1 ^b	126.4 ^c		
C_{22}	180.56	168.65							
C_{33}	88.02	133.99	52.62 ^a	45.2 ^b	72.5 ^b	112.5 ^b	57.8 ^c		
C_{44}	9.63	10.07	14.76 ^a	16.7 ^b	25.6 ^b	41.1 ^b	31.6 ^c		
C_{55}	12.36	12.78							
C_{66}	62.10	62.30	66.31 ^a	16.9 ^b	26.3 ^b	41.3 ^b	53.6 ^c		
C_{12}	66.42	54.10							
C_{13}	15.63	28.58	27.11 ^a	12.9 ^b	24.1 ^b	34.8 ^b	8.5 ^c		
C_{14}	-0.74	-1.90							
C_{15}	1.18	-0.79							
C_{16}	-6.14	-5.79							
C_{23}	16.00	28.46							
C_{24}	-0.30	-2.70							
C_{25}	-0.04	-1.42							
C_{26}	0.58	0.96							
C_{34}	-0.96	-3.57							
C_{35}	-0.56	-2.44							
C_{36}	0.37	0.71							
C_{45}	-0.45	-0.84							
C_{46}	-1.20	-1.78							
C_{56}	-0.02	-0.13							

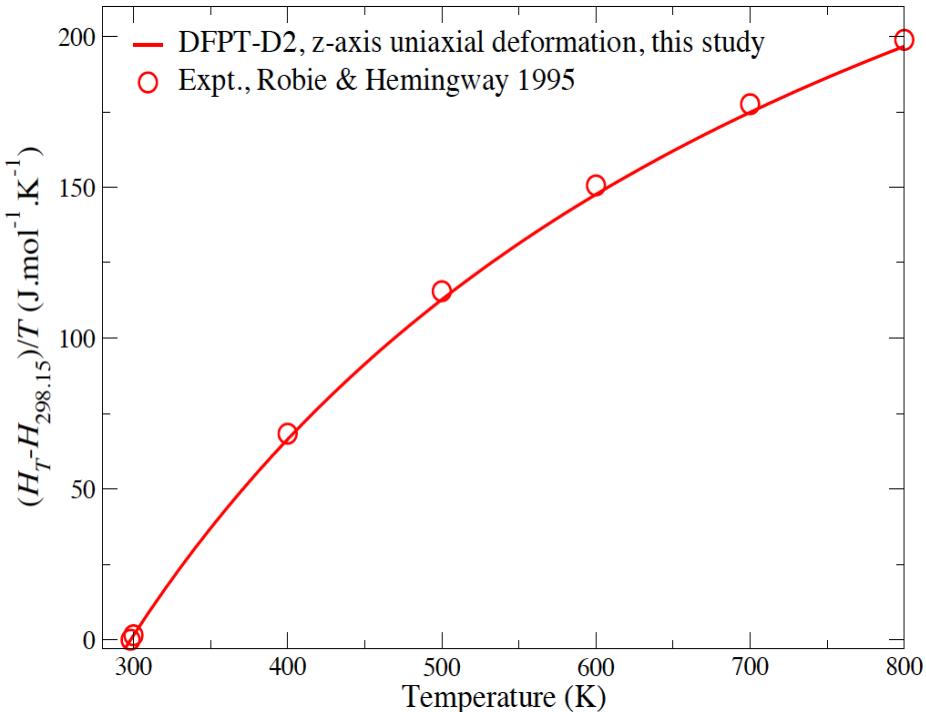
Elastic constants of kaolinite:


- Large variability of experimental data due to different samples crystallinity, water and impurity content, measurement techniques,...
- First-principles calculations can help to assess the accuracy of some data sets and predict missing data.
- Overall good agreement between predicted and measured elastic constants.

^a Katahara, 1996.

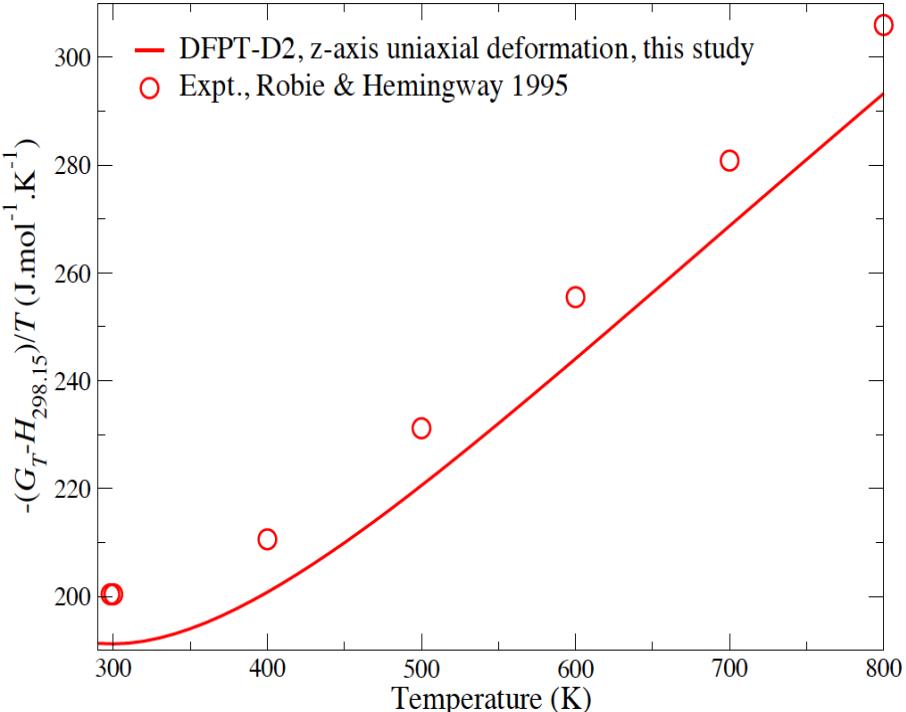
^b Lonardelli *et al.*, 2007.

^c Wenk *et al.*, 2008.


Thermal-Mechanical Properties of Kaolinite ($\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$)

Thermal evolution of the bulk modulus of kaolinite:

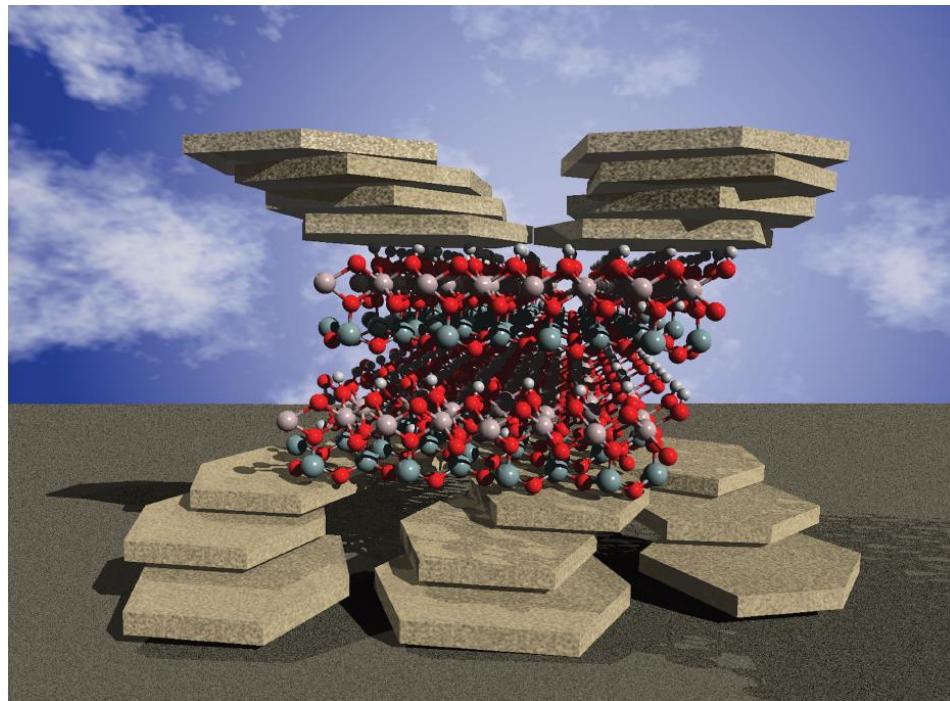
- Large variability of experimental bulk modulus data using the high-crystallinity "KGa-1" Georgia kaolinite sample.
- A significant bulk modulus softening is predicted from first-principles in the 0-600K range.
- Differences in EOSs above ~ 300 K.


Thermal-Mechanical Properties of Kaolinite ($\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$)

Enthalpy function of kaolinite

$$(H_T - H_{298.15}) \cdot T^{-1} = \int_{298.15}^T C_P dT$$

Differences of 2.0–2.5% in the 298–600 K range, and only 1% at 800 K.


Gibbs energy function of kaolinite

$$-(G_T - H_{298.15}) \cdot T^{-1} = S_T - (H_T - H_{298.15}) \cdot T^{-1}$$

Differences of 4.1–4.6% in the 298–800 K range.

Paper selected as Cover Page of *Dalton Transactions* (July 2015):

Weck P.F., Kim E., Jove-Colon C.F., *"Relationship Between Crystal Structure and Thermo-Mechanical Properties of Kaolinite Clay: Beyond Standard Density Functional Theory"*, *Dalton Transactions*, *in press* (2015); DOI: 10.1039/C5DT00590F

FY16 outlook:

- Testing the present theoretical approach using more complex clays, such as Na/Ca-montmorillonite.
- Extend structural and thermal-mechanical calculations within the framework of DFT/DFPT to other NS minerals (clays, salts, granite...) and EBS materials.