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Used

Fuel Introduction, Objectives and Approach
Disposition

B Thermal-mechanical data for natural system (NS) minerals and

engineered barrier systems (EBS) materials are critical to assess their stability
and behavior in geologic disposal environments for safety assessments.

B Data Gaps and Research Needs: NS minerals surrounding the waste package (e.g.
clays, complex salts, granite...).

B Objectives: Using parameter-free first-principles methods to:

— Calculate missing thermodynamic data needed for geochemical & SNF degradation
models, as a fast and systematic way to predict materials properties and to
complement experiments.

— Provide an independent assessment of existing experimental thermodynamic data
and resolve contradictions in existing calorimetric data.

— Validate our computational approach using high-quality calorimetric data.

B Approach
— Structural optimization using density functional theory (DFT) [VASP code].

— Use density functional perturbation theory (DF-PT) to calculate the phonon
properties of materials relaxed with DFT and derive their thermal properties.
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Fuel Structure of Kaolinite (Al,Si,O(OH),)

Disposition

B Expt.:V=2328.708 A3

a=5153A,b=8.942A, c=7.391 A
a =91.93°, B = 105.05°, y = 89.80°.

B Standard DFT: V = 340.11 A3

a=521A b=905A,c=7.48A
a=91.8° B =105.1°, y = 89.7°.

B DFT + van der Waals correction
(DFT-D2): V = 329.03 A3

a=518A b=899A, c=733A
a=91.6°  =105.1°, y = 89.8°.

Layered crystal structure of kaolinite, Volume calculated with DFT-D2
Al,Si,05(OH),, relaxed with DFT-D2. The AGEES TN SRR Wl
unit cell is indicated by solid black lines. ca. 1% (while standard DFT

overestimates expt. by ca. 3.5 %).
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Thermal-Mechanical Properties of
Kaolinite (Al,Si,O(OH),)

Thermal evolution of the bulk modulus computed for single-crystal kaolinite with:

1. Birch-Murnaghan 3rd-order (BM3) equation of state (EOS):
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where P is the pressure, V, is the reference volume, V is the deformed volume, and
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2. Universal Vinet EOS:
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where x = (K) :

Vo
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Thermal-Mechanical Properties of
Kaolinite (Al,Si,O(OH),)

Elastic properties and bulk modulus computed for polycrystalline kaolinite:

Elastic constants (C;) calculated with DFPT as the second derivatives of the energy
with respect to the strain:

1( 0%U
E Y — i i .. i — _1
Ci; (agiagj) > elastic compliances (S;) obtained by S = C

with volume V, total energy U of the system, and infinitesimal displacement «.

1. Voigt approximation: Fixed strain and average over stress = upper limit
C11+C2+C33+2(C12+C13+C23)

9
C11+C22+C33—C12—C13—Cy3+3(Cas+C55+Cs6)

15

Bulk modulus: Ky, =

Shear modulus: Gy =

2. Reuss approximation: Fixed stress and average over strain =>lower limit

Bulk modulus: KR = [Sll + 522 + 533 + 2(512 + 513 + 523)]_1
15

4(511+S522+533—512—513—523)+3(S44+S55+S66)

Shear modulus: Gp =

3. Hill approximation: Average of Voigt and Reuss values
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Thermal-Mechanical Properties of
Kaolinite (Al,Si,O(OH),)

Elastic constants of kaolinite:
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M Large variability of

experimental data due to
different samples crystallinity,
water and impurity content,
measurement techniques,...

First-principles calculations
can help to assess the
accuracy of some data sets
and predict missing data.

Overall good agreement
between predicted and
measured elastic constants.

a Katahara, 1996.
b |onardelli et al., 2007.
¢ Wenk et al., 2008.
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Paper selected as Cover Page of Dalton Transactions (July 2015):

Weck P.F., Kim E., Jove-Colon C.F., "Relationship Between Crystal Structure and Thermo-
Mechanical Properties of Kaolinite Clay: Beyond Standard Density Functional Theory”,
Dalton Transactions, in press (2015); DOI: 10.1039/C5DT00590F

FY16 outlook:

B Testing the present
theoretical approach using
more complex clays, such as
Na/Ca-montmorillonite.

Extend structural and
thermal-mechanical
calculations within the
framework of DFT/DFPT to
other NS minerals (clays,
salts, granite...) and EBS
materials.
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