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Z iron opacity experiments refine our understanding of the sun. i
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« Solar interior predictions don’t match helioseismology

—> Arbitrary 10-20% opacity increase would fix the
problem, but is this the correct explanation?

« Z experiments have measured iron plasma opacity at
nearly solar convection zone base conditions

- Experiment temperature is the same as in sun,
density within a factor of 2

« Opacity models disagree with measurements at
near-solar-interior conditions

- The solar Rosseland mean opacity is ~ 7% higher
using Z iron data instead of OP calculations

The measurements imply photon absorption in high energy
density matter is different than previously believed




If our opacity measurements are correct, we must revise
our understanding for atoms in HED plasmas
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 Measured iron opacities are 30-400% higher than theory predicts
« Opacity model accuracy reflects how well we understand atoms in plasma

Applications include numerous HED plasmas:
« Solar opacity, composition, structure, and evolution are inter-connected

« Solar physics calibrates many other objects. Therefore the measurements
alter our understanding of every main sequence star in the sky, including
exoplanet host stars

« The measurements imply likely revisions for ICF capsule dopants

These serious consequences mandate continued effort

 We invested the last 2 years investigating possible errors and refining results
« The major conclusions survived this scrutiny

 New experiments are testing hypotheses for the model-data discrepancy
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Does opacity uncertainty cause the disagreement between
solar interior models and helioseismology?

Discrepancies in CZ boundary location,
Cs (r), and p(r)

Models depend on:

» element abundances
- EOS

* opacity

Discrepancies for other stars are
appearing as asteroseismology
matures

focus: iron at convection zone base
{190 eV, 9e22 e/cc}




Disagreement could be resolved if the true mean opacity ) e,
for solar matter is 10-30% higher than predicted
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Multiple entangled physical processes are a
concern for opacity models
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*Energy level structure and detail
*Multiply excited states
*Autoionizing levels
*Photoionization

Line broadening

«Continuum lowering




Strategy: frequency-dependent transmission ) i,
measurements test opacity model physics
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Detailed information about the physical basis for opacity models is
encoded in the frequency dependent opacity spectra.




How do we perform opacity measurements? ) Hetona
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Benchmark quality opacity experiment requirements g iz,
have been developed over 30 years

Overarching requirements for each application:
|deally: Reproduce the temperature, density, and radiation
Minimum: Reproduce the same charge states and measure the same transitions

Example references:

Experiment requirements: Davidson et al. Appl. Phys. Lett. 1988
Accurate transmission measurements (~ + 5%) | perry ot al. Phys. Rev. Lett 1991

. Demonstrated uniformity Foster et al. Phys. Rev. Lett. 1991
. Reliable plasma diagnostics Perry et al. Phys. Rev. E 1996
. Freedom from self emission Springer et al. JQSRT 1997

1.
2
3
4
5. Freedom from background contamination
6
7
8
9.
1

. Multiple areal densities (for dynamic range and systematic error tests)
. Thorough sample characterization
. An evaluation of suitable the LTE approximation is
Multiple Te, ne conditions, to aid disentangling physical effects
0. Multiple atomic number elements, to aid disentagling physical effects and help
verify robustness against systematic errors
11. Multiple experiments of each type, to confirm reproducibility
12.Peer review and documentation
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Bailey et al., Phys Plasmas 16 (2009)




The ZPDH radiating shock is used to both heat and )
backlight samples to stellar interior conditions. e

Foil is heated during
the ZPDH implosion

opacity sample

Foil is backlit
at shock stagnation




Transmission is inferred by dividing the attenuated (g i,

spectrum by the unattenuated spectrum. s
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Bailey et al., POP 16 (2009)




Measurements with half-moon shaped samples enable

transmission determination from single experiments
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J.E. Bailey et al, RSI (2008).



Opacity data are recorded with an array of crystal ) i
SpeCtrOmEte rs aboratories

 The array of opacity spectrometers is
~ lowered into place with a 20 ton crane



Hundreds of spectra were measured and analyzed to i lﬁggniggal_
support the experiment reliability and reproduciblity —

A

Spectrometer 4a Spectrometer 10a

A A

Spectrometer 4b Spectrometer 10b

Data from z2762
This experiment used four spectrometers to record 24 spectra 15




Plasma conditions are inferred by mixing Mg with Fe and

using K-shell line transmission spectroscopy
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Opacity measurements ) Hetona
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“Best Effort” opacity models “match” the iron data at lower A i,
T(_,_/n,g conditions but not at conditions near the solar CZB
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At high temperature , density, calculations are generally lower than the data
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The OP opacity model is used in solar models but it ) e
disagrees with Z measurements at solar CZB conditions
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No model examined up to now has satisfactory agreement
with iron opaatv measured at hear- -CZB condltlons
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Implications for the sun ) Hetona
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The measured pure iron Rosseland mean opacity is ) e
higher than calculated

experiment/model ratio
Rosseland Mean
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OP 1.75
OPAS 1.53
ATOMIC 1.75
SCO-RCG 1.57
SCRAM 1.67

This comparison:

1) Is for the Be-tamped conditions (182 eV, 3.1x10%2 electrons/cc)
2) uses only the measured wavelength range
3) accounts for the measured instrument resolution




A solar mixture plasma using Z iron data has ~ 7% A i,
hlgher Rosseland mean opauty than usmg OP iron
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A 7% Rosseland increase partially resolves the solar problem, but the
measured iron opacity by itself cannot account for the entire discrepancy

« Other elements and regions deeper in the sun could contribute




Path forward ) Hetona
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The f sum rule might guide our understanding, butit () e,

H o, ® Laboratories
requires measurements of all relevant transitions

4 hd | | bl . v | v L L] T v v w T

Measurements for
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being refined
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Is sum rule valid?
Is photon absorption shifted from long A to short A?
Or is experiment flawed somehow?
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No systematic error has been found that can explain the ) e
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model-data discrepancy
Random error determination: average many spectra from multiple experiments

Systematic error evaluation:
Experiment tests
Postprocess benchmarked simulations

Eleven different potential systematic errors were investigated:

Sample contamination }- potential increase for inferred opacity
Tamper shadowing

Fe self emission
Tamper self emission potential decrease for inferred opacity
Extraneous background

Sample areal density errors |
Transmission errors

Spatial non-uniformities
Temporal non-uniformities
Departures from LTE

Plasma diagnostic errors

— potential increase or decrease for inferred opacity

26
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What are the hypotheses for the discrepancy and how ) e
can we test them?
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Hypotheses:

1) Despite all our effort, iron measurement is flawed somehow

2) Photon absorption is shifted from long A to short A by a process that is
as yet undetermined

3) Models have difficulty predicting opacity for open L-shell configurations
4) Models have difficulty predicting highly excited configurations

Tests:

A) Z experiments with lower and higher atomic number elements
B) Z experiments with lower and higher temperature and density
B) Experiments on a different platform (NIF)




Experiments with different elements shift different spectral (@ so,
regions into the highest accuracy experiment range
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PrismSPECT
182 eV, 3x10%22 cm3

nickel (Z=28

opacity

iron (Z=26)

chromium (Z=24)

8 10 wavelength (A)1 2

Experiments with different elements also can help identify possible experiment
peculiarities with the iron measurements (e.g., unknown contaminants)
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The number of L shell vacancies changes with the sample
element
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Opacity from transitions with an open L-shell may be more complex to model
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The fractional excited state population increases as the
atomic number decreases
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Opacity from ions with high excited state populations may be more complex to model
These difficulties increase as atomic number decreases
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Preliminary Ni data shows the high Te/ne experiment i i,
platform is capable of measuring sharp spectral features
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Predictions for Ni opacity windows and quasi-continuum
agree reasonably well with preliminary data
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Predictions for Ni opacity in the 2p-3d spectral region are A i,
approximately 2x larger than measurements
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Consistent with a hypothesis that photon absorption at long wavelengths
is over-predicted while short wavelength absorption is under-predicted




Preliminary Cr model-data discrepancy is similar to iron
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We will untangle the complex opacity issues through
precise measurements across a range of T, n_, and Z.
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« Solar interior predictions don’t match helioseismology

—> Arbitrary 10-20% opacity increase would fix the
problem, but is this the correct explanation?

« Z experiments have measured iron plasma opacity at
nearly solar convection zone base conditions

- Experiment temperature is the same as in sun,
density within a factor of 2

« Opacity models disagree with measurements at
near-solar-interior conditions

- The solar Rosseland mean opacity is ~ 7% higher
using Z iron data instead of OP calculations

The measurements imply photon absorption in high energy
density matter is different than previously believed
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