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Equation-of-State Scaling Factors

A. J. Scannapieco

June 10, 2016

Equation-of-State scaling factors are needed when using a tabular EOS
in which the user defined material isotopic fractions differ from the actual
isotopic fractions used by the table. Additionally, if a material is dynamically
changing its isotopic structure, then an EOS scaling will again be needed,
and will vary in time and location. The procedure that allows use of a table
to obtain information about a similar material with average atomic mass M,
and average atomic number Z, is described below. The procedure is exact
for a fully ionized ideal gas. However, if the atomic number is replace by the
effective ionization state the procedure can be applied to partially ionized
material as well, which extends the applicability of the scaling approximation
continuously from low to high temperatures.

Assume that a tabular EOS which is a function of density, p; and specific
internal energy ¢; is given as

Py = Pips, ) (1)

In addition, the table material has an an average atomic mass of M; and and
average atomic number of Z;. For and ideal gas the pressure, energy density
and specific internal energy are:

P, = N(Z+ 1)ksT 2)
Ey=N((Z+1)/(v — 1))ksT (3)
& =E/pe = ((Ze+ 1)/ (e — 1))ksT/M, (4)

where N is the number density of ions, kg is the Boltzmann constant, T is the
temperature and ~; is the ratio of specific heats for the table material. For



the same temperature and number density of ions define a material pressure,
energy density, and specific internal energy for material s

P, = N(Zy+ 1)ksT (5)
Ey=N((Zs+1)/(7s — 1)ksT (6)
€ = By/ps = ((Zs + 1)/ (s — 1))k T/ M, (7)

The ratios of density, energy density, specific internal energy, and pressure
between the actual material (s) and table material (t) are:

pe/ps = M /M, (8)
E/E;=(Ze+1)/(Zs+ (e —1) /(s — 1) (9)
er/es = My/M(Zy+ 1) /(Zs + 1)(vs — 1) /(7 — 1) (10)
PPy = (Z+1)/(Zs + 1) (11)
If (3 — 1) = (7 — 1) then
pe/ps = My /M, (12)
Ey/Es=(Z,+1)/(Z; + 1) (13)
Et/es = MS/Mt(Zt + 1)/(Zs + 1) (14)
PPy = (Zs +1)/(Z; + 1) (15)

Equations (12) to (15) are the scaling ratios. To use the table for material
(t) to calculate a pressure for material (s) define p;, and ¢, as:

Pt = pth/Ms (16)

and
a=e(Zi+1)/(Zs + 1) M,/ M, (17)

Use these values of density and specific internal energy in the table for ma-
terial (t) to find the pressure of material (s).

PS(pSa ES) = Pt(ﬂt, Gt)(Zs + 1)/(Zt + 1) (18>

To verify the result, write the pressure for material (s) in the form
Py =(n—Veap(Zs +1)/(Z + 1) (19)
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Substitute equations (16) and (17) into equation (19). Since (y; — 1) =
(7s — 1), the result is
PS = (78 - 1>ps€sa (20)

which is the desired result.

Finally, to calculate (Zs; + 1) and M, from isotope mass fractions define
v{ as the mass fraction of isotope (i) of material (s). Let N7 be the local
particle number density of isotope (i) of material (s). Also, m; and z; are the
atomic weight and number density of isotope (i) of material (s). The average
atomic weight and average atomic number of material (s) are given as

M, =Y miN;/N, (21)
=1
and .
Z, =Y 2N;/N, (22)
=1
where

N,=> N; (23)
i=1
The local mass fraction of isotope (i) of material (s) is defined as
vi = m;N; /mgNg (24)
where

2": v =1.0 (25)
i=1

and n is the total number of isotopes in material (s). From equation (24) the
average atomic mass of material (s) is given as follows.

v /mi = N7 [/MyN; (26)
> vi/mi = N,/M,N, (27)
=1

Therefore

M, =1/ vi/m; (28)
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Further

N7 = MyNyv; /mS (29)
(Zs+1) = i(zf +1)N?/ i N?
(2o 1) = Y06t + )02/ i)

(Zo+1) = M,> (2 + 1) /m;
=1

and
n

(Z+ 1)/M, = 3268+ 1) (30)
i=1
which represents the necessary functions needed to scale all the EOS calcu-
lations.
At low temperature a scaling ratio S, = M;/M, has traditionally been
used to scale the density and internal energy when using a tabular EOS.

Pt = psSr
€& — ES/S’I’

With the above scaling of the density and and specific internal energy the
pressure of the material s is

P, = Pt(pt; Et) (31)

Equations (12) through (15) are the scaling ratios . If the atomic ioniza-
tion states Z, and Z; are calculated as a function of temperature and density
per cycle per zone for each material, then these scaling ratios can be used
throughout a calculation to transition from low to high temperatures. At low
temperature or temperatures below the Debye temperature Z, = Z; = 0.0
and the scaling ratios become

Pt/Ps - Mt/Ms

Et/ES - 10
61‘,/63 = Ms/Mt
Ps/Pt — 10

which are the scaling ratios traditionally used at low temperatures.



