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In this work, we develop a tantalum strength model that incorporates effects of temperature, strain rate
and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate effects while
the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants
used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression
experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate
dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately
reproduces the pressure dependent yield stresses up to 250 GPa. The proposed strength model is then used
to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach
provides a physically-based multi-scale strength model that is able to predict the plastic deformation of
polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.
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I. INTRODUCTION

Body-centered-cubic (BCC) metals, including tanta-
lum, are well-known to exhibit strong temperature and
strain rate dependent mechanical behaviors compared
with close-packed structured metals1,2. Accurate materi-
als modeling in these varying environments is especially
important as tantalum has a wide variety of applications
in extreme conditions, i.e. high temperature, strain rate
and pressure. Several continuum models exist to describe
the strongly temperature and strain-rate dependent flow
behaviors of BCC metals3–8. Most of these classical
models, i.e. Johnson-Cook (JC)3,5 and Zerilli-Armstrong
(ZA)6, are empirical in form and their parameters are
calibrated to experimental data of polycrystals at high
temperatures and strain rates. More recently, the Me-
chanical Threshold Stress (MTS)7,9, Steinberg-Guinan-
Lund (SGL)10,11 and Preston-Tonks-Wallace (PTW)12

models have been proposed to account for thermal activa-
tion of dislocations. These models successfully reproduce
the flow behavior of polycrystalline tantalum at temper-
atures of 25 - 1000 ◦C and strain rates of ε̇=10−4 -104

s−1. In addition to temperature and strain rate depen-
dence, the SGL model incorporates pressure dependence
while the PTW model considers different material be-
haviors in two different strain rate regimes to account
for overdriven-shock (ε̇ = 109 − 1012 s−1). These mod-
els, however, are generally fit to macroscopic observables
from polycrystalline experiments and do not consider the
physics from lower length scale models/ experiments.

Dislocation kink-pair theory has been proposed to
accurately model the motion of thermally activated
screw dislocations in BCC metals and therefore de-
scribe these materials’ temperature and strain rate
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dependent flow13–17. The theory has been used
to successfully describe the temperature and strain
rate dependence of various BCC single crystals, e.g.
tantalum14, molybdenum18–20, tungsten21,22, α-iron23–25

and niobium26. Recently, this theory was used in
meso-scale crystal plasticity models to incorporate tem-
perature and strain rate dependent behaviors in BCC
polycrystals27,28.

In the present work, we extend the dislocation kink-
pair model to develop an analytical strength model for
tantalum that incorporates effects of temperature, strain
rate and pressure. The proposed strength model is based
on thermally activated dislocation physics and is param-
eterized by single crystal experiments and polycrystalline
ramp compression experiments. The model is validated
with experimental data from the literature. In addition,
the model is implemented into Sandias solid dynamics
software, ALEGRA29, to simulate ballistic Taylor cylin-
der impact tests. The deformed shape from the Taylor
cylinder simulations, based on this proposed tantalum
strength model, agrees well with experimental data and
should be amenable to various applications involving high
temperature, strain rate and pressure.

II. DISLOCATION KINK-PAIR THEORY

Dislocation kink-pair theory assumes that the shear
stress, τ , resolved onto the active slip system can be de-
composed into thermal and athermal contributions:

τ = τ̄ + τ∗ (T, γ̇) . (1)

Here, the first term, τ̄ , is the athermal component of the
flow stress that is attributed to long-range interactions.
For example, τ̄ can be represented by using the forest
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dislocation density, ρf , as follows30:

τ̄ = αµb
√
ρf , (2)

where, α is a material constant and µ is the shear modu-
lus. τ̄ depends directly on the initial defect density, heat
treatment and loading histories of the material. τ̄ can
be obtained from single crystal experiments at high tem-
perature (T > Tc) where the thermal part of the lattice
friction becomes negligible. For example, a value of τ̄=
12 MPa was obtained for tantalum from single crystal
cyclic tests at temperatures above 350 K14. The thermal
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FIG. 1. Illustration of Peierls barrier and dislocation kink-
pair at two temperature regimes. One dislocation shows a
bulge in the line (on the left), described by the line tension
model; and the second dislocation (right) has well formed
kinks, described by the elastic interaction model. The valleys
and peaks are separated by the spacing h and the height of
the Peierls potential is ∆U .

part of the flow stress, τ∗, is attributed to strong tem-
perature dependent lattice friction that requires thermal
activation to overcome the Peierls barrier. Figure 1 shows
a schematic of Peierls barrier and dislocation kink-pairs
at two temperature and strain rate regimes. In the high
temperature and low stress regime (Regime I), the dis-
location kinks are fully formed and well separated (red
dislocation line in Figure 1). Thus, the flow stress in
Regime I can be represented using the elastic interaction
(EI) model, τ∗EI , as follows13,31:

τ∗EI = τ0EI

[
1−

(
kBT ln(γ̇0/γ̇)

2Hk

)]2
. (3)

Here, Hk is the formation enthalpy of an isolated kink,
kB is Boltzmann’s constant, γ̇0 is the reference shear rate,
and τ0EI is the material parameter representing τ∗EI at 0
K.

In the low temperature and high stress regime (Regime
II), the dislocation kinks are not fully formed (blue dis-
location line in Figure 1). The flow stress in Regime
II can be obtained from a dislocation line tension (LT)
model. To evaluate the LT model, a numerical repre-
sentation of the Peierls barrier must be assumed. For

the antiparabolic representation of the Peierls poten-
tial, the flow stress in Regime II can be represented as
follows17,32,33:

τ∗LT = τ0LT

[
1−

(
kBT ln(γ̇0/γ̇)

2Hk

)1/2
]
, (4)

where τ0LT is a material parameter that represents τ∗LT at
0 K. Using this double regime dislocation-based strength
model, τ∗ at different temperatures and strain rates can
be determined from13:

τ∗ = min (τ∗EI , τ
∗
LT ) . (5)

FIG. 2. Measured (data points) and calibrated (solid lines)
τ∗ of single crystal tantalum at different temperatures and
strain rates using the EI and LT models14,27. Here, the fits
are for the highest, lowest and middle strain rates.

The kink-pair model in Equation (5) was fit to tanta-
lum single crystal experiments at various temperatures
and strain rates14. Here, experimental values of τ∗ are
obtained via the Ackermann-Mughrabi technique and us-
ing pre-deformed specimens that have a stable dislocation
cell structure to minimize the variance in the observed
response14,26. Figure 2 compares measured and fitted
τ∗ of tantalum single crystals at different temperatures
and strain rates using the dislocation kink-pair model27.
The model accurately captures temperature and strain
rate dependent flow behavior of tantalum single crystals.
The best-fit material parameters used in the model are
listed in Table I27.

III. P AND T DEPENDENT SHEAR MODULUS

Conventional strength models that incorporate dislo-
cation plasticity do not generally consider the effect of
pressure on yield. However, in extremely high pressure
regimes, pressure influences the shear modulus and hence
the flow behavior of tantalum34–36. Some constitutive
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TABLE I. Best-fit material parameters for tantalum strength
model fit from tantalum single crystal experiments and poly-
crystalline ramp compression tests10,14,27,34.

Equations Parameters Values

Eqns. (3)-(4)

γ̇0 2.99× 106 s−1

2Hk 0.85 eV
τ0EI 406 MPa
τ0LT 320 MPa

Eqn. (7)

µ0 69 GPa
µ′T 0.009 GPa/K
α1 7.9907× 10−1 GPa−1

α2 2.1292× 10−3 GPa−2

models have been proposed to relate pressure to the shear
modulus from both experiments and lower length-scale
simulations10,37. In this work, the pressure dependent
shear modulus is calibrated to high-rate ramp compres-
sion experiments (3×105 s−1) at room temperature up to
250 GPa using Z pulsed power facility at Sandia National
Laboratories34.

Exp. (Brown et al., 2014)  
Empirical fit 

T = 300 K 

FIG. 3. Pressure dependent shear modulus of polycrys-
talline tantalum from the ramp compression experiments
(data points)34 and polynomial fit (solid line). The ramp
compression tests were conducted at the strain rate of 3×105

s−1 and 300 K.

Figure 3 shows a plot of the measured (data points)
and calibrated (solid line) pressure dependent shear mod-
ulus. Note that in contrast to conventional models10,
there is a non-linear relation between the shear modulus
and the pressure. The following polynomial was used to
represent the pressure dependent shear modulus:

µ(P ) = µ0 + α1P + α2P
2, (6)

where µ0 is the shear modulus at the reference state (T=0
K and P=0) and, α1 and α2 are the fitting parameters.

Note that the shear modulus is dependent on both the
temperature and the pressure. The shear modulus is re-

ported to be nearly linear in temperature up to the melt-
ing point38. By incorporating both the temperature and
pressure effects, the shear modulus can be written as fol-
lows:

µ(P, T ) = µ0 − µ′T (T − 300) + α1P + α2P
2, (7)

where µ′T is the derivative of the shear modulus with
respect to temperature. Table I lists the best-fit parame-
ters in Equation (7) that were used to create the red line
in Figure 310.

IV. STRENGTH MODEL INCORPORATING T , γ̇ AND
P

The Arrhenius law relates the rate of plastic deforma-
tion, γ̇, to the activation enthalpy and temperature as
follows:

γ̇ = γ̇0exp

(
−∆H

kBT

)
, (8)

where ∆H is the activation enthalpy. ∆H can be repre-
sented using the ratio of the resolved shear stress (τ) and
the Peierls stress (τp) as follows39:

∆H = ∆H0

(
1−

(
τ∗

τp

)p)q

, (9)

where p and q are parameters that determine the shape
of the energy barrier profile such that 0 ≤ p ≤ 1 and
1 ≤ q ≤ 2 are satisfied. Note that when p = 0.5 and
q = 1 , the activation enthalpy law is in the same form
as the EI model and when p = 1 and q = 2 the law
corresponds to the LT model.

It has been shown that τp and ∆H0 are proportional
to shear modulus such that the following relations are
satisfied9,40:

τp =
µ

µ0
τ0p , (10)

∆H0 =
µ

µ0
∆H0

0 , (11)

where τ0p and ∆H0
0 represents reference states of the

Peierls stress and the activation enthalpy, respectively.

Thus, the general form of τ∗ that depends on the cur-
rent µ can be written as follows:

τ =
µ

µ0
τ0p

[
1−

(
µ0kBT ln(γ̇0/γ̇)

µ∆H0
0

)1/q
]1/p

. (12)

The form in Equation (12) can then be applied to the
two kink-pair models, the LT and EI models, in Equa-
tions (3) and (4) as follows:

τ∗EI =
µ

µ0
τ0EI

[
1−

(
µ0kBT ln(γ̇0/γ̇)

µ(2H0
k)

)]2
, (13)
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τ∗LT =
µ

µ0
τ0LT

[
1−

(
µ0kBT ln(γ̇0/γ̇)

µ(2H0
k)

)1/2
]
. (14)

Here, 2H0
k is the kink activation enthalpy at the reference

state. In addition, the athermal part of the flow stress,
τ̄ , in Equation (15) also depends on the shear modulus
and can be represented as follows:

τ̄ =
µ

µ0
τ̄0, (15)

where τ̄0 is the athermal stress at the references state.

The shear stress of a single crystal resolved onto the
active slip system (τ) can be related to the uniaxial stress
applied to a polycrystal (σ), as follows:

σ = M̄τ, (16)

where M̄ is the average Taylor factor that represents
the ratio between the macroscopic stress and the re-
solved shear stress. For BCC polycrystals, M̄ ranges
between 2.733 to 3.067, depending on the specific slip
systems41–46. In this work, we use M̄ value of 3.06 for
{110} 〈111〉 slip.

Using Equations (1) and (16), the yield stress of poly-
crystalline tantalum (σy) can be represented as follows:

σy = M̄ [τ̄ + min(τ∗EI , τ
∗
LT )] . (17)

Note that in Equation (17), both τ̄ and τ∗ depend on
pressure and temperature while the only latter term is
affected by the strain rate.

Figures 4 (a) and (b) compare the measured and pre-
dicted yield stresses of polycrystalline tantalum at differ-
ent strain rates and temperatures. In Figure 4 (a), the
strain rate dependent yield stress is calculated using the
model developed here and compared with the measured
yield stress at 300 K9,27,47–50. Similarly, the predicted
temperature dependence is compared with experimental
data at constant strain rate of 10−4 s−147,50. It is shown
that the model agrees reasonably well with various exper-
imental measurements from the literature and it is within
the scatter of the experimental data. The model predic-
tions in Figures 4 (a) and (b) show a transition between
the two models, EI and LT, with varying temperature
and strain rate. The model calibrated from single crystal
data accurately predict polycrystalline behavior within
a strain-rate range of 10−6 - 104 s−1 and a temperature
range of 0 - 500 K.

Figure 5 shows pressure dependence on the yield
stresses of polycrystalline tantalum. Experimental data
are obtained from ramp compression of tantalum at a
nominal strain rate of 3×105 s−1 at room temperature34.
The measured pressure dependence is compared with our
model and with the SG10, PTW12, SGL11 and LM37

models. Here, τ̄ = 91 MPa is used to fit the measured
yield stress of cold rolled tantalum plate at 62 GPa. It
is shown that our model captures pressure dependence
of polycrystalline tantalum reasonably well, especially at
high pressures, as compared to other existing models. All

Model prediction 
Hoge and Mukherjee (1977) 
Adams and Iannucci (1961) 
Lim et al. (2015) 
Chen and Grain (1996) 
Voyiadjis and Abed (2006) 
Park et al. (2011) 

Model prediction 
Hoge and Mukherjee (1977) 
Park et al. (2011) 

 !ε = 10-4  s-1 

(a) 

(b) 

FIG. 4. (a) Measured9,27,47–50 and predicted yield stresses of
polycrystalline tantalum for different strain rates at 300 K
and (b) measured47,50 and predicted yield stresses of poly-
crystalline tantalum for different temperatures at ε̇ = 10−4

s−1

four of the existing models from the literature predict
a nearly linear pressure dependence and tend to under-
predict the measured values at high pressures. This may
be attributed to the fact that these models are fit to lower
pressure regimes, i.e. less than 100 GPa.

V. DYNAMIC SIMULATION OF TAYLOR IMPACT
TEST

The constitutive model described in the previous sec-
tion was used in high-rate simulations of a common
benchmark application: Taylor cylinder impact tests of
a projectile specimen impinging on a hard target51. This
method is often used to validate solid dynamics simula-
tion codes and models and it provides a simple, conve-
nient, and robust approach for subjecting a single speci-
men to a wide range of strain rates across its length.

The simulation was conducted using ALEGRA, a
Lagrangian-Eulerian multi-physics code developed at
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FIG. 5. Pressure dependence of polycrystalline tantalum from
ramp experiments34 and various strength models. The pro-
posed strength model agrees reasonably well with the Z ramp
experiments compared to other existing models10–12,37.

Sandia National Laboratories. Figure 6 shows a
schematic of a Taylor impact test. The simulated projec-
tile is a tantalum cylinder with dimensions of 38.1 mm
in length and 7.62 mm in diameter, and impinges upon a
hard surface of 4340 steel at a velocity of 175 m/s. The
simulation was conducted at standard atmospheric con-
ditions described by a temperature of 298 K and pressure
of 1 bar.

The three-dimensional Lagrangian simulations were
conducted with 9,120 hexahedral finite elements in the
tantalum projectile, and a target surface consisting of a
block of 4340 steel described by 62,500 hexahedral finite
elements. A three-dimensional quarter-symmetry condi-
tion is used for efficiency. The MESQUITE remeshing
algorithm was imposed at every time step in the ALE-
GRA simulations to avoid numerical artifacts associated
with ill-conditioned finite elements evolving during defor-
mation. The contact between the projectile and target
was assumed to be frictionless.

In ALEGRA, each material requires models for the
equation of state (EOS) and the elastic-plastic deforma-
tion (strength model). For the tantalum projectile and
the steel plate, a Mie-Grüneisen EOS model and Sesame
tabular EOS data were used to represent the EOS of each
material, respectively52. For the strength model of tan-
talum, the LT portion of the dislocation kink-pair model,
which is suitable for the high rate regime in Equation (4),
was used. The strain hardening rate is represented by an
empirical law using tanh function as follows53:

∂σ

∂εp
= θ0

(
1− tanh (ασ/σs)

tanh(α)

)
, (18)

where εp is the equivalent plastic strain, θ0 and α are
the material parameters and σs represent temperature

175 m/s 

Ta 

4340 steel 

38.1 mm 

7.6 mm 

x 

z 

y 

FIG. 6. A schematic of a Taylor cylinder impact test. Tan-
talum cylinder impinges on 4340 steel block at a velocity of
175 m/s.

and strain rate dependent saturation stress that can be
represented as follows54:

σs = σ0
s

(
γ̇

γ̇s0

) kBT

µb3A

, (19)

where, A, α and γ̇s0 are material constants.
For the 4340 steel, a Zerilli-Armstrong yield model hav-

ing the following form was used6.

σZ = C1 + C2 exp (−C3T + C4T ln ε̇p) + C5ε
N
p , (20)

where, C1 - C5 and N are material parameters. Table II
lists material parameters used in yield models for tanta-
lum and 4340 steel.

Figure 7 (a) compares the measured55 and simulated
shape of the tantalum projectile after impact under the
same conditions. The simulated image was captured af-
ter the projectile reflected off the steel plate such that
the center-point of the bottom of the (deformed) speci-
men reached its initial position of approximately 0.1 mm
above the target surface. The simulated specimen shape
shows relatively good agreement with the measurement.

The profiles of the projectile’s shapes after impact are
shown in Figure 7 (b), which contains the x-y coordi-
nates along the outer surface from the ALEGRA simula-
tion and previously published experiments on tantalum
Taylor impact tests55. The simulation predictions agree
well with the experiments. The total lengths of the de-
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TABLE II. Material parameters used in ALEGRA Taylor im-
pact tests for tantalum and 4340 steel. Any parameters not
listed in the table were left at their default values.

Materials Parameters Values

Tantalum

σ0
s 575 GPa
γ̇s0 107 s−1

θ0 2 GPa
b 2.86 Å
α 2.75
A 1.6

4340 steel

C1 89.8 MPa
C2 2.07 GPa
C3 17.4 K−1

C4 0.56 K−1

C5 1.03 GPa
N 0.531

Exp. Sim. 

(a) (b) 

FIG. 7. (a) Specimen shapes and equivalent plastic strain
maps predicted by ALEGRA simulations of impact of a three-
dimensional, quarter-symmetric tantalum specimen into a
4340 steel plate and (b) Projectile shape profiles (not to
scale) predicted by ALEGRA simulations, with results re-
ported from earlier Taylor cylinder impact experiments55 (us-
ing the measurements from the minor axis).

formed projectile was 28.4 mm from the simulation and
27.8 mm from the experiment, deviating approximately
2 %. This discrepancy could arise from a variety of fac-
tors, including the lack of crystallographic texture, plas-
tic anisotropy, and deformation twinning56,57 in the sim-
ulated projectile; and the frictionless contact between the
projectile and the target.

VI. CONCLUSIONS

In this work, we introduced a multi-scale model of plas-
ticity in pure tantalum that captures temperature, strain
rate and pressure effects on material strength. The ba-

sis of this model is fundamental dislocation mechanics,
specifically kink-pair theory which accurately captures
the strain rate and temperature dependence of yield.
These results provide an example of a multi-scale inte-
gration of simulations and experiments from the disloca-
tion scale, through the meso- and micro-scales, and into
macro-scale continuum solid dynamics. The use of the
multi-scale strength model to simulate Taylor impact ex-
periments, and its close agreement with measured defor-
mation profiles demonstrates the utility and robustness
of this model.
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