
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Rolex: Resilience-Oriented Language Extensions for
Extreme-Scale Systems

Saurabh Hukerikar*, Robert F. Lucas

Received: date / Accepted: date

Abstract Future exascale high-performance computing (HPC) systems will be
constructed from transistor devices that will be less reliable than those used today,
and faults will become the norm, not the exception. This will pose significant prob-
lems for system designers and programmers, who for half-a-century have enjoyed
an execution model that assumed correct behavior by the underlying computing
system. The mean time to failure (MTTF) of the system scales inversely to the
number of components in the system and therefore faults and resultant system
level failures will increase, as systems scale in terms of the number of processor
cores and memory modules used. However every error detected need not cause
catastrophic failure. Many HPC applications are inherently fault resilient. Yet it
is the application programmers who have this knowledge but lack mechanisms to
convey it to the system.

The authors would like to acknowledge the support for this work provided through Scientific
Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research under award number DE-
SC0006844. Partial support for this work was also provided by the US Army Research Office
(Award W911NF-13-1-0219). This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to do so,
for United States Government purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the DOE Public Access
Plan(http://energy.gov/downloads/doe-public-access-plan).

Information Sciences Institute
University of Southern California
4676 Admiralty Way Suite 1001,
Marina del Rey, CA 90292 USA
E-mail: saurabh, rflucas@isi.edu

*Current Affiliation:
Oak Ridge National Laboratory
1 Bethel Valley Rd,
Oak Ridge, TN 37830 USA
E-mail: hukerikarsr@ornl.gov

2 Saurabh Hukerikar*, Robert F. Lucas

In this paper, we present new Resilience Oriented Language Extensions (Rolex)
which facilitate the incorporation of fault resilience as an intrinsic property of the
application code. We describe the syntax and semantics of the language exten-
sions as well as the implementation of the supporting compiler infrastructure and
runtime system. Our experiments show that an approach that leverages the pro-
grammer’s insight to reason about the context and significance of faults to the ap-
plication outcome significantly improves the probability that an application runs
to a successful conclusion.

Keywords resilience · exascale · programming models · runtime systems · fault
tolerance

1 Introduction

By the end of this decade, exascale high-performance computing (HPC) systems
promise to accelerate the pace of scientific discovery in a broad range of disci-
plines including climate and environmental modeling, chemistry and materials,
high energy and nuclear physics, nanotechnology, astrophysics, and biology. These
systems will enable the solution of vastly more accurate predictive models and the
analysis of massive data sets [1].

Among the difficult challenges in designing and operating future exascale-class
systems, guaranteeing reliability of operation in the presence of increasingly fre-
quent faults and errors will be critical. Various studies [10][18] have suggested that
the path to higher capability machines will require an exponential increase in the
number of CPU cores and memory modules in order to drive performance. For an
exascale-class supercomputer, its sheer scale is a challenge to the system’s ability
to tolerate faults and maintain service. Furthermore, the reliability of individual
components is projected to decrease as Moore’s law enables shrinking transistor
geometries [11].

In today’s HPC systems, we enjoy a model of execution in which the applica-
tion presumes correct behavior by the underlying fabric of hardware and system
software, i.e., the execution environment. Some errors are masked by hardware-
based mechanisms, and the error events that cannot be handled by the system
layers usually result in fatal crash. This is usually catastrophic for the applica-
tion processes running on the system. Therefore most HPC systems deal with
anomalous events only when they result in catastrophic failure through a process
of checkpoint and rollback recovery (C/R). However, for the projected fault rates
in future exascale-class HPC systems relying solely on such mechanisms will lead
to frequent application failures or incorrect results. Many of the scientific appli-
cations that run on these systems contain features that allow the effect of certain
faults and errors to be tolerated or mitigated at the application level through
algorithmic methods. Various algorithm-based fault tolerance (ABFT) solutions
[14] [5] support application-level error detection and correction. Therefore, not all
faults and errors need to result in a catastrophic crash. Programmers of scientific
applications, through their domain expertise and familiarity with the application
codes, gained through code optimization efforts, are usually well-positioned to un-
derstand such application-level fault-resilience features. However, they lack conve-
nient mechanisms to express such knowledge to the system. We believe that with

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 3

modest extensions to existing programming model the application-level knowl-
edge may be leveraged by the execution environment to enable HPC applications
to continue running towards successful completion despite the presence of cer-
tain faults and errors in the system. In this paper we investigate whether simple
language-level extensions in concert with a compiler infrastructure and a runtime
inference framework can enhance the ability of HPC applications to manage the
effects of faults and errors in their state. We propose Rolex, a set of Resilience-
Oriented Language Extensions that capture HPC programmers’ knowledge of the
fault-tolerance features of the program code and their expectations of application
outcomes. By making resilience essential to the programming model, the execution
environment can use this application-level knowledge to reason about the signifi-
cance of the errors to the correctness of the application’s outcome. We define the
syntax of the resilience-oriented language extensions, describe their fault-resilience
semantics, and their integration with a compiler infrastructure and runtime infer-
ence system. We also describe our experience of applying Rolex to several common
HPC application codes and evaluate the application resilience using accelerated
fault injection experiments.

The remainder of this paper is organized as follows: Section 2 explains the
basis of our approach on how capturing programmer knowledge through simple
language extensions may be used to manage the applications fault resilience. Sec-
tion 3 describes the design goals and philosophies behind the Rolex extensions
and Section 4 presents their syntax and semantics and several motivating exam-
ples which demonstrate the viability of applying these language extensions in the
context of real HPC applications. Section 5 elaborates the role of the compiler and
runtime inference engine. Section 6 presents the evaluation results for fault injec-
tion experiments and also studies the impact on application performance. Section
7 surveys related programming model-based resilience approaches.

2 Leveraging Programmer Knowledge for Fault Resilience

The HPC workload consists of scientific computations, many of which are nat-
urally tolerant to data errors. Their algorithmic behavior might simply filter the
occasional incorrect value, as is the case with many numerical iterative algorithms,
or they might rely on pseudorandom processes, as is the case with Monte-Carlo
techniques. Several applications that use numerical analysis methods can tolerate
limited loss in floating point precision. In certain applications, the impact of errors
in the data or computation can even be trivially healed through simple algorithmic
methods. For example, parity and checksums can be applied to specific data struc-
tures or procedure executions to detect the presence of data corruptions within
the application’s address space. However, part of the variable state, especially that
which affects program control flow and pointer arithmetic, is very sensitive to er-
rors. Therefore, for certain parts of the program state, the notion of correctness
may be defined within the bounds of certain rounding error, while for others it
may require precise bit reproducible correctness [26].

HPC application programmers are well-positioned to understand the applica-
tion’s fault-tolerance features because they tend to be experts in their respective
scientific domains and due to their familiarity with the program code structure. We
believe that given appropriate interfaces to express their fault tolerance knowledge,

4 Saurabh Hukerikar*, Robert F. Lucas

Fig. 1 Themes of programmer knowledge to enhance application resilience

programmers can contribute to enhancing the execution environment’s manage-
ment of the application resilience. Through programming model features we may
be able to support fault-tolerance capabilities, namely error detection, containment
and recovery at the application level. Such programming model-based mechanisms
provide a fine-grained model of reliability in which individual data variables and
program statements may be tuned for relaxed or strict reliability and seek to
prevent application failure for every possible error instance in the system.

Broadly, the knowledge that programmers can express falls into three major
themes. These are illustrated in Figure 1 along with plausible solutions and de-
scribed below:

– Tolerance: A programmer may choose to tolerate limited loss in floating pre-
cision for certain program values, or allow occasional perturbations of certain
data values. The programmer may also be aware of regions of computation
that employ iterative refinement, such that errors which cause anomalous in-
termediate results may be absobred without affecting the correctness of the
final outcome.

– Robustness: Certain data structures and computation, notably those related
to the program control flow and pointer arithmetic need bit-level correctness.
The programmer may identify application-level constructs that require stronger
checks. The error detection and correction may be accomplished by maintaining
redundant copies and using masking mechanisms to guarantee deterministic
program behavior.

– Amelioration: A variety of algorithmic techniques exist that not only detect
but also heal the effect of errors in data structures. Such techniques maintain
redundant information, such as checksums, to recover erroneous values. They
may also use value re-initialization to repair variable state. Certain computa-
tions even allow compensating erroneous values by interpolating neighboring
values. The programmer may be able to provide the appropriate methods to
ameliorate program state.

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 5

Programming model extensions designed to enable the execution environment
to capture application-level features on each of these themes of knowledge supports
a fault-aware execution environment that can provide error resilient operation for
HPC application processes without compromising the application performance, or
the productivity of programmers.

3 Design of the Resilience Oriented Language Extensions

3.1 Goals for Resilience-Oriented Language Extensions

In designing the language extensions, we sought to capture each of the flavors
of knowledge described in Section 2, and in the process, also enable each of the
aspects of fault management namely detection, containment and recovery. Broadly,
our goals for the resilience-aware programming model extensions are:

1. It is our goal to retain the familiarity of current programming paradigms. We
aim to adopt a simple syntax that permits embedding resilience capabilities
within existing programming language features.

2. We seek to minimize the time and effort required by programmers to learn and
adopt the language extensions; therefore, these resilience-oriented language
extensions must provide a concise and elegant syntax and include a small set
of new language keywords for expressing the resilience features.

3. We also seek a fair division of work between the language extensions and the
compiler and runtime framework, such that the programmer does not need
to be exposed to the complexity of the HPC execution environment, yet is
provided with sufficient abstractions to be able to concisely convey fault man-
agement knowledge related to application-level constructs.

4. Recognizing that HPC programmers are very reluctant to trade off their per-
formance, which is usually achieved by investing much time and effort in hand-
tuning the code, we seek to ensure that the resilience-oriented language exten-
sions and compiler transformations do not drastically affect the code structure.

5. As HPC systems become increasingly heterogeneous and topologically com-
plex in pursuit of higher performance, they need to harness a variety of novel
parallel programming frameworks. Yet the applications seek to retain the well-
understood foundation of the Message Passing Interface (MPI) as well as cer-
tain well-tuned productivity libraries such as BLAS and LAPACK written in
C and FORTRAN. It is also our goal to ensure that resilience-oriented lan-
guage extensions integrate seamlessly with these language features and library
frameworks.

3.2 Description of Syntactic Structure of Rolex

Based on these objectives we have designed programming language extensions
that include a collection of features that extends the base language as well as
compiler directives and runtime library routines that enable the execution envi-
ronment to manage the application’s error resilience. Rolex is designed to affect

6 Saurabh Hukerikar*, Robert F. Lucas

the following aspects of the program state [20]: (i) the computational environ-
ment, which includes the data needed to perform the computation, i.e., the pro-
gram code, environment variables etc.; (ii) the static data, which represents the
data that is computed once in the initialization phase of the application and is
unchanged thereafter; (iii) the dynamic data, which includes all the data whose
value may change during the computation. Rolex extends the C, C++ language
with constructs that provide application-level error detection, error containment
and recovery strategies for each of these aspects of the program state. These ex-
tensions fully comply with the syntactic structure of the base language grammar
and complement the existing language features. Some Rolex constructs serve as
directives for the compiler to automatically generate code that supports fault re-
silience, whereas the Rolex routines support application-level resilience through
the runtime environment.

3.2.1 Type Qualifiers

Rolex extends the declaration ability of C/C++ to allow type qualifiers that en-
able attaching a specific resilience attribute to functions, data variables and other
objects. The programmer specifies, through explicit association, an error detection
and/or tolerance feature for specific identifiers in the program code. The syntatic
structure for the use of resilience type qualifiers is:

<rolex -error -management -qualifier > variable -declaration;

The formal rules that extend the C/C++ grammar to include the resilience-
oriented type qualifiers are described in Appendix A in Listing 1. Through these
qualifiers, the programmer explicitly specifies how the program variables are man-
aged, when the associated object value is deemed to be in erroneous state. The
error detection and correction capabilities are handled through bit manipulation
on the low-level representation of the objects.

3.2.2 Directives

Rolex directives enable the application programmer to impose rules for fault-
tolerant execution of a region of the program code. In C/C++, #pragma directives
specify program behavior. The syntactic structure of an executable Rolex directive
and the code region is:

#pragma rolex <error -management -directive > [clause [[,] clause] ...] new -line
{

/* binding region: structured blk */
}

The binding region determines the scope of the execution context that is
equipped with resilience capabilities. The bound region is a structured block, which

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 7

is defined as an C/C++ executable statement, which may be a compound state-
ment but has a single point of entry at the top and single point of exit at the
bottom. The compound statement is enclosed within a pair of { and }. The point
of entry cannot be the target of a branch and the point of exit cannot be a branch
out. No branch is allowed from within the structured block, except for program
exit. Instances of the structured block may be compound statements including
iteration statements, selection statements, or try blocks.

We also provide declarative directives that may be associated with function
declarations and definitions:

#pragma rolex declare <error -management -directive > [clause [[,] clause] ...]
new -line

/* C/C++ function definition or declaration */

These directives are not associated with the immediate execution of the ap-
plication code but enable the compiler to create multiple versions of the specified
C/C++ function, at least one of which includes resilience capabilities. The List-
ing 2 in Appendix A shows the grammar rules for the extensions based on the
resilience-oriented directives.

3.2.3 Runtime Library Routines

Certain aspects of the resiliency of the execution environment can be controlled
through runtime library routines. Also, some of the existing standard library calls
may be extended to provide resilience capabilities. For example, the memory man-
agement library calls are equipped with error detection, correction and recovery
capabilities on the allocated memory blocks. The routine identifier is suffixed with
the fault management capability:

return_type var = rolex_libraryfunc_capabilitity (’arguments ’);

These routines are external C functions whose identifiers are prefixed with a
rolex keyword.

3.2.4 Rolex Keywords

We introduce a set of keywords that are distinct from the existing set of C/C++ re-
served keywords in order to support resilience semantics on the C/C++ constructs.
The Rolex directives and routines are identified by the rolex keyword. Addition-
ally, the keywords tolerant, robust, heal are used as qualifiers in type decla-
rations. The keywords recover-rollback and recover-rollforward are used to
associate a recovery behavior to a structured code block following a directive while
the keyword robust is used to specify redundancy in state or computation. Addi-
tionally, there are clauses that support management of variable state and permit
specification of the strength of redundancy in the context of Rolex constructs.

8 Saurabh Hukerikar*, Robert F. Lucas

4 Rolex: Syntax and Semantics

This section provides more complete lexical syntax (how these extensions may be
embedded in real programs) based on the syntactic structure from the previous
section. The extensions support each of the previously described themes of knowl-
edge, i.e., tolerance, robustness and amelioration. We also explain the semantics
(what each extension means), how Rolex features affect program structure and
their relationship to the runtime system. We also provide motivating examples
that demonstrate how each Rolex feature enables fault resilience in real scientific
application codes.

4.1 Tolerance-based Extensions

The tolerance language extensions are used to specify data variables or code
block executions that support error elision, i.e., ignore the presence of a corruption
in program state and continue execution with the confidence that the algorithm
can absorb the error or mask it through localized recovery. The extensions also
enable applications to continue execution with imprecise but not unreasonable
state through value coercion [15]. The extensions assume that error detection is
provided by the hardware or system software, and that the error notification is
communicated to the runtime system via an interrupt mechanism.

For errors detected that happen to be mapped to locations that have been
explicitly specified as tolerant using Rolex, the runtime system reacts to an error
notification by allowing an application execution to continue despite the corrup-
tion in its state. For instances of errors that are mapped to locations on which
tolerance is not specified, the runtime terminates the application execution, as is
the standard behavior for unrecoverable errors.

4.1.1 Type Qualifiers

Syntax

The tolerant type qualifier can be applied to primitive as well as compound data
structures. These qualifiers can be applied to declaration of global variables and
local automatic variables and may include static and dynamic program state. The
syntax for the type qualifiers variable declarations is:

tolerant(PRECISION =...) float low_precision_32;

tolerant(PRECISION =...) double low_precision_64;

tolerant unsigned int rgb[X_RES][Y_RES];

tolerant (MAXIMUS = 1023) unsigned int counter;

For floating point variables, the qualifier contains an additional specifier for
precision. For integer values, the qualifier contains an additional specifier for max-
imum value.

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 9

Semantics

With these type qualifiers, error elision is achieved through coercion of the object
value. For floating point objects, bit perturbation errors on the sign and exponent
bits fundamentally alter the variable value, and the application is usually intol-
erant to such errors (shown in green in Figure 2). However, bit perturbations in
the lower significand/mantissa bits may be ignored by the runtime and result in a
truncation error in the value of the floating point variable (shown in grey in Figure
2). The PRECISION construct specifies the minimum floating point precision that
the programmer expects, i.e., it indicates the amount of precision loss the program-
mer is willing to tolerate. For an integer variable whose maximum value is known

Fig. 2 IEEE 754 floating point representation

apriori, only the lower significant bits in the bit representation are intolerant; i.e.,
these bits cannot accept bit perturbations without altering the value of the vari-
able (shown in green in Figure 3). The upper significant bits are unused and are
meant to always remain ’0’ (for unsigned integers in the binary representation).
When these bits are perturbed, the error may be masked by simply resetting these
bits. This knowledge may be explictly conveyed through the MAXIMUS construct in
the type qualifier.

Fig. 3 Unsigned integer (32-bit) representation

The runtime responds to notifications that indicate the presence of an error
which is mapped to a tolerant qualified data variable by manipulating the bit
representation to coerce the data values into lower precision or mask the anomalous
bits and allows the application execution to resume. These type qualifiers offer the
program variables with error containment and limited recovery capabilities by
masking perturbations and keeping their the values within permissible range of
correctness.

4.1.2 Directives

Syntax

The tolerance directives provide limited localized recovery capability from errors
in the computation for the programmer-defined code regions. When the detected
error maps to code sections, i.e., instruction memory of the application address
space, or to the variables manipulated by the code region, the tolerance directive

10 Saurabh Hukerikar*, Robert F. Lucas

#pragma rolex recover -rollback share (variable_list) private (
variable_list)

{ /* code block */ }

#pragma rolex recover -rollforward share (variable_list) private (
variable_list)

{ /* code block */ }

offers roll-back and roll-forward capabilities for the affected structured code block.
The syntax of the tolerance roll-forward and roll-back directives is:

In order for the program state to remain consistent upon roll-forward/roll-
back, the variable state must be the same as that during initial entry into the
code block. Therefore, we provide optional share and private clauses that list
the variables that need to be preserved and restored.

The declare directives instruct the compiler to generate versions of the as-
sociated functions with retry or ignore capabilities. The syntax (shown below)
contains an optional fallback clause to specify a default function return value.

#pragma rolex declare resilient ignore fallback ()
/* function definition or declaration */

#pragma rolex declare resilient retry fallback ()
/* function definition or declaration */

Semantics

When the runtime is informed of the presence of an error that is mapped to the
instruction memory of the tolerant structured code block, or to one of the data
structure variables specified in the data clauses, the structured block is re-entered
(the execution is rolled back) or the remaining code block is skipped (the execution
is rolled forward). The initiation of roll-forward or roll-back may cause the data
variable state to become inconsistent. Therefore, prior to original entry into the
structured code block, the variables specified in the share clause are saved. Upon
roll-forward or roll-back recovery, this variable state is restored to the previously
preserved values. The variables in the private clause are not restored and are
treated much like local automatic variables declared inside a function. The declare
directives allow the qualified execution to be retried, or it may be discarded with
the function caller receiving a default fallback value. The tolerance directives offer
error containment by limiting the scope of error to the computation contained
in the block following the directive. Additionally, these directives also support
compensation-based recovery of the application’s variable state and localized re-
covery of erroneous computation through roll-forward/roll-back semantics.

4.1.3 Runtime Library Routines

Syntax

The Rolex tolerant routine extends the functionality provided by malloc(). It ac-
cepts an additional parameter of type rolex precision to specify the MAXIMUS

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 11

and PRECISION for individual primitive types (when the routine is used to allocate
arrays of primitive integer or floating point type). The API format is:

float* intermediate_sol_array = (float*) rolex_malloc_tolerant (N * sizeof
(float), NULL);

float* molecule_position = (float*) rolex_malloc_tolerant (N * sizeof (
float) , (rolex_precision) (6)); /* PRECISION = 6 */

unsigned int* true_color_pixel_buffer =
(unsigned int*) rolex_malloc_tolerant (N * N * sizeof (unsigned int), (

rolex_precision) (16 ,777 ,216)); /* MAXIMUS = 16 ,777 ,216 */

Semantics

Much like the standard library malloc, the rolex malloc tolerant() allocates a
block of memory whose address bounds are registered with the runtime system.
Since such error-tolerant memory is explicitly requested, the runtime supports
error elision, i.e., it ignores the notifications of any errors detected on this mem-
ory block and allows the application execution to resume. For compound data
structures composed of floating point or integer primitive types, the argument of
rolex precision type supports elision through value coercion, i.e., it allows the
application to respond to error notifications by resuming the execution after en-
suring the individual floating point or integer data values meet the precision or
maximum values specified in the PRECISION or MAXIMUS constructs.

4.1.4 Examples

Scientific modeling entails representation of continuous problems in terms of fi-
nite precision values which incurs some discretization error. Certain data struc-
tures in these applications may accept bit perturbations that result in round-off
errors without affecting the validity of the simulation. Numerical analysis algo-
rithms, such as the conjugate gradient method and the generalized minimal resid-
ual method (GMRES), progressively improve an initial approximate solution and
terminate only when the solution is below a certain error norm. Direct meth-
ods such as Gaussian elimination and the QR factorization method terminate in
a finite number of steps, but still yield an approximate solution. Limited loss in
floating point precision in the intermediate solution state may be absorbed without
impacting the correctness of the final solution.

Molecular dynamics (MD) simulations can maintain the numerical stability
with limited loss in floating point precision for various constant energy and con-
stant temperature simulations. The deviations in the force calculations are often
small enough that the particle trajectories are almost identical in terms of numer-
ical stability as full precision calculations. In large scale simulations the loss in
precision in lower significand floating point bits results in a negligible difference
in the coordinates of the simulations over millions of time steps [29]. The Hartree-
Fock method, used in computational chemistry codes, contains structures such as
the Fock matrix, density matrix, matrix exponential, and orbital transformation

12 Saurabh Hukerikar*, Robert F. Lucas

matrix, which can tolerate bit perturbations in the lower significant mantissa bits
in the mantissa of floating point representation [9]. Such structures may be tolerant
type qualified or allocated using rolex malloc tolerant(). Similarly, visualiza-
tion applications allow arbitrary bit flips on integer type pixel values because the
graphics rendering pipeline often accounts for incorrect pixel attributes.

Algorithms that permit selective reliability may utilize directives to specify
fault tolerant behavior for application phases. The FT-GMRES algorithm [13]
uses inner-outer iterations where the inner solver step preconditions the outer
iteration. The inner solver step may be treated as an unreliable phase since it
is allowed to return an incorrect solution without affecting the outer solver step.
Similarly, neutron transport (NT) simulation codes use the Monte Carlo method
and we may leverage its stochastic nature along with the fact that the simulation of
every particle is independent. The code regions that create and simulate individual
particles may be included in the structured block following tolerant directives,
which allows the simulation to selectively discard the particles that experienced
errors.

4.2 Robustness-based Extensions

The robustness language extensions are used to specify data variables or code
blocks that are critical to the application correctness and as such could benefit
from error detection and correction at the application-level. These include the ap-
plication code sections (i.e., instruction memory), pointer variables, array index
references as well as variables that affect control flow decisions. These aspects of
the program state require bit-precise correctness in order to make a determin-
istic assertion on the correctness of the application outcome, even if it runs to
completion in the presence of program state corruptions (but without raising any
exceptions or abnormal behavior). The robustness of these aspects of the program
state may be guaranteed by the use of redundancy. This entails replicating part
of the variable state, or specific portions of the program code execution, or at
times both. The replicated part of the program state is compared to check for the
presence of errors in the application’s address space, or to filter errors through
majority voting. Through these Rolex extensions the redundancy is selectively ap-
plied only on the sensitive data variables and computation whose correctness is
critical to produce a correct application outcome.

4.2.1 Type Qualifiers

Syntax

The robust type qualifier may be applied to declarations of primitive as well as
compound data structures. The syntax for the robust type qualifier, which includes
a strength clause, is:

robust (CORRECT) int* csr_matrix[row_offsets];

robust (DETECT) int* graph_edge_list[N];

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 13

Semantics

The type qualifier serves as a directive to the compiler, which performs source-to-
source translation to duplicate or triplicate the variable declaration. For pointer
variables, this amounts to creating aliases to the object being referenced. The
compiler also duplicates/triplicates the statements in the program source that op-
erate on the robust qualified variables as well as inserts statements that compare
the redundant variable values and report any mismatch among the replicas to
the runtime system. The qualifiers enable error detection and correction capabil-
ities on the robust qualified objects and implicitly on their computation through
statement-level DMR or TMR.

4.2.2 Directives

Syntax

The robust directives provide application-level detection/correction for specific re-
gions of computation, whose scope is defined by the structured code block following
the directive. The declarative robust directives may be applied to functions. The
syntax for the directives is:

#pragma rolex robust detect share (variable_list) private (variable_list)
compare (variable_list)

{ /* code block */ }

#pragma rolex robust correct share (variable_list) private (variable_list
) compare (variable_list)

{ /* code block */ }

#pragma rolex declare resilient robust (detect) fallback ()
/* function definition or declaration */

The directives contain a strength clause, which specifies whether DMR or
TMR is required for the structured block. The data management clauses share and
private specify the data-sharing attributes for the variables listed in the respective
clauses. The compare clause is used to specify the list of variables produced by the
structured blocks that need to be compared/majority voted on to detect/correct
an error in the computation. The fallback clause is used to return a default value
to the function caller when the redundant execution of the function detects an
error but is unable to conclusively vote on a correct value.

Semantics

When the compiler encounters the robust directive, it outlines the application
code contained in the structured code block. It inserts statements that enable
the redundant execution of the outlined code block by duplicating or triplicating
the call to the outlined function and statements to compare the outputs of the
structured block. The compiler also selectively replicates the variables in the data
scoping clauses. Each redundant code block instance owns a separate replicated
copy of private variables whereas a single copy of share scoped data is accessed

14 Saurabh Hukerikar*, Robert F. Lucas

by all redundant code block copies with the programmer responsible for synchro-
nized access. The robust directives provide error containment by limiting scope to
computation contained in the structured block in addition to the detection and
correction capabilities.

4.2.3 Runtime Library Routines

Syntax

The robust version of the memory allocation routine supports redundancy-based
error detection and/or correction for the dynamically allocated memory on the
heap section of the application address space. The routine prototypes are:

float* problem_matrix = (float*) rolex_malloc_robust (N * sizeof (float),
STRENGTH);

void rolex_validate_robust (void * problem_matrix);

Semantics

The rolex malloc robust() enables the programmer to request redundant copies
of the memory block. The STRENGTH macro specifies the number of copies of the
memory block. The pointer references to the replicated memory are also replicated
at the source level, as well as any program statements that manipulate the memory.
The rolex validate robust() routine initiates comparison and majority voting
of the memory block.

4.2.4 Examples

Scientific applications employ data structures that heavily use pointer references
and these are known to be highly sensitive to memory failures [4]. Even single-bit
upsets in pointer variables lead to invalid references, causing segmentation faults.
Linear algebra methods, particularly those based on sparse problems, use struc-
tured formats such as dictionary of keys (DOK), list of lists (LIL), coordinate list
(COO), compressed sparse row (CSR) or compressed sparse column (CSC) to refer
to the non-zero elements (NNZ) of the sparse matrix. The bit precise correctness
of such addressing structures and their computations is critical to application cor-
rectness. Using the robust qualifiers and memory management routines for such
variable state prevents potential error states arising due to bit corruptions since
they are detected, or even corrected, before they lead to application failure due to
invalid references. These robustness-based extensions may serve application-level
variables that affect the program control flow, such as loop condition and if-else
condition variables, which also demand bit-precise correctness.

The robust directives may be applied to application phases whose reliability
is critical to the application outcome. In molecular dynamics simulations, the
correctness of the pairwise force calculation between the particles is critical for
maintaining the numerical stability of the simulation. The directives may serve to

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 15

provide in-situ detection and correction for these application phases, by leveraging
the anti-symmetric property of the forces (for particles i and j, Fij = - Fji)
[27]. Linear solver methods, such as the FT-GMRES algorithm [13] and the self-
stabilizing conjugate gradient method [23], permit partitioning of the algorithm
into reliable and unreliable phases. In such a selective reliability model of execution,
the correctness of the reliable phases can be guaranteed through the redundancy-
based error detection/correction semantics provided by the Rolex robust directives.

4.3 Amelioration-based Extensions

The amelioration-based language extensions are used to specify how data vari-
ables or code block executions may be repaired during program execution. The
knowledge is based on algorithmic features of the application that allow the miti-
gation of the effects of errors on the program state. These methods compensate for
the presence of errors by either maintaining encoding information on the variables,
or by reconstructing incorrect values by interpolating from neighboring values.
The amelioration approaches [17] may cause limited information loss, which may
be acceptable to the user, but they seek to keep the application running towards
solution rather than allow an error result in catastrophic failure of the application.

4.3.1 Type Qualifiers

Syntax

The heal type qualifier enables amelioration through the association of a routine
that may be invoked to repair anomalies in the annotated data structure. The heal
may be applied to declarations of primitive as well as compound data structures.
The syntax for the qualifier is:

heal (recovery_func ()) float* matrix_A[N][N];

Semantics

The reference to the recovery function specified in the heal qualifier for the iden-
tifier in the type declaration is maintained by the runtime system. When the run-
time receives an error notification for the heal qualified object, it invokes an event
handler function with the recovery function pointer as argument. If the recovery
function is able to repair the data structure, the runtime resumes the application
process. The type qualifier provides error containment and recovery capabilities
for the qualified object.

4.3.2 Directives

Syntax

The amelioration-based directives provide limited localized recovery for regions of

16 Saurabh Hukerikar*, Robert F. Lucas

computation that are contained in the structured block following the directive and
the associated data structures. The syntax for the amelioration directives is:

#pragma rolex recover -rollback reinitialize (variable_list)
{ /* code block * }

#pragma rolex recover -rollforward reinitialize (variable_list)
{ /* code block * }

#pragma rolex recover -rollback ameliorate (recovery_func ())
{ /* code block */ }

#pragma rolex recover -rollforward ameliorate (recovery_func ())
{ /* code block */ }

These directives permit more flexible recovery of the variable state in addition
to the roll-forward and roll-back capabilities. The list in the reinitialize and
ameliorate clauses include variable identifiers, an expression list, or a user-defined
recovery func().

Semantics

When the error notification to the runtime system finds that the error location is
mapped to the program code contained in the structured block, or on the data
variables manipulated by the statements in the block, the runtime initiates the
recovery. This entails restoring the variable state for the variable identifiers spec-
ified in the reinitialize clause. When the recovery of variable state needs to be
more nuanced, the runtime invokes a recovery function through an event handler.
The runtime also affects a roll-back (re-entry of the code block) or a roll-forward
(resume execution at the end of the code block). The amelioration directives sup-
port error containment as well as flexible recovery of the computation and variable
state.

4.3.3 Runtime Library Routines

Syntax

The library routines for memory allocation that support fault amelioration have
the following APIs:

float* problem_matrix = (float*) rolex_malloc_repairable (N * sizeof (float
), checksum_func_pointer);

void rolex_ameliorate_heal (void* problem_matrix);

The rolex malloc repairable() routine accepts a size argument and a pointer
reference to a user-defined recovery function, which is registered with the runtime
system when the memory block is allocated. The routine rolex ameliorate heal()

for the invocation of the recovery method only requires a reference to the memory
block.

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 17

Semantics

When an error is detected on the memory block, the runtime invokes the re-
covery function through an event handler routine. When the recovery function
is able to heal the memory block, the runtime allows the application execution
to resume. In case the recovery function is unable to correct the error, the run-
time gracefully terminates the application process. The runtime library routine
rolex ameliorate heal() may be inserted in the application code to explicitly
invoke the recovery function.

4.3.4 Examples

Linear algebra methods that use dense matrix structures may maintain redundant
information using checksum schemes to detect and correct perturbations. The
checksum approach for amelioration is useful for a variety of matrix-based opera-
tions including matrix-matrix multiplication, Cholesky, LU and QR factorization
methods. Sparse matrix-based problems, low overhead error detection and correc-
tion is possible by leveraging the structural properties of the matrix (diagonal,
banded diagonal, block diagonal) using techniques such as approximate random
(AR) checking and approximate clustered (AC) checking [24]. These algorithm-
based methods may be associated with the memory allocated for the matrix data
structures using the Rolex amelioration type qualifier or memory allocation rou-
tine.

Linear solvers based on iterative methods may be recovered from errors by
replaying iterations. The amelioration directives support such recovery through
roll-forward and roll-back semantics and clauses to re-initialize or repair the vari-
able state, which enables any incorrect iterations to be discarded and keeps an
iterative solver on the path to correct completion. Such partial recomputation
techniques have been demonstrated to be viable error recovery methods for var-
ious linear algebra methods [25]. Recovery may also be possible through lossy
methods. For example, errors in the intermediate solution of Krylov subspace
solvers may be recovered using interpolation of neighboring error-free values. The
least-squares linear interpolation method has been demonstrated to be effective
while maintaining the monotonic decrease in the residual norm [2]. In the Hartree-
Fock algorithm, heuristic knowledge is used to develop bounds for the data values.
For the orthonormalization vector, density matrix, matrix exponential and orbital
transformation structures, exact bounds conditions are known whereas data val-
ues for which sharp bounds are not known, such as the Fock matrix, a heuristic
bound may be defined [9]. Error states in data values are ameliorated by replacing
them with reasonable values within these heuristic bounds. The Rolex amelioration
constructs allow such knowledge to be conveniently embedded in the application
code.

18 Saurabh Hukerikar*, Robert F. Lucas

5 Compiler and Runtime Support for Rolex

5.1 Compiler Infrastructure

The compiler infrastructure is a key intermediary that propagates the fault-resilience
knowledge expressed by the programmer to the generated target code and runtime
system. We have developed a compiler front-end, based on the ROSE compiler in-
frastructure [22], which parses the qualifiers and directives to generate code that
is equipped with the resilience capabilities specified by the Rolex constructs. The
front-end parses the resilience knowledge into a profile file that is used by the run-
time system. The front-end also performs source-to-source code transformations,
which entails insertion of statements (using base language (C/C++) constructs)
that permit the application to manage error states during execution in collabora-
tion with Rolex runtime library (RTL) routines. A native C/C++ compiler may
still be used to generate code for the target platform. The two-stage compilation
process enables incorporating the resilience oriented transformations in the front-
end while leveraging standard C/C++ compiler infrastructures to generate the
target platform code. The modular approach permits selective compilation of re-
silience features through the use of compiler flags or, even bypassing the front-end
compilation phase altogether.

The front-end compiler parses all the Rolex qualified declarations in the pro-
gram code in a single pass. For tolerant qualified objects, the compiler produces
detection and correction masks based on the bit-level representation of the object
type, which are included in the resilience profile file. For the robust qualified ob-
jects, the Rolex front-end duplicates/triplicates the declarations of the variables. It
also traverses the uniform abstract syntax tree (AST) to discover the statements
that perform operations on the robust qualified variables and inserts identical
redundant statements for the replicated object copies and statements for compar-
ison of the replicated variable values. For the heal type qualifier, a call to a RTL
routine is added in order to register the recovery routine as a callback handler
function.

The front-end compiler pass also processes Rolex directives: it creates compu-
tational blocks for which the error detection, containment and correction behavior
is explicitly defined. The front-end outlines the statement list in the structured
block that follows the Rolex directive into a new function. The original code block
is replaced with a call to the outlined function. The front-end inserts calls to Rolex
RTL routines, which affect roll-forward and roll-back semantics as well as support
data scoping, preservation and restoration, prior to and after the call to the out-
lined function. The compiler also adds internal control variables (ICV), which are
initialized and manipulated by the runtime to control the behavior of the outlined
function.

5.2 Runtime Inference System

In order to support a resilient execution environment, the runtime system man-
ages the outcome of the error states in the application process. The runtime system
maintains a resilience knowledge base, called the Dynamic Resilience Map (DRM),
which contains the list of Rolex annotated data structures, their address offset in

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 19

Rolex library routine Capability
rolex initialize() Initialization of runtime, allocation and population of

the DRM
rolex finalize() Clean up of DRM and termination of runtime system

rolex preserve state() Preserve program’s current state and environment
rolex restore state() Restore previously saved program state

rolex jmp fwd() Jump to pre-defined forward reference point and re-
sume execution

rolex jmp back() Jump to pre-defined previous reference point and re-
sume execution

rolex create checkpoint() Save state of variables listed in args
rolex restore checkpoint() Restore state of variables from maintained copy in run-

time
rolex copy() Duplicate the variable arg in the runtime

rolex register() Register program object in the DRM and default re-
sponse

rolex deregister() Deregister program object from DRM
rolex compare() Compare memory of arg pointers

Table 1 Rolex runtime library routines

the address space and error-management strategies. The rules for error detection,
containment and recovery strategies are those inferred from the Rolex annotations
in the program source and parsed by the compiler into the profile file. These are
populated into the DRM at the commencement of the application process exe-
cution. DRM entries are also dynamically added, removed and modified through
the runtime library routines during the application execution. The runtime also
provides an interface to the compiler front-end, which consists of RTL routines
that are visible only to the compiler framework. The calls to these routines are
associated with the outlined structured blocks. Table 1 summarizes the Rolex RTL
routines and their capabilities.

When the runtime is notified of the presence of an error state in the application
address space, it queries the DRM to find the specific application-level construct
that is in error state. Based on the application construct in error state and the error
management knowledge available in the DRM, the runtime invokes the appropriate
RTL routines that seek to compensate for the perturbations in the variable state
and rolls back or rolls forward the execution, if required. When the runtime is
able to account for the error states, it allows the application process to resume
execution in partially/fully restored computational state. The runtime actions are
inferred by traversing the decision tree in Figure 4, which is constructed using
the Rolex annotations on the various program constructs. The traversal provides
the runtime with defintive rules to manage specific error states that may arise
during the application program execution. When no error management knowledge
is available for an application-level construct in the DRM, the runtime gracefully
terminates the application process.

5.3 Workflow of a Resilient Execution Environment

With the incorporation of Rolex, we allow several changes to the programming
model and the execution environment, which are captured by Figure 5. When HPC

20 Saurabh Hukerikar*, Robert F. Lucas

Fig. 4 Decision tree for error management by runtime inference system

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 21

Fig. 5 Overview of application compilation and execution with Rolex

application codes are annotated with the Rolex qualifiers and pragma directives,
the compiler parses these extensions and introduces source-level transformations
in the C/C++ application program code. The restructuring of the application
source code to incorporate Rolex-driven resiliency features introduces additional
declarations of redundant variables, outlining of blocks of code and creation of
additional functions, and the installation of handler functions. Therefore, the pro-
gram control flow and function call graph may be different from that intended by
the application programmer, yet these modifications are transparent to the user.
Additionally, when the application program is executed, we include a pre-execution
stage where the linkages of the application-level constructs from the compiled bi-
nary are discovered through a binary disassembly library. During this phase the
DRM is also populated with the address offsets and error-handling actions.

In the current HPC execution models, the presence of a hardware detected
error causes a machine check exception which raises an interrupt to the operating
system. When the error state is uncorrectable, the kernel enters panic mode which
leads to node shutdown. Therefore, all errors lead to failure and these are dealt with
in failstop manner. With the support of the Rolex-based programming model, our
execution environment includes a runtime inference system. The runtime is linked
with the application code. The operating system contains a kernel module that
intercepts the interrupts and passes them into the user space, i.e., to the runtime
system through the signaling mechanism. The runtime contains a signal handler
that contains the logic to query the DRM and to determine the best recourse for
dealing with the error state. The runtime’s RTL interface offers a well-defined API
to augment the DRM knowledge base, which enables the runtime to affect error
detection, containment and masking on application constructs. When the error
state can be tolerated or ameliorated, the runtime allows the application execution
to resume using the knowledge in the DRM. When no knowledge can be inferred,
the runtime terminates the application, as is the norm for unrecoverable errors
in current systems. Since the error-handling component of the runtime system
is interrupt-driven, the runtime system does not add significant overhead to the
application performance during error free execution.

22 Saurabh Hukerikar*, Robert F. Lucas

The Rolex-based programming model makes the HPC applications fault-aware
as well as fault-tolerant by imposing strict and relaxed reliability different on re-
gions of the application state. Rolex enables an execution model in which there
is an active interchange of error information between layers of the system stack.
This prevents each error instance from causing a fatal application crash by rea-
soning about the significance of the error using the programmer’s knowledge on
the application’s correctness expectations.

6 Experimental Evaluation

6.1 Accelerated Fault Injection Experiments

In order to experimentally evaluate the benefits of using Rolex to describe the
resilience properties of scientific application codes, we perform a set of accelerated
fault injection tests. We use dynamic software-based fault injections into applica-
tion processes and observe their impact on the application’s outcome - whether
Rolex enables the application to run to completion and whether the results pro-
duced are within reasonable bounds of a correct answer. For each application code,
we use five fault injection rates: 1 fault/15 minutes, 1 fault/10 minutes, 1 fault/5
minutes, 1 fault/2 minutes and 1 fault/1 minute. By adjusting the input problem
sizes, the execution time of each application run is adjusted to be greater than 20
minutes; this ensures that the application process execution experiences at most
1, 2, 4, 10 and 20 faults per run. With the fault rates that we have selected, the
effective mean-time-to-error of the application process is set to 15, 10, 5, 2, and
1 minute(s). In comparison to the fault rates observed on production HPC sys-
tems today these error rates are extremely high. These rates are also significantly
higher than most reasonable projections for exascale-class systems based on tech-
nology roadmaps. However, these experimental fault rates were chosen to validate
the dependability of the application processes and the efficacy of a Rolex-based
programming environment. They also provide insights into the precise behavior of
the application in the presence of faults. Also, several error modes that are unseen
today might emerge in future systems and these accelerated tests serve as stress
tests for such scenarios.

Since some of the extensions only support tolerance and amelioration seman-
tics, they rely on hardware-based detection mechanisms. Other Rolex features pro-
vide implicit error detection. Therefore, the type of the fault injected, i.e., whether
it results in a detected memory error or a silent data corruption, depends on the
type of Rolex extension being evaluated. We have developed a flexible software-
based fault injection framework that simulates the different error behaviors. The
fault injection framework is non-intrusive, i.e., it runs independently from the ap-
plication process and does not require modification of the application program
code, or compiler-based insertion of additional instructions. It simulates a hard-
ware interrupt by passing a signal to the application process. The fault injection
framework maintains a mapping of the address space of the application process
and the offsets for the various application-level constructs and can inject faults into
any region of the active address space. The fault site selection may be random or
may target specific application constructs. The faults injection entails flipping the
bits at the selected fault site in the application address space.

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 23

Fig. 6 Evaluation of tolerance Rolex extensions: Accelerated fault injection results

We evaluate the application resilience of the scientific codes by opportunisti-
cally annotating their source with the Rolex-type qualifiers, directives and runtime
library routines to suit the inherent resilience properties of the code. The code is
compiled with our ROSE-based front-end compiler and then with the GCC com-
piler infrastructure and is linked with the Rolex runtime library. The application
binaries are executed in a Linux-based cluster environment. For each fault injection
rate, the application run is performed 10,000 times each with randomly selected
fault injection sites.

6.1.1 Enabling Tolerance Using Rolex Extensions

Rolex extensions for error tolerance support elision semantics or, provide value co-
ercion, but seek to keep the application process running towards completion. Since
these extensions depend on hardware-based detection mechanisms, the injected
faults simulate system memory errors that manifest themselves as ECC SECDED
errors (detected but unrecoverable by hardware-based ECC), whose notification is
passed into the runtime system. Based on the location of the error, there are only
two possible outcomes: compensation for the presence of the error (through error
elision, masking the affected bits of the variables, or roll-forward/roll-back of the
execution), or termination of the application to prevent further corruption. We
simulate SECDED errors by raising a signal when the fault injection framework
perturbs bits in the address space. We demonstrate error tolerance through Rolex
for the following three codes:

– HPCC Random Access: The benchmark was originally designed to model
a vectorized application and allows the same address to appear twice in a
gather/scatter operation and therefore fails to guarantee sequential consistency.
Due to this property, the benchmark is explicitly tolerant to the presence of
errors in its HPCC Table array. The computational kernel performs repeated
pseudorandom updates. We allocate the HPCC Table array structure using
the rolex malloc tolerant() runtime library routine to support error elision
semantics on the memory region corresponding to the HPCC Table.

– 3D Rendering Application: The application converts a 3D model of a scene
into a 2D screen representation. The final rendered scene is written to a frame

24 Saurabh Hukerikar*, Robert F. Lucas

buffer which is declared as a 2-D array in our test code. In order to ignore the
presence of perturbations in the frame buffer, we qualify its declaration with
the tolerant type qualifier. For these application runs, the measure of correct
completion is an execution that completes and renders the scene in which fewer
than 5% of pixel values are perturbed beyond a local characteristic threshold
value.

– Molecular Dynamics Simulation: This simulation is based on time-stepping
algorithm and contains floating-point array structures for the particle position,
velocity and acceleration. These are calculated every time interval and it has
been demonstrated that these coercing these vectors into lower precision does
not affect the stability of the simulation over a large number of time steps. We
qualify their declaration with the tolerant type qualifier and use the PRECI-
SION construct to apply relaxed precision for the lower 26 bits of the mantissa
(when declared using double-precision type). We monitor the properties of the
complete system, including total energy and pressure, to determine the validity
of a simulation run.

Figure 6 summarizes the results of these fault injection experiments. These
results show the percentage of the total application runs that complete correctly
despite the injected errors versus those that end fatally. In the Random Access
benchmark, the memory footprint of the computational kernel that performs the
pseudorandom updates is extremely small in comparison to the HPCC Table array,
which occupies 50% of the system memory and allocated with the tolerant version
of the malloc routine. Therefore, upto 99% of the execution runs converge - even
for an error rate as high as 1 fault per minute. Similar resiliency features are
demonstrated by the 3D rendering application in which the dominant portion
of the active memory footprint is the integer type frame buffer array, which is
declared with the tolerant qualifier. For the molecular dynamics simulations, the
only resilience property exposed through Rolex is the relaxed precision on the
position, velocity and acceleration arrays. This supports error tolerance on only
a limited fraction of the total active address space. Accordingly as many as 85%
of the application runs converge correctly for a fault rate of 1 fault/5 minutes;
the survival rate drops rapidly in the presence of higher fault rates. The “failed”
simulations include runs that terminate abnormally as well as completed runs in
which with total energy and/or pressure of the system diverges outside ±5% of a
fault-free run.

6.1.2 Enabling Robustness Using Rolex Extensions

The Rolex extensions for robustness provide error detection and correction seman-
tics through the use of redundancy. Since application-level error detection is often
implicitly supported for such robust annotated application constructs, we make
no assumptions about hardware-level detection and notification mechanisms. For
these experiments, the fault injection framework simulates silent data corruptions
(SDC). For these injections, the target application process is intercepted and bit-
flip perturbations are introduced at the fault site. No notification is raised to the
runtime system, and the fault injection framework allows the application process to
resume execution. We consider four possible outcomes of a bit corruption injected
in the application address space:

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 25

Fig. 7 Evaluation of robustness Rolex extensions: Accelerated fault injection results

– Silent data corruptions that are detected using the redundancy injected
into the application code.

– Benign faults that remain in the program state until the conclusion of the
execution, but do not affect the correctness of the outcome.

– Undetected faults in the application state cause errors but these fall outside
the coverage provided by the Rolex constructs.

– Application crash that occurs when the injected perturbation affects part of
program state mapped to the computational environment.

For the fault injection runs, we observe the propagation of the fault after injection
until the application completes, or terminates. We apply the robustness extensions
on the following two codes using Rolex:

– Graph500 Breadth-First-Search: This unstructured, integer-oriented bench-
mark is based on the graph abstraction and the code contains several pointer
references that represent the graph edges and vertices. The correctness of these
pointers is critical to the successful completion of an application run since any
perturbations on these lead to usually lead to illegal address accesses and a
fatal crash of the application process. We qualify all the pointer declarations
for the graph edges and vertices with the robust qualifier in the Graph500
Breadth-First-Search (Kernel 2) code [16].

– Algebraic Multigrid Solver: Each multigrid iteration of the linear solver,
referred to as a “V-cycle,” consists of smoothing, restriction and interpolation
stages during which the algorithm starts with a fine grid, restricts to a coarser
grid and then interpolates to a fine grid again. The intermediate solution grids
are known to tolerate errors at the cost of needing additional V-cycles to con-
verge to the correct solution. However, the algorithm is also sensitive to pointer
variable corruptions. We apply the robust qualifier for each pointer variable
declaration in code. Additionally, we allocate the intermediate solution grids
using the rolex malloc tolerant() routine.

The Figure 7 illustrates the distribution of the application outcomes for each
fault injected. The Graph500 BFS algorithm contains a large number of pointer-

26 Saurabh Hukerikar*, Robert F. Lucas

Fig. 8 Evaluation of amelioration Rolex extensions: Accelerated fault injection results

related computations to traverse the graph edges. It is possible to detect and
correct the corruptions in the pointer arithmetic for almost 50% of all corruptions
injected for a fault interval of 15 minutes. Since the number of visits for each ver-
tex is fixed in the BFS algorithm, the memory for these vertices and their pointers
are not used as the application progresses. Silent corruptions on these regions of
the application address space are benign. Other parts of the computational envi-
ronment as well as the graph vertex data elements contain no error management
knowledge. When the injected faults hit these regions the application fails. There-
fore, a majority of injected faults are fatal to the application at fault intervals of 1
and 2 since the Rolex fault coverage only protects the pointer variable state. The
AMG code demonstrates a different resilience behavior since the address space
dedicated to the inherently resilient intermediate solution grids is a significant
part of the total address space. Therefore, although the Rolex constructs only
provide coverage for the pointer variables, a majority of the injected silent faults
still turn out benign since the resulting error in the intermediate state is refined
by the iterative nature of the algorithm.

6.1.3 Enabling Amelioration Using Rolex Extensions

The Rolex extensions for amelioration enable recovery of the application’s vari-
able or computational state by using well-known algorithm-based fault tolerance
methods. The extensions must be supported by hardware-based detection mecha-
nisms. Since these extensions associate a recovery function with a data structure
or computation, there are only two possible outcomes for each fault detected: the
application state is repaired by the recovery function, which permits the appli-
cation execution to resume or, the application must terminate since the recovery
function is insufficient to repair the corruption. We demonstrate fault amelioration
using Rolex constructs for the following codes:

– Matrix-Matrix Multiplication: In the DGEMM code, calculating row and
column-wise checksums is a well-known solution to detect and correct cor-
ruptions in the matrix. We define functions that maintain the row and col-
umn checksums for the operand matrices whose reference is passed to the

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 27

rolex malloc repairable() library routine. If the matrix declaration is static
the recovery function may be included in a heal type qualifier.

– Conjugate Gradient Solver: For the CG solver, the matrix is allocated
by the library routine rolex malloc repairable(). The pointer to a function
that maintains checksums of the matrix is passed to this routine. Additionally,
we leverage the iterative property of the CG algorithm by including the CG
iteration step in the #pragma rolex roll-forward amelioration directive and
associate the checksum routine with the directive. This allows faulty iterations
to be discarded and validating the correctness of the operand matrix upon
roll-forward.

– Self-Stabilizing Conjugate Gradient: The self-stabilizing version of CG
offers a correction step that restores the stability of the algorithm when it is
affected by errors. This correction step is included in a recovery function whose
reference is included in the ameliorate clause of a directive. The CG iteration
steps are included in the amelioration directive #pragma rolex roll-back.
The roll-back capability allows the most recent faulty CG iteration to be dis-
carded and the recovery to be invoked.

Figure 8 summarizes the results of these experiments. For the DGEMM code,
the checksum-based amelioration is applicable for only the static state in the appli-
cation address space, i.e., the operand matrices that are initialized at the beginning
and whose values do not change throughout the execution. We have not applied
any Rolex construct on the dynamic state, i.e., the result matrix. With this fault
coverage, 75% of all executions converge correctly for the fault rate that injects an
error every 15 minutes, but only 27% complete correctly at the accelerated rate of
1 error per minute in which case as many as 20 unrecoverable errors are injected
into the process state. The inclusion of Rolex constructs to the CG solver yields a
better resilience characteristic than DGEMM for similar fault intervals. This is be-
cause in addition to the checksum-based error detection/correction on the operand
matrices, the iterative nature of the algorithm permits incorrect computation to
be recovered. Due to the enhanced address space fault coverage through Rolex in
CG codes the application demonstrates a better completion rate than DGEMM,
even at higher fault rates. The SS-CG contains a correction step that is designed
to restore the stability of the algorithm. This permits relaxation of the reliability
requirements for the CG iterations. Therefore, a larger percentage of executions
of the SS-CG converge correctly, in comparison to CG, for similar fault rates.

6.2 Performance Evaluation

We evaluate the overhead of embedding the resilience knowledge using Rolex for
each of the application codes. With the introduction of Rolex constructs in the ap-
plications’ source code, the overhead is introduced by compiler-inserted statements
as well as runtime library routines. Additionally, the response to each type of error
depends on its context, i.e., its location in the address space and the knowledge
available in the runtime’s DRM. Therefore, we evaluate the performance impact by
comparing the workload efficiency which is the ratio of the ideal time-to-solution
on a fault-free execution run to the actual running time in the presence of faults:

Efficiency =
tfault−free

tactual−in−presence−faults
(1)

28 Saurabh Hukerikar*, Robert F. Lucas

Fig. 9 Performance Evaluation of Rolex: Workload Efficiencies

The difference between tfault−free and tactual−with−faults is the overhead asso-
ciated with dealing with faults by the Rolex runtime system. This includes the
time for fault detection, diagnosis and applying any recovery and compensation.
We compile each application code to two different binary versions: a binary with
Rolex, compiled using our front-end source-to-source compiler followed by a regu-
lar GCC compiler; and a version using only a GCC compiler. The binary version
without Rolex is executed in a fault-free environment to measure the baseline exe-
cution time. The version containing Rolex is subjected to fault injection for which
we measure the application’s time to solution for runs that survive all the faults
and reach correct completion. The execution times for each fault are averaged for
the fraction of the 10,000 application runs that complete correctly. This allows
examination of the overhead incurred by the compiler-based transformations as
well as the overhead incurred by the runtime inference system.

The results for the workload efficiency are summarized in Figure 9. The over-
head to manage errors in HPCC Random Access and the 3D rendering application
are low because the runtime tolerates errors through elision and the size of the
DRM is very small. Therefore, even for extremely high fault rates, the overhead
is about 15%. For the molecular dynamics simulation, the error tolerance is sup-
ported through value coercion on the position, velocity and acceleration vectors
and this operation incurs a higher overhead than error elision. Consequently, the
overhead for the largest fault interval is 4% and as much as 19% for the small-
est fault interval. The robustness-based constructs introduce redundancy through
compiler-based transformations into the application source. However, since we only
annotate the pointer variables in both the Graph500 BFS and AMG codes, there
is a fixed overhead cost of about 10% attributed to the redundant statements.
The lower efficiency at higher fault rates may be attributed to the overhead in

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 29

notifying the runtime system. The amelioration-based Rolex constructs demon-
strate a significantly higher overhead compared to the tolerance and robustness
extensions. However, much of this overhead may be attributed to the algorithmic
amelioration functions rather than compiler and runtime overheads. The SS-CG
offers the best efficiency among the codes that use the amelioration constructs
since it requires only a stabilization step. The checksum operations are computa-
tionally expensive operations and therefore the efficiency of the DGEMM and CG
codes are lower, particularly at higher fault rates when the checksum functions are
invoked frequently.

7 Related Work

HPC programmers have historically borne the burden of exploiting novel features
in system architectures and execution models in the pursuit of performance. They
usually rely on various extensions to high-level programming languages with the
support of compilation techniques and runtime libraries. For example the OpenMP
[3] standard emerged in order to support shared memory multiprocessing program-
ming in C, C++, and Fortran through a set of directives, library routines and
environment variables. Similarly Berkeley’s UPC effort [7] also extends the C lan-
guage with constructs that present the programmer with a single global partitioned
global address space as the program runs on shared or distributed memory par-
allel systems. The Co-array Fortran (CAF) [21] began as an extension of Fortran
95/2003 (and became part of the Fortran 2008 standard) to support the PGAS
model for Fortran programs. NVIDIA’s CUDA was derived from Brook [6] which
extended the C language with data-parallelism-oriented constructs that enabled
the use of the graphics processing units (GPU) as streaming co-processors.

The support for fault tolerance capabilities through programming models-
based approaches has been recently proposed and evaluated. Programming con-
structs called containment domains [8] provide the application programmer with
mechanisms to delineate computation that have transactional semantics. Upon
execution of the code block, the results of the computation are checked for cor-
rectness and if the block’s execution condition is not met, the results are discarded
and the block may be re-executed. Similarly, language-level support for idempo-
tent regions [19] enables application programmers to specify ”relax” blocks in
C/C++ programs, which may be freely re-executed without checkpointed state
or side-effects. The FaultTM scheme [28] requires an application programmer to
define vulnerable sections of code which are executed by duplicate thread con-
texts. The original and the backup thread are executed as an atomic transaction,
and their respective result values are compared before committing the result. The
Global View Resilience (GVR) project [12] provides annotations to create multiple
snapshot versions of the application data, which enables recovery from failures by
restoring the application state to a previous snapshot version.

8 Conclusion

This paper presented a set of Resiliency-Oriented Language Extensions (Rolex)
for expressing the error resilience properties of scientific HPC application codes

30 Saurabh Hukerikar*, Robert F. Lucas

at the language level. They are developed as extensions to existing programming
languages such that they may succinctly capture a programmer’s knowledge on the
fault tolerance features of the application through type qualifiers, directives and
library routines. The semantics of the language extensions enable application-level
error detection, containment and masking. We have presented concrete examples
of widely used scientific computational kernels in which encoding the resilience
knowledge using Rolex enhances the application’s error resilience. We described
the compiler transformations that leverage the language extensions to incorporate
further error resilience features in the application codes. These transformations
are enabled by a front-end source-to-source compiler infrastructure. We described
the compiler-runtime interface and the design and implementation of the runtime
inference system. We demonstrated that the combination of the language-level
programming model extensions, which are tightly integrated with the compiler
infrastructure and runtime system, provides an execution environment that fa-
cilitates cross-layer efforts for error detection, masking and recovery. For HPC
applications, these capabilities in turn lead to a substantial increase in the check-
pointing interval and a reduction in redundant computation, both of which enable
a reduction in the time and energy required to reliably solve the most demanding
computational challenges.

References

1. (2010) The Opportunities and Challenges of Exascale Computing. Tech. rep.,
Summary Report of the Advanced Scientific Computing Advisory Committee
(ASCAC) Subcommittee

2. Agullo E, Giraud L, Guermouche A, Roman J, Zounon M, Agullo E, Giraud
L, Guermouche A, Roman J, Zounon M, Sud-ouest B (2013) Towards resilient
parallel linear krylov solvers: recover-restart strategies. Tech. rep., INRIA

3. ARB OpenMP (2015) OpenMP Specification. URL
http://www.http://openmp.org/wp/

4. Aumann Y, Bender MA (1996) Fault tolerant data structures. In: Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC, USA, FOCS ’96, pp 580–589

5. Bosilca G, Delmas R, Dongarra J, Langou J (2008) Algorithmic Based Fault
Tolerance Applied to High Performance Computing. CoRR

6. Buck I, Foley T, Horn D, Sugerman J, Fatahalian K, Houston M, Hanrahan
P (2004) Brook for gpus: Stream computing on graphics hardware. In: ACM
SIGGRAPH, pp 777–786

7. Carlson W, Draper J, Culler D, Yelick K, Brooks E, Warren K (1999) Intro-
duction to upc and language specification

8. Chung J, Lee I, Sullivan M, Ryoo JH, Kim DW, Yoon DH, Kaplan L, Erez
M (2012) Containment domains: a scalable, efficient, and flexible resilience
scheme for exascale systems. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, pp 58:1–
58:11

9. van Dam HJJ, Vishnu A, de Jong WA (2013) A case for soft error detection
and correction in computational chemistry. Journal of Chemical Theory and
Computation 9:3995–4005

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 31

10. Dongarra J, et al (2011) The international exascale software project roadmap.
International Journal on High Performance Computing Applications pp 3–60

11. Elnozahy E, et al (2009) System Resilience at Extreme Scale, White Paper.
Tech. rep., DARPA

12. Fujita H, Schreiber R, Chien AA (2013) It’s time for new programming models
for unreliable hardware, provocative ideas session. In: International Conference
on Architectural Support for Programming Languages and Operating Systems

13. Hoemmen M, Heroux MA (2011) Fault-tolerant iterative methods via selective
reliability. Tech. rep.

14. Huang KH, Abraham J (1984) Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on Computers C-33(6):518 –528

15. Hukerikar S, Diniz PC, Lucas RF (2012) A programming model for re-
silience in extreme scale computing. In: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN 2012), pp 1–6, DOI
10.1109/DSNW.2012.6264671

16. Hukerikar S, Diniz PC, Lucas RF (2013) Robust graph traversal: Re-
siliency techniques for data intensive supercomputing. In: IEEE High
Performance Extreme Computing Conference (HPEC), pp 1–6, DOI
10.1109/HPEC.2013.6670340

17. Hukerikar S, Diniz PC, Lucas RF (2015) Enabling application resilience
through programming model based fault amelioration. In: IEEE High
Performance Extreme Computing Conference (HPEC), pp 1–6, DOI
10.1109/HPEC.2015.7322460

18. Kogge P, et al (2008) Exascale Computing Study: Technology Challenges in
Achieving Exascale systems. Tech. rep., DARPA

19. de Kruijf MA, Sankaralingam K, Jha S (2012) Static analysis and compiler
design for idempotent processing. In: Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation, PLDI ’12,
pp 475–486

20. Langou J, Chen Z, Bosilca G, Dongarra J (2007) Recovery patterns for it-
erative methods in a parallel unstable environment. SIAM Journal Scientific
Computing 30:102–116

21. Numrich RW, Reid J (1998) Co-array fortran for parallel programming. SIG-
PLAN Fortran Forum 17(2):1–31

22. Quinlan D, et al (2000) Rose Compiler. URL http://www.rosecompiler.org
23. Sao P, Vuduc R (2013) Self-stabilizing iterative solvers. In: Proceedings of the

Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
ScalA ’13, pp 4:1–4:8

24. Sloan J, Kumar R, Bronevetsky G (2012) Algorithmic approaches to low over-
head fault detection for sparse linear algebra. In: Proceedings of the 42nd An-
nual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp 1–12

25. Sloan J, Kumar R, Bronevetsky G (2013) An algorithmic approach to error
localization and partial recomputation for low-overhead fault tolerance. In:
Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp 1–12

26. Snir M, et al (2013) Addressing failures in exascale computing. Tech. rep.,
Argonne Report ANL/MCS-TM-332

32 Saurabh Hukerikar*, Robert F. Lucas

27. Yajnik S, Jha N (1994) Synthesis of fault tolerant architectures for molecular
dynamics. In: IEEE International Symposium on Circuits and Systems, vol 4,
pp 247–250

28. Yalcin G, Unsal O, Hur I, Cristal A, Valero M (2010) FaulTM: Fault-Tolerance
Using Hardware Transactional Memory. In: Workshop on Parallel Execution
of Sequential Programs on Multi-core Architecture, Saint Malo, France

29. Zou A, Lipscomb TJ, Cho SS (2012) Single vs. double precision in md sim-
ulations: Correlation depends on system length-scale. GPU Technology Con-
ference

Rolex: Resilience-Oriented Language Extensions for Extreme-Scale Systems 33

A Rolex Grammar

This appendix shows the extensions to the base language grammar for C and C++ in order
to support Rolex.

A.1 Rules for Resilience Type Qualifiers

Listing 1 Rules for resilience type qualifiers

declaration_specifiers : storage_class_specifier
| storage_class_specifier declaration_specifiers
| type_specifier
| type_specifier declaration_specifiers
| type_qualifier
| type_qualifier declaration_specifiers

’;’

storage_class_specifier : TYPEDEF | EXTERN | STATIC | AUTO | REGISTER ’;’

type_specifier : VOID | CHAR | SHORT | INT | LONG | FLOAT | DOUBLE | SIGNED |
UNSIGNED

| struct/union_specifier | enum_specifier | TYPE_NAME
’;’

type_qualifier : CONST
| VOLATILE
| resilience_type_qualifier

’;’

resilience_type_qualifier : TOLERANT
| TOLERANT ’(’ tolerance_limit ’)’
| ROBUST ’(’ robust_strength ’)’
| HEAL ’(’ function_declaration ’)’

’;’

tolerance_limit : PRECISION ’=’ CONSTANT
| MAXIMUS ’=’ CONSTANT

robust_strength: DETECT | CORRECT

A.2 Rules for Resilience Directives

The redundancy directives enable error detection and/or correction for the computation con-
tained in a structured block. The strength clause indicates whether dual or triple modular
redundant execution must be applied. The recovery directives offer error containment since
any fault that is activated leading to error state during the execution of the structured block
is not allowed to propagate outside the block. Error recovery is performed by rolling forward
or rolling back execution of the structured block. The roll-forward and roll-back semantics on
the structured code blocks require explicit specification of the data scoping to comply with the
C/C++ memory consistency model. The rules for the data management and scoping clauses
are also shown in Listing 2. The clauses permit the variable state to be restored when execution
is rolled forward or back. For the redundancy directives, the data clauses ensure that there are
no races on the shared data. The declarative clauses in Rolex enable the creation of multiple
versions of the associated function in order to support retry, ignore or redundant execution for
the statements in the function body.

34 Saurabh Hukerikar*, Robert F. Lucas

Listing 2 Rules for resilience directives

statement -list: statement
| resilience -directive
| statement -list statement
| statement -list resilience -directive

statement : labeled_statement
| compound_statement
| expression_statement
| selection_statement
| iteration_statement
| jump_statement
| resilience -construct
| declaration -definition
| function -statement
’;’

resilience -construct: rolex -redundancy -construct
| rolex -recovery -construct
| rolex -declare -construct

rolex -redundancy -construct: redundancy -directive structured -block

rolex -recovery -construct: recovery -directive structured -block

rolex -declare -construct: declare -directive function -statement

structured -block: statement

recovery -directive :# pragma rolex recover -rollback recovery -data -clause(opt)
new -line

#pragma rolex recover -rollforward recovery -data -clause(opt
) new -line

redundancy -directive: #pragma rolex robust robust -strength -clause redundancy -
data -clause(opt) new -line

declare -directive: #pragma rolex declare resilient declare -resilience -clause
failsafe -data -clause(opt) new -line

robust -strength -clause: DETECT | CORRECT

recovery -data -clause: data -default -clause
| data -private -clause
| data -share -clause
| data -reinitialize -clause
| data -ameliorate -clause

redundancy -data -clause: data -default -clause
| data -private -clause
| data -share -clause
| data -compare -clause

failsafe -data -clause: fallback ’(’ variable -list ’)’

data -default -clause: default ’(’ shared ’)’
| default ’(’ none ’)’

data -private -clause: private ’(’ variable -list ’)’

data -share -clause: share ’(’ variable -list ’)’

data -reinitialize -clause: reinitialize ’(’ variable -list ’)’

data -ameliorate -clause: ameliorate ’(’ function_declaration ’)’

data -compare -clause: compare ’(’ variable -list ’)’

declare -resilient -clause: retry
| ignore
| robust ’(’ robust_strength ’)’

