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Motivation

General Approach For Electrochemical CO, Conversion

Renewable electrical input * CO, is introduced into aqueous solution

* Electrons are injected from cathode catalyst
into CO,
* CO,+ protons (H,0) + electrons >
Cathode Anode products
Hl R 'T * Water is oxidized to O, at the anode (oxygen
S e evolution reaction)
0 ot ok » Want to reduce overpotential and/or cost
associated with Pt anode

The ability to computationally describe realistic working catalysts is
important because it will facilitate the design of higher activity,
earth-abundant catalysts by identifying accurate structure-property

relationships.
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Computational Methods

« Implementation and Application of Multiscale Computational
Infrastructure for Modeling Electrochemistry at Realistic
Conditions

: . computational =
Model implementation, I s

computer programming
and validation

HY=EY H*L

R - electrochemistry
Ab initio
database for

Ll H* + e > % Hyy at STR, U =0

Computational
Electrochemistry

Experimental
data for validation and
target applications

W(H* +e) =% u(H,(g))

 Reaction energy (Example, H,O () + * < OHy+ H* + e):
AG = Gope- G o—eU + KT In a,+
G=E+ZPE+TS
« Onset potential: U, = max((AG,, AG,, AG,,, ...)/e)
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OER Mechanism

 The OER mechanism 1s commonly described with four sequential
one electron oxidation!
(h HOD+* < OH,+H"+e"
(I) OH,, <« O, +H" +e"
I O,+H,0(1) < OOH_,+H"+e"

(IV) OOH,;, < *+0,(g)+H" +e"
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Ni,(PET),, Structure and Characterization
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Electrocatalytic Data from Voltammetry and

Steady State OER Electrolysis
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@ OER Onset Tafel Slope n@ 10st 3hourn @ 10s?
V vs. RHE)? mV dec?)? V vs. RHE) @ V vs. RHE) °

.0
Time (min)

Ni.(PET) 1.544 + 0.011 69 +12 1.700 + 0.018 1.68
1.493 £ 0.009 541 1.730 £ 0.019 1.77
1.575 £ 0.015 705 1.812 £ 0.048 2.3
1.541 + 0.009 60+11 n/ac 2.5
1.676 + 0.006 255+18 n/ac n/ac

Table footnotes: n = overpotential; (a) from voltammetry data, (b) from electrolysis data, (c) did
not occur within the considered iR-corrected potential window.
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Stability Diagram of O-Covered Ni,(SCH,),, N=TL
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We considered the OER at Ni-S structure by including an implicit
solvation model to describe the electrostatics, cavitation, and
dispersion interactions between the solute and solvent.
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Free Energy Diagram for OER at O-Covered

Ni,(SCH,),,
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Comparison with Ir and Pt OER
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Influence of the Solvation Model
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Summary and Conclusions

We use a combination of experimental and computational techniques to study
the OER at a supported organometallic nickel complex with a precisely known
crystal structure.

The Nig(PET),, complex out performed bulk NiO and Pt and showed OER
activity comparable to Ir.

Computational prediction of potential determining steps and OER onset
potentials are in excellent agreement with experimentally determined values.

The strategy used here allows atomic-level modeling of realistic catalyst
structures and accurate descriptions of reaction mechanisms.

Continued development of atomically-precise
OER catalysts will help establish detailed
structure activity relationships for the
controlled synthesis of next generation
OER catalysts.
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Disclaimers

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, nor AECOM, nor any
of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
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