LA-UR-16-24227

Approved for public release; distribution is unlimited.

Title: Parallel Algorithms and Patterns
Author(s): Robey, Robert W.
Intended for: Report

Issued: 2016-06-16

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory

Parallel Algorithms and Patterns

Bob Robey

June 16", 2016

Z
: ¥V Q@b
: | A >4
53 ' National Nuclear Security Administration
e W ST : Operated by Los Alamos National Security, LLC for the U .S. Department of Energy’ 's NNSA

Parallel Algorithms and Patterns

- Parallel Algorithms

« A well-defined, step-by-step computational procedure that emphasizes
concurrency to solve a problem

« Examples of problems include: Sorting, searching, optimization, matrix
operations

 Parallel Patterns

« A computational step in a sequence of independent, potentially concurrent
operations that occurs in diverse scenarios with some frequency

« Examples are: Reductions, prefix scans, ghost cell updates

We only touch on parallel patterns in this presentation. It really deserves
its own detailed discussion which Gabe Rockefeller would like to
develop. See references, McCool, et al. and Mattson, et al. (on last slides).

June 16,2016 | 2

Future of Algorithm Research

« Algorithm research still focuses on serial operation, algorithmic
complexity, and work efficiency

» Lets look at the flaws in this traditional approach to algorithm
development, with an emphasis on parallel architectures, including
next-generation architectures

 The new considerations, in no particular order, follow in the next slides

June 16,2016 | 3

New Considerations for Algorithms

« Exposing Concurrency

« We have a partnership with the hardware/system developers. Our highest
mission is to expose concurrency in every way possible.

* Fine-grained Parallelism — Forall loops concept
« Step Efficiency

* | can do eight operations for the cost of one — how do | can | exploit this? | may
do more work, but fewer steps

« Cache friendly

» Alinear search can be just as fast as a much more “efficient” algorithm, just
because it uses cache better

« Cache-oblivious algorithms are a hot topic replacing earlier auto-tuning
approaches such as Automatically Tuned Linear Algebra Software, ATLAS

 Load Balancing
* Reproducibility

June 16", 2016 | 4

New Considerations for Algorithms(continued)

* Branch Free

» Branching imposes a high performance penalty and in particular for single
instruction, multiple data (SIMD) architectures

» Also related, comparison free or lower thread divergence
 Recursion free
* Numerical Intensity — loop fusion, blocking, tiling, functional
* Reduce Data Movement
« Energy Efficiency
* Locality
« Space-Filling Curves
« Cache-oblivious Data Structures
« Asynchronous or Overlapping Compute/[Communication, I/O, Memory]

June 16,2016 | 5

Three Case Studies

e Parallel Global Sum
« Spatial Hashing
* Prefix Scan

June 16,2016 | 6

Parallel Global Sum
* Running on different numbers of processors yields different summation
results, e.g. total mass
+ Gets worse as problem size gets larger
Problem is due to finite precision arithmetic not being associative

« Sorting data or always summing in a particular order would solve this, but the
cost is too high to be practical

« So we assumed we would just have to live with the problem
But, it can be solved by viewing it as a precision problem
« Breakthrough approaches emerged in about 2010

« Use double-double sums such as Kahan or Knuth Sums and custom data
types and operations in MPIl_Allreduce

* In Search of Numerical Consistency, Robey, Robey, Aulwes, Parallel
Computing, 2010 and following

« UC Berkeley research — reproBlas library and rigorous mathematical proofs
for edge cases — see P. Ahrens

* High Precision software Libraries -- D. Bailey
« _exBLAS library by Roman lakymchuk

ISTD SNSEC

June 16,2016 | 7

Spatial Hashing

« Comparison Sort

« Sort a room by having each person compare to their neighbor and move
left if their last name is earlier in the alphabet and right if later.

« Continue for log n steps, where n is the number of people in the room

* When you reach the end of the row, it is like you have reached the GPU
workgroup and you have to exit the kernel to do a comparison with the next
row.

e Hash Sort
* Place a table for each letter at the front of the room

« Each person goes to the table with the first letter of their last name
(approaches 1 step for enough tables and additional letters, 2"4, 39, etc.)

June 16,2016 | 8

Los Alamos National Laboratory

Hash Work Acknowledgements

 Remaps and Hierachical Hashing (Breadcrumbs)
» Gerald Collom and Colin Redman

« Compact Hash

» Rebecka Tumblin, Peter Ahrens, and Sara Hartse
» Perfect Hash and Unstructured Mesh Hashing
» Rachel Robey and David Nicholaeff
« CLAMR mini-app, Cell-based Adaptive Mesh Refinement (AMR) on GPUs
» Neal Davis, David Nicholaeff and Dennis Truijillo
 Open Source:

» Github.com/losalamos/PerfectHash

Github.com/losalamos/CompactHash

>
» Github.com/losalamos/CompactHashRemap
» Github.com/losalamos/CLAMR

N@E@ Slide 9

June 16,2016 | 9

Spatial Hashing

« Exploiting the properties of a computational mesh -- only one cell at
each physical location in space and well-spread out

* Perfect Hash -- if we can guarantee that “bins” only contain one item

« Compact Hash — if we might have more than one item in a bin, maybe
because it is more complex or we want to use a smaller hash table

« Spatial operations — sort, neighbor finding, remap and table lookup all
show significant speedup and are easier to port to the GPU

« With a few months work, our hash sort beat the fastest sort (quicksort)
on the CPU by a factor of 4 and the fastest GPU sort (radix) by a factor
of 3.

June 16", 2016 | 10

Project 1D or 2D, Particles, Objects, AMR or
Unstructured Mesh to Hash

"Differential Discretized Data" used as Spatial hash based on minimum Binning computational elements based

a Computational Mesh § = Cell Size cell size on interaction distance in cell lists

' Size .,
(B,. B, B,,, B,y R TR R TTTN T
- ‘ i | ‘e :
A f : 1
1 r 1 - —A\ = By T T 1]
_ _: \? ' > | 0&4 VIO /
— — i ~
—17-" l\
><r
+.1.4

)

» + 4 |.'/ .
- o | e 'il":/ . ' *)
Y e hd . .

__-> = E‘_EEEg q ,’:- . ° .,

t
2D Spatial Hash Interaction pgyticle Based Computations
Distance

Locality-Enforcing Schemes
AMR and Unstructured Mesh

ISTD SHNSEC

June 16", 2016 | 11

Los Alamos National Laboratory

Hashing Methodology: Reducing Reads & Writes

« Mesh cells project their topological information (i.e. cell index) into a bin
in a “hash table” based on spatial information. Other cells than look
spatially nearby.

« Cells do not need to communicate directly with other cells for any
topological information, i.e. no comparison operations... all operations
take place in the hash table

— Writing and reading to the hash table, are analytic operations

 Initial implementation wrote to all underlying cells. Shown left to write
are implementations that reduce the number of reads and writes

2|s]|s

333333333

June 16", 2016 | 12

Los Alamos National Laboratory

Hashing Methodology — Compact Hashing

We take the sparse hash table (a linear array) and compress it. If a value
is already in the bin, we move down to the next empty bucket and put it
there. Both the key and the value must be placed in the bin so that the
queries can check for the proper key and continue looking until it is found.

Perfect hash

bucket

index key
Spatial data (1’ (1’ Compact hash Compact hash
=0 1 2 3 2 2 bucket bucket

3 3 index key index key
4 4 0 0,9,12 0 0,9,12
5 5 Compression 1 6,7 Probing 1 6
6 6 function 2 2,11 sequence 2 2,11,7
7 7 > 3 8,5 > 3 8,5
8 8 4 4,15 4 4,15
9 9 5 10 5 10
10 10 6 13,3 6 13,3
11 11 7 1,14 7 1,14
12 12

13 13

14 14

.NSH}

Los Alamos National Laboratory

Hashing for Unstructured Meshes

1. Every cell writes its cell number into the bin at the center of each face. If
the face is to the left and up from the center it writes its index to the first of two

places in the bin, else it writes to the second place.

2. Every cell checks for each face if there is a number in the other bucket. If
there is, it is the neighbor cell. If not, it is an external face with no neighbor.

- We have found our neighbors in a single write and single read!

June 16", 2016 | 14

Los Alamos National Laboratory

Hashing Methodology: Higher Order Structures

Take a sequence of hash tables at each level of refinement,
connect them into a hierarchy using breadcrumbs...

Input Mesh (i)

Cell 0 writes to
the coarsest
hash table.
Cell 7 writes to
the fine hash,
but leaves -1 in
the coarser
hashes along
the way as
breadcrumbs.

ISTD SHNSEC

avg(ia,is,ie,avyg(is,is,iz,is))

Cell 8 finds its
match of cell 2 in
the coarse hash.
Cell 9 follows the
bread crumbs and
getscells -1 >
(3,4,9, -1-> (5, 6,
7,8))and
weighted averages
them for its result.

June 16", 2016 | 15

Los Alamos National Laboratory

N-body and particle codes

 Hashed oct-tree (HOT), Warren, M., LANL

« Exploits the oct-tree by using a z-order curve. Operations then involve bit
arithmetic to find neighbors and parent cells.

» Stores data using a hash key for each position in the oct-tree

« Smooth Particle Hydrodynamics — only look at interactions within a
certain distance

» Method of cells (and other names) — bin particles by interaction distance
and only have to look at adjacent bins.

 These are early examples of spatial hashing.

June 16", 2016 | 16

Prefix Scan Exercise

« Each person write 4 numbers from 1 — 100 on a piece of paper.
 These are the number of cells of 4 different types that you have

« Compute the starting point in a contiguous array for your section of
data

» People before me — 120, 220, 80, so | start at 421. | have 160, so | end at
580 and pass that on to the next person

» This seems like a serial algorithm (actually a pattern). Hillis and Steele
developed a parallel version of the scan (1986). Blelloch came up with a
way to do it with a work efficient approach (1990). Sengupta developed
a hybrid work-efficient step-efficient version, recognizing that on the
GPU, the number of steps in the Hillis-Steele version is more important
the number of flops.

June 16", 2016 | 17

A Step-Efficient Prefix Scan — Hillis and Steele, 1986
Revived by Horn, 2005, for the GPU

Z(xgx) | Z(xpx) | Z0¢,.x) | Z(x,..x) | Z0x,.x) | Z(x,..x) | Z(x..x) | Z(x,..x,)

(%) | Z(x,..x) | Zx,.x) | Zx,..x) | Z(x,..x) | Z(x,..x) | Z(x,..x) | Z(x,..x,)

T0¢,x) | T0x) | T0¢ex) | Z0¢x)) | T0xpx) | Txx) | Elxyex) | Z0x,-x,)

June 16", 2016 | 18

Work efficient scan (upsweep)

X

S Z(x,..x,) X, Z(x,..x,) X, Z(x,..x,) X, Z(x,..X,)

A
d=2 /

X, Z(x,..x,) X, Z(Xyex,) X, Z(x,..x,) X, Z(X,..X.)

X, Z(x,.-x,) X, Z(x,..x,) X, Z(x,..x,) X Z(x,..x,)

a0 | L “

XS X, X, X, X

- x5 xs xT

Figure 39-3 An Illustration of the Up-Sweep, or Reduce, Phase of a Work-Efficient Sum Scan Algorithm
Example 3. The Up-Sweep (Reduce) Phase of a Work-Efficient Sum Scan Algorithm (After Blelloch 1990)

1: ford=0to logp n - 1do

2: forall k=0ton-1by 29*! in parallel do
3: x[k+ 29* 1 1) =x[k+ 29 - 1]+ x[k+ 29+1 - 1]

ISTD SNSEC From GPU Gems 3, Nvidia

June 16", 2016 | 19

Work efficient scan (downsweep)

Zero l

X, Z(XgX,) X, Z(XyeX,) X, Z(x,..x.) X, 0

d=0 ;)
X, Z(x,..x,) X, 0 X, Z(x,..x,) X, Z(x,..X,)

d=1 ¥ y ¥ ¥
X, 0 X, Z(x,-x,) X, Z(x,-X,) X, Z(X,--X,)

I e P B
0 X, Z(xyex) | Zxgex)) | Z(xpex) | Z(x,x) | Zlxgex)) | Z(X-X)

Figure 39-4 An Illustration of the Down-Sweep Phase of the Work-Efficient Parallel Sum Scan Algorithm

Example 4. The Down-Sweep Phase of a Work-Efficient Parallel Sum Scan Algorithm (After Blelloch 1990)

1: x[n-1] o0

2: ford = logy; n - 1 down to 0 do
3: forall k=0ton-1by29+1in parallel do

ISTD SNSEC

From GPU Gems 3, Nvidia

June 16", 2016 | 20

Los Alamos National Laboratory

Prefix scan algorithm on the GPU for large datasets
Hybrid step efficient, work efficient

WG 1 WG 2 WG 3 WG 4 WG 5 WG 6 WG 7 WG 8

| | | | | | |
\ /

sum on each workgroup

\ /

|Read workgroup-sized blocks

%

T T T T T T T
exclusive sum by workgroup
1 1 1 1 1 1 1

RN IR RN R PR R R R R PR IR

determine offset for each thread and apply

ISTD SNSEC

June 16", 2016 | 21

Los Alamos National Laboratory

References

McCool, M., Robison, A., Reinders, J., “Structured Parallel Programming:
Patterns for Efficient Computation”, Elsevier, 2012

Mattson, T., Sanders, B., Massingill, B., “Patterns for Parallel Programming”,
Pearson Education, 2005.

D. Nicholaeff, N. Davis, D.P. Trujillo, R. W. Robey, “Cell-based Adaptive Mesh
Refinement Implemented with General Purpose Graphics Processing Units”,
Tech. Rep. LA-UR-13-20165, Los Alamos National Laboratory, 2013.

R. N. Robey, D. Nicholaeff, and R. W. Robey, “Hash-based Algorithms for
Discretized Data,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp.
C346-C368, 2013.

R. Tumblin, P. Ahrens, S. Hartse, and R. W. Robey, “Parallel Compact Hash
Algorithms for Computational Meshes,” SIAM Journal on Scientific
Computing, Feb. 2015.

D. Nicholaeff, R. Tumblin, I. Karlin, R.W. Robey, P. Ahrens, J. Sauer, R.N.
Robey, S. Hartse, “A Survey of Hash-based Algorithms for Scalable
Computational Mesh Management across Heterogeneous Architectures,
2014, LLNL-CONF-653580-DRAFT, LA-UR-14-22667

ISTD SNSEC

June 16", 2016 | 22

More References

G. Blelloch, “Vector Models for Data-Parallel Computing”, MIT Press, 1990
G. Blelloch, “Prefix Sums and their Applications, 1990, Carnegie Mellon
University, Tech Report, CMU-CS-90-190

« Kahan, William (January 1965), "Further remarks on reducing truncation
errors", Communications of the ACM 8 (1): 40

 D.E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley
Press, 1969. chap. 4.

 Roman lakymchuk, et al. ExXBLAS: Reproducible and Accurate BLAS
Library. NRE: Numerical Reproducibility at Exascale, Nov 2015, Austin, TX,
United States. 2015.

« A Fortran-90 double-double library. Bailey, D., 2001,
http://www.nersc/qgov/~dhbailey/mpdist/mpdist.html

June 16", 2016 | 23

e LOs Alamos

NATIONAL LABORATORY
EST.1943

Delivering science and technology
to protect our nation
and promote world stability

