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How MPI Works
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How MPIl Works

MPI = Message Passing Interface

Executable is run in multiple processes

Each process communicates with each other

* Processes may be on the same computer

* Processes may be on multiple nodes of a cluster

« Multiple processes may be placed on a node to utilize multi-core
processors

C and Fortran library APIs given by the standard
Other 3 party bindings exist (Python, C++, etc)
Will concentrate on C library bindings here
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First Program

int main(int argc, char sxxargv)

{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
Output
printf(“sd of %d\n”, rank, size); 1 of 4
MPI Finalize(); 3of4
return 0; 0of4
I3 2 of 4
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First Program

 Wrapper is used to compile MPI application (OpenMPI)
* mpic++ main.cpp
 Wrapper is used to run application
* mpirun -n 4 ./a.out
» For this example, 4 copies of a.out are run
« Each copy has an associated index called a rank
 MPI uses the concept of a communicator
« Default MPI_COMM_WORLD for all MPI ranks
« Can create subsets of ranks
» Useful for libraries
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Point to Point Communication

 MPI_Send and MPI_Recv used for communication between 2 ranks
« Parameters include
« Data to send (MPIl_Send)
« Buffer to copy received data (MP|_Recv)
« Rank to send to or receive from
« Communicator and integer tag
« Both must match in a send/recv
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int MPI_Send(const void xbuf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

« buf — Buffer of data to send

« count — Number of items to send

- datatype — Built-in (MPI_INT, MPI_BYTE, MPI_DOUBLE, ...) or your own
» dest — Destination MPI rank

« tag — Identifier for the data

« comm — MPI communicator (MPI_COMM_WORLD or your own)
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Example

Send array of double values to rank+1

double sendDoubles[2];
double recvDoubles[2];

if (rank < RANK_MAX) {
MPI_Send(sendDoubles, 2, MPI_DOUBLE, rank+1, 0,
MPI_COMM_WORLD);
}
if (rank > 0) {
MPI_Recv(recvDoubles, 2, MPI _DOUBLE, rank-1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
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Example

 MPI_Send is hard to predict
 After return from MPI_Send, you can reuse the data buffer
« But you don’t know if the data has been sent when MPI_Send returns
« Small messages: MPI returns before data is received by destination
« Large messages: MPI returns after data is received by destination

« Can use MPIl_Ssend to ensure message has been received by
destination when function returns

« But, if MPl_Ssend works, MPl_Send should work and MPI_Send could
yield higher performance
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Example

* If MPl_Send does not return until data is received

All ranks except N-1 begin a send

Only rank N-1 gets to MPI_Recyv statement

Rank N-1 receives data and rank N-2 finishes send

Rank N-2 receives data and rank N-3 finishes send
* This continues sequentially!!!

* This code may not parallelize
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Example

« Several solutions exist
* One solution is to use Isend/lrecv
* These use nonblocking calls
» Data buffer cannot be used after Isend/Irecv return
» The data in the buffer isn’t used yet

« Use MPI_Wait, Mpi_Waitall, MPl_Waitany to know when Isend/Irecv is
done

* Must have an MPI_Wait for each Isend/Irecv.
* Not having one creates a memory leak
 Best practice
« Post MPI_Irecv before MPI _Isend
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Isend/Ilrecv

int MPI _Isend(const void xbuf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm,
MPI_Request xrequest)

int MPI _Irecv(void xbuf, int count,
MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,
MPI_Request xrequest)

* request — Used by MPI_Wait
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Example

Send array of double values to rank+1

double sendDoubles[2];
double recvDoubles[2];
MPI_Request requests[2] = {MPI_REQUEST_NULL,
MPI_REQUEST_NULL};
if (rank < RANK_MAX) {
MPI Isend(sendDoubles, 2, MPI _DOUBLE, rank+1, 0,
MPI_COMM_WORLD, &requests[@]);
}
if (rank > 0) {
MPI_Irecv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0,
MPI_COMM_WORLD, &requests[1]);
¥
MPI_Waitall(2, requests, MPI_STATUSES_IGNORE);
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Broadcast and Collective Routines

« These functions include all ranks in a communicator
« Simplest is MPIl_Barrier

« Make all ranks wait until they hit the barrier
» Be careful not to put this in a branching statement (like an if statement)

e All ranks in communicator must call this before code moves forward
« Can be useful for debugging
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MPI_Scatter

Elements in array go to different ranks
(Bcast: 1 element sent to all ranks)

Rank O Rank 1 Rank 2 Rank 3

\}H{/

Rank O
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MPI_Gather

Element from each rank goes into one array
(Allgather: every rank gets the whole array)

Rank O Rank 1 Rank 2 Rank 3

\}II{

Rank O
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MPI_Reduce

Binary operation of element sent to one rank
Built-in operations: max, min, sum, product, ...
Can define your own binary operation
(Allreduce: All ranks get answer)

Rank O Rank 1 Rank 2 Rank 3
x0 X X2 X3

1
XO0+x1+x2+x3
Rank O
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MPI_Scan

Binary operation on elements from each rank

Rank O Rank 1 Rank 2
x0 x1 X2
x0 x0+x1 X0+x1+x2
Rank O Rank 1 Rank 2
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MPI_Init_thread

» Use for threading with MPI (such as OpenMP, pthreads, ...)
* Four threading types
« MPI_THREAD_ SINGLE - No threading
« MPI_THREAD FUNNELED - All MPI calls made by master thread

« MPI_THREAD SERIALIZED — Only one thread makes an MPI call at a
time, but calls can come from different threads

« MPI_THREAD_ MULTIPLE - Different threads may call MPI routines at
the same time

» Best practice: create a communicator for each thread

.WNSE@



Los Alamos National Laboratory

Error Handling

* In C: MPI functions return an error status
* In Fortran: MPI functions have an extra argument, ierr
« Should return MPIl_Success every time

int mpiError = MPI_Send(...);
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MPI 3 and One Sided Communication

« Original MPI requires all ranks involved in a communication to call a
function

- MPI 3 standard allows ‘putting’ and ‘getting’ data in memory windows
on other ranks

* No corresponding MPI function call is necessary on the other rank

* For hardware supporting this paradigm, large scaling results can be
better
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Parallel IO

* Three strategies

» Every rank writes its own file; rank O writes a master file
« Ok for small parallelization
« Bad for large parallelization

* Use MPI-IO (or a parallel library) to write one file

« Hybrid approach
* Chunks of MPI ranks send data to 1 rank in the chunk
« Each chunk writes its own file; rank O writes a master file
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Resources

 MPI Tutorial
» http://mpitutorial.com/
» https://computing.linl.gov/tutorials/mpi/
 MPI IO overview from TACC
» https://www.tacc.utexas.edu/documents/13601/900558/MPI-IO-Final.pdf
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How to parallelize a 2D Domain?
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