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How MPI Works 
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How MPI Works 

•  MPI = Message Passing Interface 
•  Executable is run in multiple processes 
•  Each process communicates with each other 

•  Processes may be on the same computer 
•  Processes may be on multiple nodes of a cluster 
•  Multiple processes may be placed on a node to utilize multi-core 

processors 
•  C and Fortran library APIs given by the standard 
•  Other 3rd party bindings exist (Python, C++, etc) 
•  Will concentrate on C library bindings here 
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First Program 

int main(int argc, char **argv) !
{ !
    int rank, size; !
    !
    MPI_Init(&argc, &argv); !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &size); !
    !
    printf(“%d of %d\n”, rank, size); !
    MPI_Finalize(); !
    return 0; !
} !

Output 
1 of 4 
3 of 4 
0 of 4 
2 of 4!
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First Program 

•  Wrapper is used to compile MPI application (OpenMPI) 
•  mpic++ main.cpp 

•  Wrapper is used to run application 
•  mpirun -n 4 ./a.out 
•  For this example, 4 copies of a.out are run 
•  Each copy has an associated index called a rank 

•  MPI uses the concept of a communicator 
•  Default MPI_COMM_WORLD for all MPI ranks 
•  Can create subsets of ranks 

•  Useful for libraries 
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Point to Point Communication 

•  MPI_Send and MPI_Recv used for communication between 2 ranks 
•  Parameters include 

•  Data to send (MPI_Send) 
•  Buffer to copy received data (MPI_Recv) 
•  Rank to send to or receive from 
•  Communicator and integer tag 

•  Both must match in a send/recv 
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MPI_Send 

•  buf – Buffer of data to send 
•  count – Number of items to send 
•  datatype – Built-in (MPI_INT, MPI_BYTE, MPI_DOUBLE, ...) or your own 
•  dest – Destination MPI rank 
•  tag – Identifier for the data 
•  comm – MPI communicator (MPI_COMM_WORLD or your own) 

int MPI_Send(const void *buf, int count, !
             MPI_Datatype datatype, int dest, !
             int tag, MPI_Comm comm) !
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Example 
    Send array of double values to rank+1 

double sendDoubles[2]; !
double recvDoubles[2]; !
!
if (rank < RANK_MAX) { !
    MPI_Send(sendDoubles, 2, MPI_DOUBLE, rank+1, 0, !
             MPI_COMM_WORLD); !
} !
if (rank > 0) { !
    MPI_Recv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0, !
             MPI_COMM_WORLD, MPI_STATUS_IGNORE); !
} !
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Example 

•  MPI_Send is hard to predict 
•  After return from MPI_Send, you can reuse the data buffer 
•  But you don’t know if the data has been sent when MPI_Send returns 

•  Small messages: MPI returns before data is received by destination 
•  Large messages: MPI returns after data is received by destination 

•  Can use MPI_Ssend to ensure message has been received by 
destination when function returns 

•  But, if MPI_Ssend works, MPI_Send should work and MPI_Send could 
yield higher performance 
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Example 

•  If MPI_Send does not return until data is received 
•  All ranks except N-1 begin a send 
•  Only rank N-1 gets to MPI_Recv statement 
•  Rank N-1 receives data and rank N-2 finishes send 
•  Rank N-2 receives data and rank N-3 finishes send 
•  This continues sequentially!!! 

•  This code may not parallelize 
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Example 
•  Several solutions exist 
•  One solution is to use Isend/Irecv 

•  These use nonblocking calls 
•  Data buffer cannot be used after Isend/Irecv return 

•  The data in the buffer isn’t used yet 
•  Use MPI_Wait, Mpi_Waitall, MPI_Waitany to know when Isend/Irecv is 

done 
•  Must have an MPI_Wait for each Isend/Irecv. 
•  Not having one creates a memory leak 

•  Best practice 
•  Post MPI_Irecv before MPI_Isend 
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Isend/Irecv 

int MPI_Isend(const void *buf, int count, !
              MPI_Datatype datatype, int dest, !
              int tag, MPI_Comm comm, !
              MPI_Request *request) !
!
int MPI_Irecv(void *buf, int count, !
              MPI_Datatype datatype, int source, !
              int tag, MPI_Comm comm, !
              MPI_Request *request) !

•  request – Used by MPI_Wait 
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Example 
    Send array of double values to rank+1 

double sendDoubles[2]; !
double recvDoubles[2]; !
MPI_Request requests[2] = {MPI_REQUEST_NULL, !
                           MPI_REQUEST_NULL}; !
if (rank < RANK_MAX) { !
    MPI_Isend(sendDoubles, 2, MPI_DOUBLE, rank+1, 0, !
              MPI_COMM_WORLD, &requests[0]); !
} !
if (rank > 0) { !
    MPI_Irecv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0, !
              MPI_COMM_WORLD, &requests[1]); !
} !
MPI_Waitall(2, requests, MPI_STATUSES_IGNORE); !
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Broadcast and Collective Routines 

•  These functions include all ranks in a communicator 
•  Simplest is MPI_Barrier 

•  Make all ranks wait until they hit the barrier 
•  Be careful not to put this in a branching statement (like an if statement) 
•  All ranks in communicator must call this before code moves forward 
•  Can be useful for debugging 
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MPI_Scatter 
Elements in array go to different ranks 

(Bcast: 1 element sent to all ranks) 

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0



Los Alamos National Laboratory 

  |   16 

MPI_Gather 
Element from each rank goes into one array 
(Allgather: every rank gets the whole array) 

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0
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MPI_Reduce 
Binary operation of element sent to one rank 

Built-in operations: max, min, sum, product, … 
Can define your own binary operation 

(Allreduce: All ranks get answer) 

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

x0 x1 x2 x3

x0+x1+x2+x3
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MPI_Scan 
Binary operation on elements from each rank 

x0 x1 x2

Rank 0

Rank 0

Rank 1

Rank 1

Rank 2

Rank 2

x0 x0+x1 x0+x1+x2
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MPI_Init_thread 

•  Use for threading with MPI (such as OpenMP, pthreads, ...) 
•  Four threading types 

•  MPI_THREAD_SINGLE – No threading 
•  MPI_THREAD_FUNNELED – All MPI calls made by master thread 
•  MPI_THREAD_SERIALIZED – Only one thread makes an MPI call at a 

time, but calls can come from different threads 
•  MPI_THREAD_MULTIPLE – Different threads may call MPI routines at 

the same time 
•  Best practice: create a communicator for each thread 
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Error Handling 

•  In C: MPI functions return an error status 
•  In Fortran: MPI functions have an extra argument, ierr 
•  Should return MPI_Success every time 

int mpiError = MPI_Send(...); !
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MPI 3 and One Sided Communication 

•  Original MPI requires all ranks involved in a communication to call a 
function 

•  MPI 3 standard allows ‘putting’ and ‘getting’ data in memory windows 
on other ranks  
•  No corresponding MPI function call is necessary on the other rank 

•  For hardware supporting this paradigm, large scaling results can be 
better 
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Parallel IO 

•  Three strategies 
•  Every rank writes its own file; rank 0 writes a master file 

•  Ok for small parallelization 
•  Bad for large parallelization 

•  Use MPI-IO (or a parallel library) to write one file 
•  Hybrid approach 

•  Chunks of MPI ranks send data to 1 rank in the chunk 
•  Each chunk writes its own file; rank 0 writes a master file 
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Resources 

•  MPI Tutorial 
•  http://mpitutorial.com/ 
•  https://computing.llnl.gov/tutorials/mpi/ 

•  MPI IO overview from TACC 
•  https://www.tacc.utexas.edu/documents/13601/900558/MPI-IO-Final.pdf 
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How to parallelize a 2D Domain? 
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