

LA-UR-16-24311

Approved for public release; distribution is unlimited.

Title: Distributed Computing (MPI)

Author(s): Garrett, Charles Kristopher

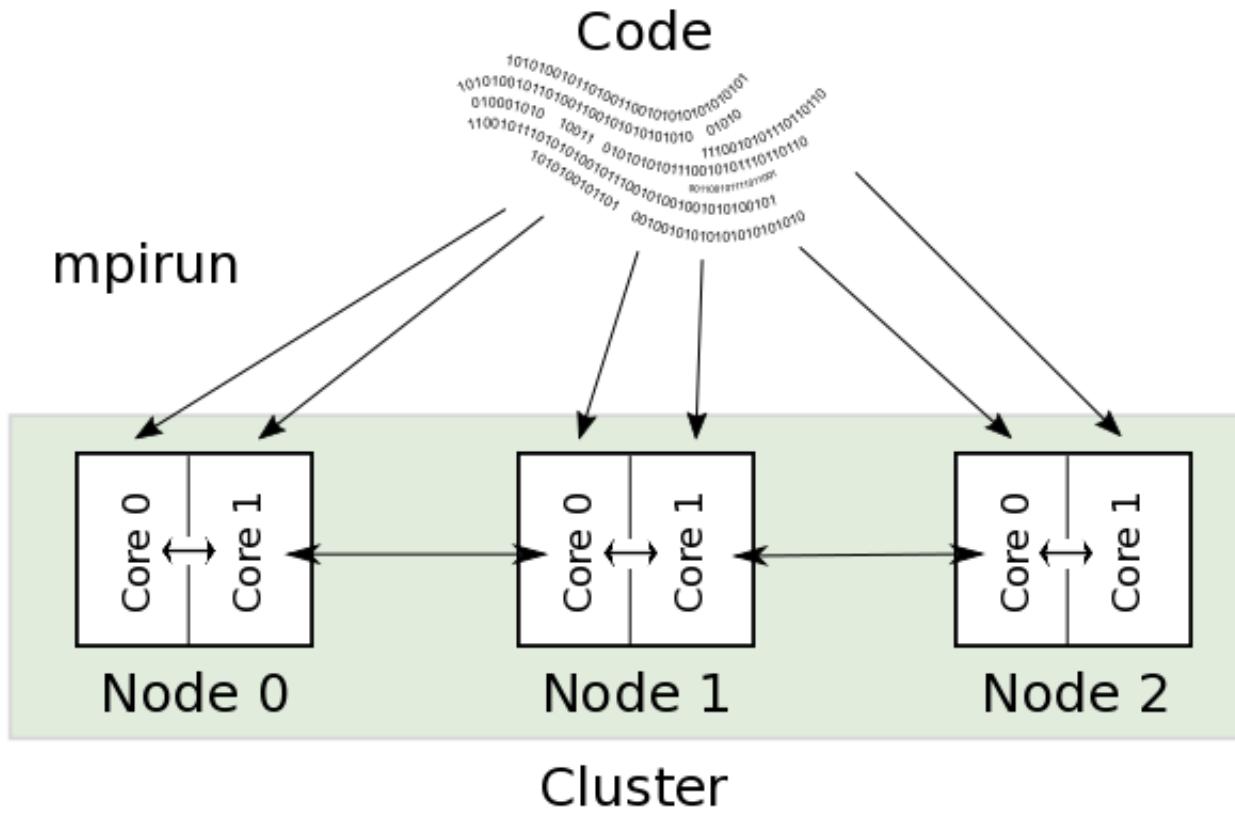
Intended for: Parallel Summer Computing Research Internship lecture

Issued: 2016-06-17

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Distributed Computing (MPI)


Kris Garrett

June 2016

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

How MPI Works

How MPI Works

- **MPI = Message Passing Interface**
- **Executable is run in multiple processes**
- **Each process communicates with each other**
 - Processes may be on the same computer
 - Processes may be on multiple nodes of a cluster
 - Multiple processes may be placed on a node to utilize multi-core processors
- **C and Fortran library APIs given by the standard**
- **Other 3rd party bindings exist (Python, C++, etc)**
- **Will concentrate on C library bindings here**

First Program

```
int main(int argc, char **argv)
{
    int rank, size;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    printf("%d of %d\n", rank, size);
    MPI_Finalize();
    return 0;
}
```

Output
1 of 4
3 of 4
0 of 4
2 of 4

First Program

- **Wrapper is used to compile MPI application (OpenMPI)**
 - mpic++ main.cpp
- **Wrapper is used to run application**
 - mpirun -n 4 ./a.out
 - For this example, 4 copies of a.out are run
 - Each copy has an associated index called a rank
- **MPI uses the concept of a communicator**
 - Default MPI_COMM_WORLD for all MPI ranks
 - Can create subsets of ranks
 - Useful for libraries

Point to Point Communication

- **MPI_Send and MPI_Recv used for communication between 2 ranks**
- **Parameters include**
 - Data to send (MPI_Send)
 - Buffer to copy received data (MPI_Recv)
 - Rank to send to or receive from
 - Communicator and integer tag
 - Both must match in a send/recv

MPI_Send

```
int MPI_Send(const void *buf, int count,  
            MPI_Datatype datatype, int dest,  
            int tag, MPI_Comm comm)
```

- **buf** – Buffer of data to send
- **count** – Number of items to send
- **datatype** – Built-in (**MPI_INT**, **MPI_BYTE**, **MPI_DOUBLE**, ...) or your own
- **dest** – Destination MPI rank
- **tag** – Identifier for the data
- **comm** – MPI communicator (**MPI_COMM_WORLD** or your own)

Example

Send array of double values to rank+1

```
double sendDoubles[2];
double recvDoubles[2];

if (rank < RANK_MAX) {
    MPI_Send(sendDoubles, 2, MPI_DOUBLE, rank+1, 0,
             MPI_COMM_WORLD);
}
if (rank > 0) {
    MPI_Recv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0,
             MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
```

Example

- **MPI_Send is hard to predict**
 - After return from MPI_Send, you can reuse the data buffer
 - But you don't know if the data has been sent when MPI_Send returns
 - Small messages: MPI returns before data is received by destination
 - Large messages: MPI returns after data is received by destination
- **Can use MPI_Ssend to ensure message has been received by destination when function returns**
- **But, if MPI_Ssend works, MPI_Send should work and MPI_Send could yield higher performance**

Example

- **If MPI_Send does not return until data is received**
 - All ranks except N-1 begin a send
 - Only rank N-1 gets to MPI_Recv statement
 - Rank N-1 receives data and rank N-2 finishes send
 - Rank N-2 receives data and rank N-3 finishes send
 - This continues **sequentially!!!**
- **This code may not parallelize**

Example

- **Several solutions exist**
- **One solution is to use Isend/Irecv**
 - These use nonblocking calls
 - Data buffer cannot be used after Isend/Irecv return
 - *The data in the buffer isn't used yet*
 - Use MPI_Wait, Mpi_Waitall, MPI_Waitany to know when Isend/Irecv is done
 - Must have an MPI_Wait for each Isend/Irecv.
 - *Not having one creates a memory leak*
- **Best practice**
 - Post MPI_Irecv before MPI_Isend

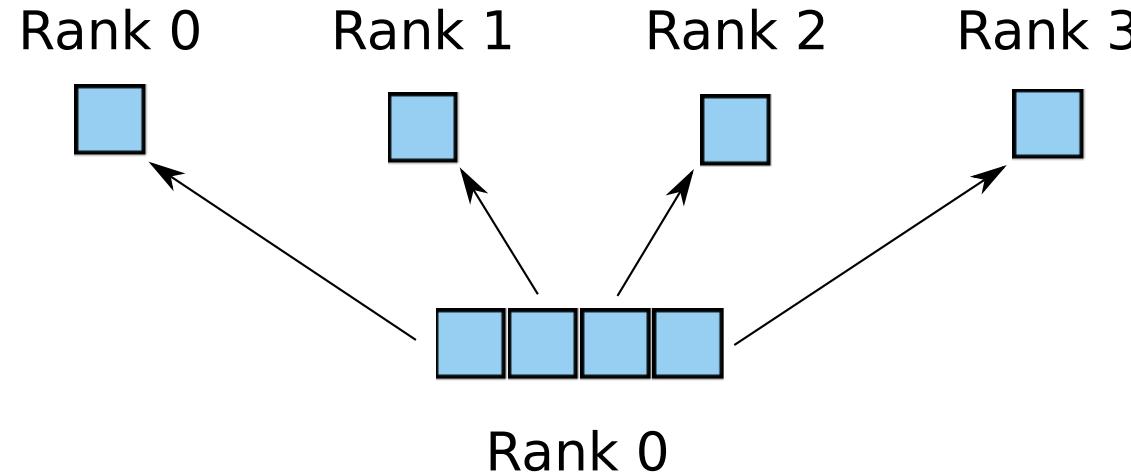
I send/I recv

```
int MPI_Isend(const void *buf, int count,  
              MPI_Datatype datatype, int dest,  
              int tag, MPI_Comm comm,  
              MPI_Request *request)  
  
int MPI_Irecv(void *buf, int count,  
              MPI_Datatype datatype, int source,  
              int tag, MPI_Comm comm,  
              MPI_Request *request)
```

- **request** – Used by **MPI_Wait**

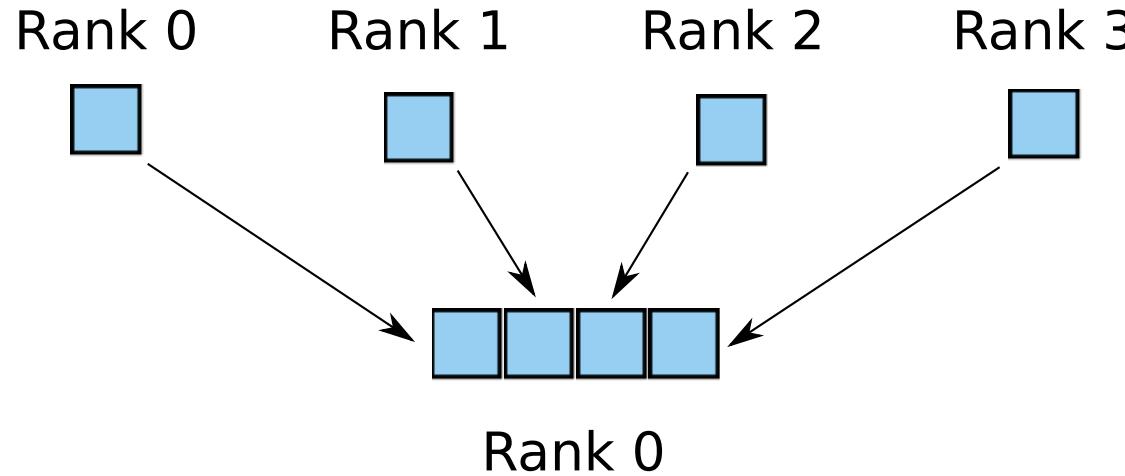
Example

Send array of double values to rank+1


```
double sendDoubles[2];
double recvDoubles[2];
MPI_Request requests[2] = {MPI_REQUEST_NULL,
                           MPI_REQUEST_NULL};
if (rank < RANK_MAX) {
    MPI_Isend(sendDoubles, 2, MPI_DOUBLE, rank+1, 0,
              MPI_COMM_WORLD, &requests[0]);
}
if (rank > 0) {
    MPI_Irecv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0,
              MPI_COMM_WORLD, &requests[1]);
}
MPI_Waitall(2, requests, MPI_STATUSES_IGNORE);
```

Broadcast and Collective Routines

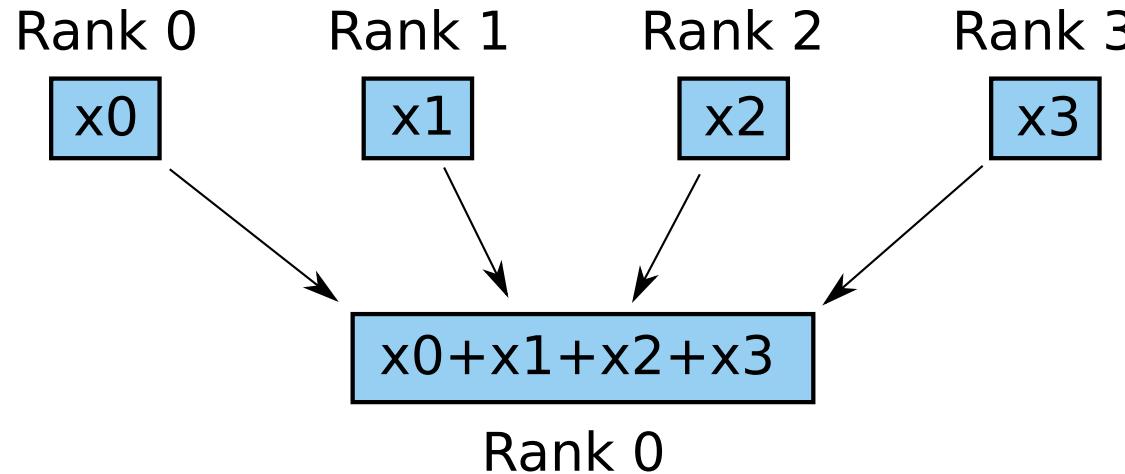
- These functions include all ranks in a communicator
- Simplest is **MPI_Barrier**
 - Make all ranks wait until they hit the barrier
 - Be careful not to put this in a branching statement (like an if statement)
 - All ranks in communicator must call this before code moves forward
 - Can be useful for debugging


MPI_Scatter

Elements in array go to different ranks
(Bcast: 1 element sent to all ranks)

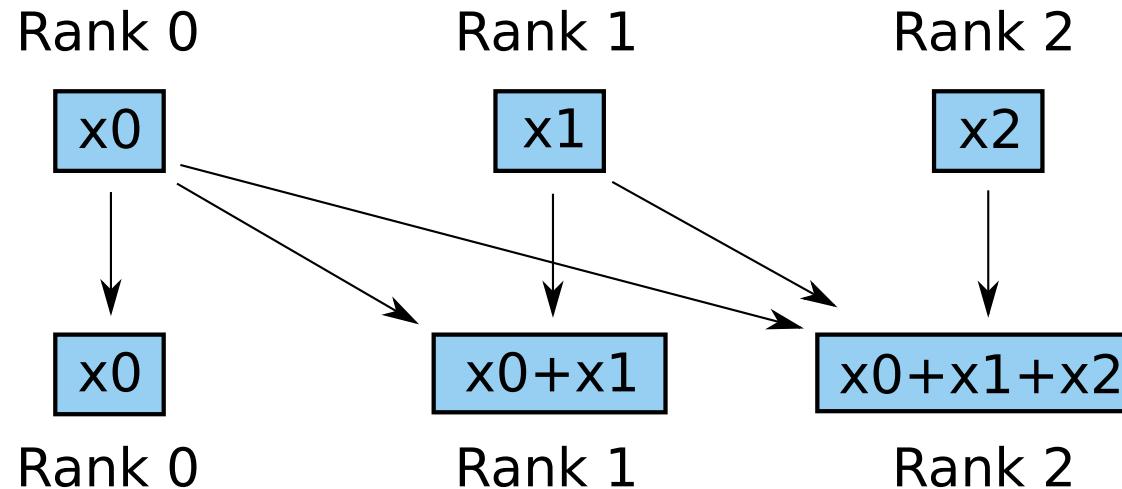
MPI_Gather

Element from each rank goes into one array
(Allgather: every rank gets the whole array)


MPI_Reduce

Binary operation of element sent to one rank

Built-in operations: max, min, sum, product, ...


Can define your own binary operation

(Allreduce: All ranks get answer)

MPI_Scan

Binary operation on elements from each rank

MPI_Init_thread

- **Use for threading with MPI (such as OpenMP, pthreads, ...)**
- **Four threading types**
 - MPI_THREAD_SINGLE – No threading
 - MPI_THREAD_FUNNELED – All MPI calls made by master thread
 - MPI_THREAD_SERIALIZED – Only one thread makes an MPI call at a time, but calls can come from different threads
 - MPI_THREAD_MULTIPLE – Different threads may call MPI routines at the same time
- **Best practice: create a communicator for each thread**

Error Handling

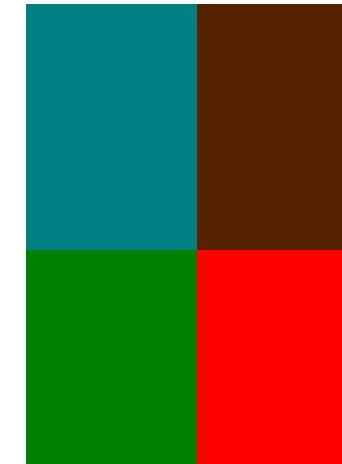
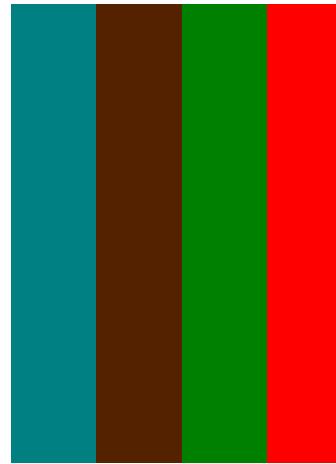
- In C: MPI functions return an error status
- In Fortran: MPI functions have an extra argument, ierr
- Should return MPI_Success every time

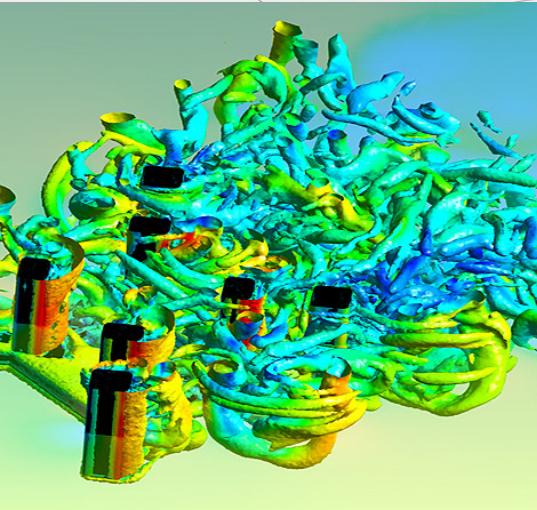
```
int mpiError = MPI_Send(...);
```

MPI 3 and One Sided Communication

- Original MPI requires all ranks involved in a communication to call a function
- MPI 3 standard allows ‘putting’ and ‘getting’ data in memory windows on other ranks
 - No corresponding MPI function call is necessary on the other rank
- For hardware supporting this paradigm, large scaling results can be better

Parallel IO



- **Three strategies**
 - Every rank writes its own file; rank 0 writes a master file
 - Ok for small parallelization
 - Bad for large parallelization
 - Use MPI-IO (or a parallel library) to write one file
 - Hybrid approach
 - Chunks of MPI ranks send data to 1 rank in the chunk
 - Each chunk writes its own file; rank 0 writes a master file


Resources

- **MPI Tutorial**
 - <http://mpitutorial.com/>
 - <https://computing.llnl.gov/tutorials/mpi/>
- **MPI IO overview from TACC**
 - <https://www.tacc.utexas.edu/documents/13601/900558/MPI-IO-Final.pdf>

How to parallelize a 2D Domain?

Delivering science and technology
to protect our nation
and promote world stability