
LA-UR-16-24311
Approved for public release; distribution is unlimited.

Title: Distributed Computing (MPI)

Author(s): Garrett, Charles Kristopher

Intended for: Parallel Summer Computing Research Internship lecture

Issued: 2016-06-17

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

NOTE: THIS IS
YOUR TITLE
SLIDE.

If you use the
Walk-in Slide, you
may replace the
gray LANL logo
on the Title Slide
with your
organization’s
logo and delete
the NNSA logo/
management
statement.

If you DO NOT
use one of the two
the Walk-in Slide
options, you
MUST keep the
LANL and NNSA
logos and
management
statement on this
Title Slide.

Los Alamos National Laboratory

Distributed Computing (MPI)

Kris Garrett

June 2016

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

 | 2

How MPI Works

Los Alamos National Laboratory

 | 3

How MPI Works

•  MPI = Message Passing Interface
•  Executable is run in multiple processes
•  Each process communicates with each other

•  Processes may be on the same computer
•  Processes may be on multiple nodes of a cluster
•  Multiple processes may be placed on a node to utilize multi-core

processors
•  C and Fortran library APIs given by the standard
•  Other 3rd party bindings exist (Python, C++, etc)
•  Will concentrate on C library bindings here

Los Alamos National Laboratory

 | 4

First Program

int main(int argc, char **argv) !
{ !
 int rank, size; !
 !
 MPI_Init(&argc, &argv); !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &size); !
 !
 printf(“%d of %d\n”, rank, size); !
 MPI_Finalize(); !
 return 0; !
} !

Output
1 of 4
3 of 4
0 of 4
2 of 4!

Los Alamos National Laboratory

 | 5

First Program

•  Wrapper is used to compile MPI application (OpenMPI)
•  mpic++ main.cpp

•  Wrapper is used to run application
•  mpirun -n 4 ./a.out
•  For this example, 4 copies of a.out are run
•  Each copy has an associated index called a rank

•  MPI uses the concept of a communicator
•  Default MPI_COMM_WORLD for all MPI ranks
•  Can create subsets of ranks

•  Useful for libraries

Los Alamos National Laboratory

 | 6

Point to Point Communication

•  MPI_Send and MPI_Recv used for communication between 2 ranks
•  Parameters include

•  Data to send (MPI_Send)
•  Buffer to copy received data (MPI_Recv)
•  Rank to send to or receive from
•  Communicator and integer tag

•  Both must match in a send/recv

Los Alamos National Laboratory

 | 7

MPI_Send

•  buf – Buffer of data to send
•  count – Number of items to send
•  datatype – Built-in (MPI_INT, MPI_BYTE, MPI_DOUBLE, ...) or your own
•  dest – Destination MPI rank
•  tag – Identifier for the data
•  comm – MPI communicator (MPI_COMM_WORLD or your own)

int MPI_Send(const void *buf, int count, !
 MPI_Datatype datatype, int dest, !
 int tag, MPI_Comm comm) !

Los Alamos National Laboratory

 | 8

Example
 Send array of double values to rank+1

double sendDoubles[2]; !
double recvDoubles[2]; !
!
if (rank < RANK_MAX) { !
 MPI_Send(sendDoubles, 2, MPI_DOUBLE, rank+1, 0, !
 MPI_COMM_WORLD); !
} !
if (rank > 0) { !
 MPI_Recv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0, !
 MPI_COMM_WORLD, MPI_STATUS_IGNORE); !
} !

Los Alamos National Laboratory

 | 9

Example

•  MPI_Send is hard to predict
•  After return from MPI_Send, you can reuse the data buffer
•  But you don’t know if the data has been sent when MPI_Send returns

•  Small messages: MPI returns before data is received by destination
•  Large messages: MPI returns after data is received by destination

•  Can use MPI_Ssend to ensure message has been received by
destination when function returns

•  But, if MPI_Ssend works, MPI_Send should work and MPI_Send could
yield higher performance

Los Alamos National Laboratory

 | 10

Example

•  If MPI_Send does not return until data is received
•  All ranks except N-1 begin a send
•  Only rank N-1 gets to MPI_Recv statement
•  Rank N-1 receives data and rank N-2 finishes send
•  Rank N-2 receives data and rank N-3 finishes send
•  This continues sequentially!!!

•  This code may not parallelize

Los Alamos National Laboratory

 | 11

Example
•  Several solutions exist
•  One solution is to use Isend/Irecv

•  These use nonblocking calls
•  Data buffer cannot be used after Isend/Irecv return

•  The data in the buffer isn’t used yet
•  Use MPI_Wait, Mpi_Waitall, MPI_Waitany to know when Isend/Irecv is

done
•  Must have an MPI_Wait for each Isend/Irecv.
•  Not having one creates a memory leak

•  Best practice
•  Post MPI_Irecv before MPI_Isend

Los Alamos National Laboratory

 | 12

Isend/Irecv

int MPI_Isend(const void *buf, int count, !
 MPI_Datatype datatype, int dest, !
 int tag, MPI_Comm comm, !
 MPI_Request *request) !
!
int MPI_Irecv(void *buf, int count, !
 MPI_Datatype datatype, int source, !
 int tag, MPI_Comm comm, !
 MPI_Request *request) !

•  request – Used by MPI_Wait

Los Alamos National Laboratory

 | 13

Example
 Send array of double values to rank+1

double sendDoubles[2]; !
double recvDoubles[2]; !
MPI_Request requests[2] = {MPI_REQUEST_NULL, !
 MPI_REQUEST_NULL}; !
if (rank < RANK_MAX) { !
 MPI_Isend(sendDoubles, 2, MPI_DOUBLE, rank+1, 0, !
 MPI_COMM_WORLD, &requests[0]); !
} !
if (rank > 0) { !
 MPI_Irecv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0, !
 MPI_COMM_WORLD, &requests[1]); !
} !
MPI_Waitall(2, requests, MPI_STATUSES_IGNORE); !

Los Alamos National Laboratory

 | 14

Broadcast and Collective Routines

•  These functions include all ranks in a communicator
•  Simplest is MPI_Barrier

•  Make all ranks wait until they hit the barrier
•  Be careful not to put this in a branching statement (like an if statement)
•  All ranks in communicator must call this before code moves forward
•  Can be useful for debugging

Los Alamos National Laboratory

 | 15

MPI_Scatter
Elements in array go to different ranks

(Bcast: 1 element sent to all ranks)

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

Los Alamos National Laboratory

 | 16

MPI_Gather
Element from each rank goes into one array
(Allgather: every rank gets the whole array)

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

Los Alamos National Laboratory

 | 17

MPI_Reduce
Binary operation of element sent to one rank

Built-in operations: max, min, sum, product, …
Can define your own binary operation

(Allreduce: All ranks get answer)

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

x0 x1 x2 x3

x0+x1+x2+x3

Los Alamos National Laboratory

 | 18

MPI_Scan
Binary operation on elements from each rank

x0 x1 x2

Rank 0

Rank 0

Rank 1

Rank 1

Rank 2

Rank 2

x0 x0+x1 x0+x1+x2

Los Alamos National Laboratory

 | 19

MPI_Init_thread

•  Use for threading with MPI (such as OpenMP, pthreads, ...)
•  Four threading types

•  MPI_THREAD_SINGLE – No threading
•  MPI_THREAD_FUNNELED – All MPI calls made by master thread
•  MPI_THREAD_SERIALIZED – Only one thread makes an MPI call at a

time, but calls can come from different threads
•  MPI_THREAD_MULTIPLE – Different threads may call MPI routines at

the same time
•  Best practice: create a communicator for each thread

Los Alamos National Laboratory

 | 20

Error Handling

•  In C: MPI functions return an error status
•  In Fortran: MPI functions have an extra argument, ierr
•  Should return MPI_Success every time

int mpiError = MPI_Send(...); !

Los Alamos National Laboratory

 | 21

MPI 3 and One Sided Communication

•  Original MPI requires all ranks involved in a communication to call a
function

•  MPI 3 standard allows ‘putting’ and ‘getting’ data in memory windows
on other ranks
•  No corresponding MPI function call is necessary on the other rank

•  For hardware supporting this paradigm, large scaling results can be
better

Los Alamos National Laboratory

 | 22

Parallel IO

•  Three strategies
•  Every rank writes its own file; rank 0 writes a master file

•  Ok for small parallelization
•  Bad for large parallelization

•  Use MPI-IO (or a parallel library) to write one file
•  Hybrid approach

•  Chunks of MPI ranks send data to 1 rank in the chunk
•  Each chunk writes its own file; rank 0 writes a master file

Los Alamos National Laboratory

 | 23

Resources

•  MPI Tutorial
•  http://mpitutorial.com/
•  https://computing.llnl.gov/tutorials/mpi/

•  MPI IO overview from TACC
•  https://www.tacc.utexas.edu/documents/13601/900558/MPI-IO-Final.pdf

Los Alamos National Laboratory

 | 24

How to parallelize a 2D Domain?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Delivering science and technology
to protect our nation

and promote world stability

NOTE: THIS IS
YOUR WALK-IN
SLIDE OPTION
#2. Instead of the
Title Slide, display
this slide on the
venue screen
while your
audience is
arriving.

This is not a title
slide.

Use only a high-
resolution
photograph.

