VA

.
s LonLuamos

LA-UR-16-24311

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

Distributed Computing (MPI)
Garrett, Charles Kristopher

Parallel Summer Computing Research Internship lecture

2016-06-17




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Los Alamos National Laboratory

Distributed Computing (MPI)

Kris Garrett

June 2016

Z
: ¥V Q@b
: | A >4
53 ' National Nuclear Security Administration
e W ST : Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Los Alamos National Laboratory

How MPI Works

AQ

“Diog Al
D101010101010 "

mpirun
o —~ o — o —
Q Q Q Q
S S < - Y S g{—r =
Q Q Q Q Q Q
Node O Node 1 Node 2

Cluster

.WNSEQ



How MPIl Works

MPI = Message Passing Interface

Executable is run in multiple processes

Each process communicates with each other

* Processes may be on the same computer

* Processes may be on multiple nodes of a cluster

« Multiple processes may be placed on a node to utilize multi-core
processors

C and Fortran library APIs given by the standard
Other 3 party bindings exist (Python, C++, etc)
Will concentrate on C library bindings here

.WNSE@



Los Alamos National Laboratory

First Program

int main(int argc, char sxxargv)

{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
Output
printf(“sd of %d\n”, rank, size); 1 of 4
MPI Finalize(); 3of4
return 0; 0of4
I3 2 of 4

.lsﬁﬁr\i@m



Los Alamos National Laboratory

First Program

 Wrapper is used to compile MPI application (OpenMPI)
* mpic++ main.cpp
 Wrapper is used to run application
* mpirun -n 4 ./a.out
» For this example, 4 copies of a.out are run
« Each copy has an associated index called a rank
 MPI uses the concept of a communicator
« Default MPI_COMM_WORLD for all MPI ranks
« Can create subsets of ranks
» Useful for libraries

.WNSE@



Los Alamos National Laboratory

Point to Point Communication

 MPI_Send and MPI_Recv used for communication between 2 ranks
« Parameters include
« Data to send (MPIl_Send)
« Buffer to copy received data (MP|_Recv)
« Rank to send to or receive from
« Communicator and integer tag
« Both must match in a send/recv

.lsﬁﬁr\i@m



Los Alamos National Laboratory

int MPI_Send(const void xbuf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

« buf — Buffer of data to send

« count — Number of items to send

- datatype — Built-in (MPI_INT, MPI_BYTE, MPI_DOUBLE, ...) or your own
» dest — Destination MPI rank

« tag — Identifier for the data

« comm — MPI communicator (MPI_COMM_WORLD or your own)

.WNSE@



Los Alamos National Laboratory

Example

Send array of double values to rank+1

double sendDoubles[2];
double recvDoubles[2];

if (rank < RANK_MAX) {
MPI_Send(sendDoubles, 2, MPI_DOUBLE, rank+1, 0,
MPI_COMM_WORLD);
}
if (rank > 0) {
MPI_Recv(recvDoubles, 2, MPI _DOUBLE, rank-1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

.lsﬁﬁr\i@m



Los Alamos National Laboratory

Example

 MPI_Send is hard to predict
 After return from MPI_Send, you can reuse the data buffer
« But you don’t know if the data has been sent when MPI_Send returns
« Small messages: MPI returns before data is received by destination
« Large messages: MPI returns after data is received by destination

« Can use MPIl_Ssend to ensure message has been received by
destination when function returns

« But, if MPl_Ssend works, MPl_Send should work and MPI_Send could
yield higher performance

.WNSE@



Los Alamos National Laboratory

Example

* If MPl_Send does not return until data is received

All ranks except N-1 begin a send

Only rank N-1 gets to MPI_Recyv statement

Rank N-1 receives data and rank N-2 finishes send

Rank N-2 receives data and rank N-3 finishes send
* This continues sequentially!!!

* This code may not parallelize

.lsﬁﬁr\i@m



Los Alamos National Laboratory

Example

« Several solutions exist
* One solution is to use Isend/lrecv
* These use nonblocking calls
» Data buffer cannot be used after Isend/Irecv return
» The data in the buffer isn’t used yet

« Use MPI_Wait, Mpi_Waitall, MPl_Waitany to know when Isend/Irecv is
done

* Must have an MPI_Wait for each Isend/Irecv.
* Not having one creates a memory leak
 Best practice
« Post MPI_Irecv before MPI _Isend

.WN@E@



Los Alamos National Laboratory

Isend/Ilrecv

int MPI _Isend(const void xbuf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm,
MPI_Request xrequest)

int MPI _Irecv(void xbuf, int count,
MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,
MPI_Request xrequest)

* request — Used by MPI_Wait

.lsﬁﬁr\i@m



Los Alamos National Laboratory

Example

Send array of double values to rank+1

double sendDoubles[2];
double recvDoubles[2];
MPI_Request requests[2] = {MPI_REQUEST_NULL,
MPI_REQUEST_NULL};
if (rank < RANK_MAX) {
MPI Isend(sendDoubles, 2, MPI _DOUBLE, rank+1, 0,
MPI_COMM_WORLD, &requests[@]);
}
if (rank > 0) {
MPI_Irecv(recvDoubles, 2, MPI_DOUBLE, rank-1, 0,
MPI_COMM_WORLD, &requests[1]);
¥
MPI_Waitall(2, requests, MPI_STATUSES_IGNORE);

.WNSE@



Los Alamos National Laboratory

Broadcast and Collective Routines

« These functions include all ranks in a communicator
« Simplest is MPIl_Barrier

« Make all ranks wait until they hit the barrier
» Be careful not to put this in a branching statement (like an if statement)

e All ranks in communicator must call this before code moves forward
« Can be useful for debugging

.lsﬁﬁf\i@m



Los Alamos National Laboratory

MPI_Scatter

Elements in array go to different ranks
(Bcast: 1 element sent to all ranks)

Rank O Rank 1 Rank 2 Rank 3

\}H{/

Rank O

.WNSEQ




Los Alamos National Laboratory

MPI_Gather

Element from each rank goes into one array
(Allgather: every rank gets the whole array)

Rank O Rank 1 Rank 2 Rank 3

\}II{

Rank O

.WNSEQ




Los Alamos National Laboratory

MPI_Reduce

Binary operation of element sent to one rank
Built-in operations: max, min, sum, product, ...
Can define your own binary operation
(Allreduce: All ranks get answer)

Rank O Rank 1 Rank 2 Rank 3
x0 X X2 X3

1
XO0+x1+x2+x3
Rank O

.WN@E@




Los Alamos National Laboratory

MPI_Scan

Binary operation on elements from each rank

Rank O Rank 1 Rank 2
x0 x1 X2
x0 x0+x1 X0+x1+x2
Rank O Rank 1 Rank 2

ISTD SNSEQC




MPI_Init_thread

» Use for threading with MPI (such as OpenMP, pthreads, ...)
* Four threading types
« MPI_THREAD_ SINGLE - No threading
« MPI_THREAD FUNNELED - All MPI calls made by master thread

« MPI_THREAD SERIALIZED — Only one thread makes an MPI call at a
time, but calls can come from different threads

« MPI_THREAD_ MULTIPLE - Different threads may call MPI routines at
the same time

» Best practice: create a communicator for each thread

.WNSE@



Los Alamos National Laboratory

Error Handling

* In C: MPI functions return an error status
* In Fortran: MPI functions have an extra argument, ierr
« Should return MPIl_Success every time

int mpiError = MPI_Send(...);

.lsﬁﬁf\i@m



Los Alamos National Laboratory

MPI 3 and One Sided Communication

« Original MPI requires all ranks involved in a communication to call a
function

- MPI 3 standard allows ‘putting’ and ‘getting’ data in memory windows
on other ranks

* No corresponding MPI function call is necessary on the other rank

* For hardware supporting this paradigm, large scaling results can be
better

.WNSE@



Parallel IO

* Three strategies

» Every rank writes its own file; rank O writes a master file
« Ok for small parallelization
« Bad for large parallelization

* Use MPI-IO (or a parallel library) to write one file

« Hybrid approach
* Chunks of MPI ranks send data to 1 rank in the chunk
« Each chunk writes its own file; rank O writes a master file

.lsﬁﬁf\i@m



Los Alamos National Laboratory

Resources

 MPI Tutorial
» http://mpitutorial.com/
» https://computing.linl.gov/tutorials/mpi/
 MPI IO overview from TACC
» https://www.tacc.utexas.edu/documents/13601/900558/MPI-IO-Final.pdf

.WN@E@



Los Alamos National Laboratory

How to parallelize a 2D Domain?

ISTD SNSEQC



e LOs Alamos

NATIONAL LABORATORY
EST.1943

Delivering science and technology
to protect our nation
and promote world stability



