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What is Monte Carlo?

Welcome to Los Alamos, the birthplace of “Monte Carlo” for
computational physics.

e Stanislaw Ulam, John von Neumann, and Nicholas Metropolis
are credited as the founders of modern Monte Carlo methods

e The name “Monte Carlo” was chosen in reference to the Monte
Carlo Casino in Monaco (purportedly a place where Ulam’s
uncle went to gamble)

e The central idea (for us) — to use computer-generated “random

numbers to determine expected values or estimate equation
solutions — has since spread to many fields
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What is Monte Carlo?

The first thoughts and attempts | made to practice [the Monte
Carlo Method] were suggested by a question which occurred
to me in 1946 as | was convalescing from an illness and
playing solitaires. The question was what are the chances
that a Canfield solitaire laid out with 52 cards will come out
successfully? After spending a lot of time trying to estimate
them by pure combinatorial calculations, | wondered whether
a more practical method than “abstract thinking” might not be
to lay it out say one hundred times and simply observe and
count the number of successful plays... Later [in 1946], |
described the idea to John von Neumann, and we began to
plan actual calculations.

— Stanislaw Ulam
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Definitions

You will need to know what a probability density function, or PDF is.
For a continuous random variable x € (—oo, 00) and scalars a < b,
an implicit definition to remember is:

b
Pr(a< x < b) :/ p(x) dx
a
You should always mentally associate p(x) with dx (integrated or
not). This will help you if you ever want to change variables — it is

not enough to substitute x for u without taking care of dx/du!
The PDF p(x) has the properties that it is non-negative and that

/_C:p(x)dx—t

Note that p(x) need not be less than 1.
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Definitions

The integrated version of a PDF is a cumulative distribution
function, or CDF (note that the D’s are different in PDF and CDF).

Pr(x <y)= / p(x

All CDFs must be non-decreasing and limit to a maximum value of
1.0.

We frequently use this fact to “normalize” a function in order to
convert it into a PDF from which we can sample.
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Definitions

PDFs can be arbitrarily complicated, but we can understand a lot
about them by describing them with a handful of scalar quantities.
We’ll consider two “moments” of PDFs in this talk (you can go
higher if you like),

The mean or expected value, 1. is the first moment of p(x)

u:/ xp(x) dx , or, for discrete, 1 =Y xip;
i

—00

This weighting is one way to tell you the “central tendency” of p(x).
The next is the square difference of the PDF from the mean, or the
variance, o2,

o2 — / (x — H)Zp(x) dx , or, for discrete, o2 = Z(Xi - M)zpi,

—00 ;

We use o2 because ¢ is the standard deviation.
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Definitions
If we could analytically compute those integrals, our job would be
easy. Very often, we are only concerned with x or E[f(x)] in

computational physics (e.g., the expected value of energy
deposited in some detector or a mesh cell). We use Monte Carlo to

try to estimate u by repeatedly sampling p(x) (even if we can’t write

p(x) explicitly!).
The sample mean of x for N random samples of p(x) is defined as

;N
m= Z X;
i=1
and sample variance as
;N
2 _ Y-
=57 iz;(x, m)2.

so that s is the sample standard deviation.
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Definitions

And, the last definition we will need is the variance of the sample
mean after N trials

2_‘72

O'm—N,

or o
Oom= —F=,

vN

which pithily tells you the main criticism of Monte Carlo — to obtain
an extra digit of accuracy, you must run 100X more samples. There
is a tremendous amount of research in building clever ways to
reduce o2 (this is called “variance reduction”).

Let’s try a simple example...
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Estimating =

To help “build intuition”, we’ll start with a well-used example:

e Let’s assume that we know the formula for a unit circle
(x2 + y2 = 1), and that we know that this circle inscribes the
area m, but we don’t know the value of .

e The idea is to randomly “throw darts” at a square that inscribes
the circle (presumably, we can easily calculate the area of the
square, but not the circle).

¢ We count the darts that land inside the circle by scoring the area
of the square.

e The darts that land outside the circle score zero
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Estimating =

Assuming we throw darts truly randomly, our probabilities are:
e Event 1: Land inside the circle with probability p; = 7, score 4.0

e Event 2: Land outside the circle with probability po =1 — 7,
score 0.0

By the definition of the mean, p,

p=4z+0(1-2)=n

and, by the definition of the variance, o2,

02:(4—7T)2%+(0—7r)2<1—%):7r(4—7r)%2.69

o~ 1.64
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Estimating =

An example with 1000 points
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Example Python Code

numpy as np

Ns = np.logspace(2.8, 7.8, num=6)
# Initialize RNG for repeatable results
my_rng = np.random.RandomState(1234)

for N in Ns:
#Each loop provides a single estimate of PI
tally = 9.9 # This is what we score into
tally2 = 8.8 # This is the square of what we score into
for i in range(int(N)):
= 2.@%my_rng.uniform()-1.0
= 2.@#my_rng.uniform(}-1.8

X
Yy
r2 = XX + y¥xy
if (r2 < 1.8): # If the point is inside the circle...
tally += 4.8
tally2 += 16.0

my_pi = tally / N;

pi_err = np.sqrt((tally2/N - my_pismy_pi)/{(N-1)))

print "The value of pi for ", N, " estimates is ", my_pi,
print “+/- ", pi_err, ", off by ", my_pi - np.pi

UNCLASSIFIED
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Example Python Code Output

The value of pi for 100.0 estimates is 3.32 +/-
0.151010067227 , off by 0.17840734641

The value of pi for 1000.0 estimates is 3.036 +/-
0.0541260901381 , off by -0.10559265359

The value of pi for 10000.0 estimates is 3.1192 +/-
0.0165760855651 , off by -0.0223926535898

The value of pi for 100000.0 estimates is 3.1454 +/-
0.00518467522691 , off by 0.00380734641021

The value of pi for 1000000.0 estimates is 3.141584 +/-
0.00164219020449 , off by -8.65358979318e-06

The value of pi for 10000000.0 estimates is 3.1406656 +/-
0.000519507676446 , off by -0.000927053589793
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Why does this even work?
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Well, it almost always works

We are going to assume two things about the probability
distributions we intend to use for Monte Carlo:

1. They are “lID”: Independent and Identically Distributed
2. They have finite first and second moments (at least)

There are exceptions to these rules, but be very careful if you intend
to use Monte Carlo when these do not apply!
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Why does this even work?
The Law of Large Numbers
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The Law of Large Numbers

There are many of these (Strong, Weak, Uniform, Borel’s...), but the
idea in words is that, as you increase the number of samples of a
PDF to estimate a mean, it converges (in some sense) to the true
mean. The “weak” law is stated as:

lim Pr(jmy—u|l>¢€) =0,

N—o0

where my is meant to indicate the sample mean for N samples.
Essentially, this gives us the foundation to estimate p with m.

However, it does not tell us how quickly my approaches .
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The Law of Large Numbers
Proportion of heads from fair coin tosses
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http:

//demonstrations.wolfram.com/SimulatedCoinTossingExperimentsAndTheLaw0OfLargeNumbers/
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Why does this even work?

The Central Limit Theorem
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The Central Limit Theorem

| think this is one of the most beautiful results of probability theory.
You have hopefully heard of the standard normal distribution, which
is itself a PDF,

0(2) = —=e 12,
that has mean 0 and standard deviation 1. It is also called the

Gaussian, or the “bell curve” due to its shape, and it is worth
memorizing a few of its characteristics.
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The Central Limit Theorem

99.7% of the data are within

3 standard deviations of the mean >
95% within
2 standard deviations
68% within
< 1standard —>
deviation
n—30 u—20 u—ao mn utao u+ 20 u+ 30

The Standard Normal Distribution

By Dan Kernler - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36506025
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The Central Limit Theorem

In words, the Central Limit Theorem essentially states that the
distribution of the sample means of any PDF limits to a Normal
distribution regardless of the underlying shape of the PDF itself.
The Lindeberg-Levy version is written as

lim Pr (m(mN )< z) — ®(2/o),

N—oo

where ¢ is the CDF for ¢. There are also many versions and proofs
of the CLT.
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The Central Limit Theorem

As an example of the Central Limit Theorem, we consider
estimating means of a very non-normal distribution, taken from:

http://www.statisticalengineering.com/central_limit_theorem_(parabola).html

The example shows how estimating the mean from increasingly
larger numbers of samples from a parabolic distribution. The first
figure depicts the parabolic PDF. The next figure depicts the result
of repeatedly computing the sample mean of two samples and
binning the distributions.

The subsequent figures depict the results of binning 3, 4, 8, 16, and
32 samples (these should animate).
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The Central Limit Theorem

ol

|
1] 0.5 1

%
MonMormal Distribution of X

http://www.statisticalengineering.com/central_limit_theorem_(parabola).html
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Bounding our Errors

e Because of this fact, you can make precise statements about
your estimates of the sample mean. For instance, we saw that
myq7 for = was 3.1406656.

e The standard deviation of the sample mean for this many
samples is 7/vi07 ~ 5.19 x 1074,

e Then our estimate was 1.70p,,, off the true mean. This happens
with about 5% frequency.

e However, only 0.1% of the time should we expect an answer
greater than = + 3o, or 3.1431 ... What should you do if your
code estimates this as the answer?

Knowledge like this can come in handy for software testing.
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How to Sample
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“Random” Numbers

In practice, we don'’t really use random numbers, we use
pseudorandom numbers from a random number generator (RNG)

e These are deterministic sequences of numbers that pass certain
tests for randomness

e Most commonly, they are streams of uniform random variates
(URVSs), &;, distributed on [0, 1], &1, &2, &3, ...

¢ Eventually, they repeat — this is the period of the generator
e A seedvalue is provided to reproducibly initialize the generator

You should be aware of the period of your RNG and its statistical
integrity

*Very Strange Things* can happen if you use a “bad” RNG or
otherwise find that the &; are correlated.
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How to Sample
Inverse Transform Sampling
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Inverting a CDF

The most straightforward way to choose an x from a PDF p(x) on a
computer (if you can do it) is inverse transform sampling. The
approach is

e Geta URY, ¢, from a random number generator
« Compute the value of x such that £ = P(x) = [*__ p(x
In other words, compute the inverse x = P 1(¢)

Roughly, this works because the URVs ¢ are distributed uniformly
on [0, 1], which is the range of the CDF:

e= [fae= [ ptxron=pw

Unfortunately, this only works if P(x) is invertible, and it can be
expensive.
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Inverting a CDF

As an example, consider p(x) = 2x for x € [0,1]." Then

P(x) = [, 2x' dx’ = x, so we can sample p(x) by solving ¢ = x2,
or x = /€. In this example, ¢ is 0.49, so x is chosen to be 0.7

1.0

0.8

0.6

Pz)

¢

0.4

0.2

0‘%,0 0.2 0.4 0.6 0.8 1.0
X

'This PDF comes up when sampling angle cosines for isotropically incident
radiation according to Lambert’s cosine law
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Outline

How to Sample

Rejection
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Sampling with Rejection

Rejection sampling is the method of choice whenever p(x) is
sufficiently complicated and can be bounded above by some f(x)
that is simpler to sample from and has the same support as p(x).
The approach is to

1. Calculate a ¢, and sample an x from f(x) (such as by inverting it)

2. Compute the ratio p(x)/f(x), which, by construction, is between 0
and 1

3. Pull another ¢ from the generator

4. Accept x if £ < pP(¥)/f(x), otherwise return to step 1.

A geometric example would be repurposing the = example to
produce points that uniformly sample the unit circle.
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Sampling with Rejection

o A feature of rejection is that there is no need to normalize the
function.

e The efficiency of a rejection method is the number of accepted
Xx’s over the total number of samples drawn.

e The choice of f(x) is extremely important, as discarded x’s are
“wasted” computation

Consider sampling from e~** sinh(x) ...

0.0 02 04 06 08 1.0
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Sampling with Rejection
Clearly, we can bound e~** sinh(x) with 0.5. To use rejection, we
sample x uniformly on [0, 1] and accept it with probability

e’ sinh(x)/2. However, the shaded area represents the proportion of
samples that we will reject, lowering the efficiency.
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Sampling with Rejection

With a little thought, we can find a better bounding function that is
easier to integrate and invert, 0.5sin(37x/2). That is, we choose x
by sampling the sine function and accepting with probability

26— sinh(X)/sin(37x/2).

06

05
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Outline

An Example from Particle Transport
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Sampling a distance to collision
Assume that at location s we have a density of photons given by
N(s). We then consider the incremental removal due to collisions
along a flight path at a location s + §s. Using the definition of
opacity, o, this is

N(s + ds) = N(s) — acdsN(s) + O(62) .

That is, to first order, the amount removed in a differential distance
0s is the probability of interaction per distance, times the distance,
times the original density. Rearranging and allowing s — 0,

dN
5 = —oN(s).

This ordinary differential equation has the solution
N(s) = Ce 7%,

where C is an unspecified constant.
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Sampling a distance to collision

We next normalize this solution on [0, o) (the entire domain of a
particle’s potential flight without collisions) to construct the PDF for
the probability that a particle will travel a distance s before
experiencing a collision in ds about s,

N(s) =ce™”°.

We next invert the CDF:

13 dc
/ d¢’ = / ce ?%ds,
0 0

5: _e_gdc+1a

d :—In(;—é),
%:—?a'
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Final Thoughts

Some topics that we didn’t cover:

e Probability mixing (for additive terms in a PDF, choose a term
first)

e Stratified sampling and quasi-random numbers

e Importance Sampling (scoring with weights) by using
J 12BN g(x) dx

e Metropolis-Hastings (an iterative, advanced rejection technique)

Thanks to Dr. Ronald Pevey for teaching me Monte Carlo. For more
on particle transport Monte Carlo, see
http://web.utk.edu/~rpevey/NE582/0outline.htm
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