
Enabling Tractable Exploration of the Performance
of Adaptive Mesh Refinement

Courtenay T. Vaughan and Richard F. Barrett
Sandia National Laboratories

Albuquerque, NM, USA
Email: ctvaugh@sandia.gov, rfbarre@sandia.gov

Abstract—A broad range of physical phenomena in science
and engineering can be explored using finite difference and
volume based application codes. Incorporating Adaptive Mesh
Refinement (AMR) into these codes focuses attention on the
most critical parts of a simulation, enabling increased numerical
accuracy of the solution while limiting memory consumption.
However, adaptivity comes at the cost of increased runtime
complexity, which is particularly challenging on emerging and
expected future architectures. In order to explore the design
space offered by new computing environments, we have devel-
oped a proxy application called MiniAMR. MiniAMR exposes
many of the important issues that will significantly impact the
performance potential of full application codes. In this paper, we
describe MiniAMR, demonstrate what is designed to represent
in a full application code, and illustrate how it can be used to
exploit the future high performance computing architectures. To
ensure an accurate understanding of what MiniAMR is intended
to represent, we compare it with CTH, a shock hydrodynamics
code in heavy use throughout several computational science and
engineering communities.

Index Terms—High performance computing; scientific appli-
cations; parallel architectures; performance evaluation.

I. INTRODUCTION

There is a long history of finite difference and finite volume
algorithms being used to study various physical phenomena
in a breadth of scientific and engineering domains. When
the algorithm is applied to a static grid, the mesh resolution
needs to be fine enough everywhere in order to capture the
phenomena being studied anywhere on the domain. As illus-
trated in Figure 1, incorporating Adaptive Mesh Refinement

Fig. 1. Adapting mesh as wave front passes through a domain

(AMR [7] [6]) focuses attention on the most critical parts of
a simulation, enabling increased numerical accuracy of the
solution while reducing memory requirements. However, this
adaptivity comes at the cost of increased complexity, and
runtime behavior becomes strongly tied to the particular prob-
lem being examined. This is especially challenging given the

increased architectural complexities of emerging and expected
future architectures.

In order to explore the performance design space of AMR-
based applications, we have developed a proxy application
called miniAMR. MiniAMR is a standalone code designed
for the exploration of some important performance issues
prevalent in finite difference or volume codes that use AMR.
It is free of constraints of any specific physical behavior,
with refinement driven by an object moving through the
domain, and is therefore not intended to be representative
of the computations found in a complex application. This
provides a simple means of observing and experimenting
with interprocess communication strategies, load balancing
schemes, and refinement strategies1.

In this paper, we describe miniAMR, demonstrate what is
designed to represent in a full application code, and illustrate
how it can be used to exploit the future high performance
computing architectures. To ensure an accurate understanding
of what miniAMR is intended to represent, we compare it with
CTH, a shock hydrodynamics code in heavy use throughout
several computational science and engineering communities.

A. Related work

AMR was first introduced by Berger et.al. [7] [6]. Several
libraries, including BoxLib2, Chombo [8], SAMRAI [12], and
others, allow code developers to develop an AMR application.

MiniAMR is available in the Mantevo project3 suite
of miniapps. Mantevo includes a related miniapp, called
miniGhost[4]. Operating on a static grid, miniGhost is primar-
ily designed for explorations of the halo exchange [1]. With re-
finement turned off, miniAMR is essentially miniGhost. How-
ever, the programming models are meaningfully different (the
choice of data structures and therefore the computation pat-
terns), and thus using a static mesh with miniAMR introduces
unnecessary complexity. CloverLeaf is a Mantevo miniapp that
includes meaningful physics, solves the compressible Euler
equations on a Cartesian grid, using an explicit, second-order

1The computation is a simple difference stencil, and is therefore not
intended to be representative of the computations found in a complex
application. That said, it can provide a tractable means for exploring the
computational syntax and semantics of different programming models, mech-
anisms, and languages.

2https://ccse.lbl.gov/BoxLib/
3http://mantevo.org

SAND2015-4044C



Fig. 2. CTH shaped charge simulation. Time progresses left to right.

accurate method. CleverLeaf adds AMR to CloverLeaf using
the SAMRAI toolkit.

MiniAMR is simpler than benchmarks, in keeping with the
Mantevo goal of providing a tractable means for modifying the
code, including swapping in new communication, refinement,
and load balancing strategies. It would also be relatively
straightforward to add more meaningful computations by a
researcher looking at more specific physics capabilities.

II. CTH

To ensure meaningful representation of the behavior of
miniAMR, we compared it with a full, complex application
program. CTH is a multi-material, large deformation, strong
shock wave, solid mechanics code developed at Sandia Na-
tional Laboratories [11]. CTH has models for multi-phase,
elastic viscoplastic, porous and explosive materials, using
second-order accurate numerical methods to reduce dispersion
and dissipation and produce accurate, efficient results.

CTH can be run in flat mesh mode, where each processor
has one rectilinear block of the problem, which can have
tens of thousands of cells. In this mode, each processor com-
municates with its six neighbors. This is the communication
pattern that is modeled by miniGhost, previously validated as
described in [1]. For that, we use the shaped charge problem,
illustrated in Figure 2, which involves four materials, inducing
the boundary exchange of 40 variables. Several times each
time step boundary information is aggregated and exchanged
with up to six neighbors in the grid of processors. There are
89 collective operations (mostly MPI_Allreduce on 8-byte
data) during each time step [14].

CTH can also be run in AMR mode, where each processor
has a number of smaller blocks, each of which has a few
hundreds of cells. As the calculation progresses, the number
and placement of these blocks in the calculation can change.
Each of these blocks has to communicate with its neighboring
blocks in the mesh, so each processor ends up doing commu-
nication within the processor as well as to some number of
neighboring processors, which can change as the simulation
progresses. Following a description of miniAMR, comparisons
are made with CTH.

III. MINIAMR

The general structure of the miniAMR code is shown in
Figure 3. Each processor begins with one block per processor,
applying refinement to get to the desired resolution. (In a full
application, the inner for statement would be replaced with
the physics.

for some number of timesteps do
for some number of stages do

communicate ghost values between blocks
perform stencil calculation on variables
if stage for checksums then

perform checksum calculations
compare checksum values

end if
end for
if time for refinement then

refine mesh
end if

end for

Fig. 3. miniAMR code flow

Computation is performed on a block by block basis,
with each block containing the necessary ghost cells. The
computation is a seven point stencil, where the result for a
cell is the average of its value with the six values that are
in the cells whose index differs by one in each of the three
directions.

Reflective boundary conditions are applied to the physical
boundary of the global domain. Thus a constant sum across
each variable is required for correctness, periodically checked
during execution.

CTH, as well as other application codes, uses several
different stencils, including portions where results for a cell
depend only on the variables present in that cell, portions
where the result depends on the value in that cell and all of its
26 neighbors, and several cases in between. For miniAMR, this
27 point stencil will not work correctly with blocks of different
levels of refinement since the values of the corner points in
the halo can not be determined so that the averaging conserves
the sum of the values in the cells. That said, miniAMR
computation is similar to CTH in that it computes on all of the
real cells in a block and therefore accesses all of the memory
associated with the blocks, which is arguably more important,
with regard to execution time, than the actual computation.

Refinement is driven by geometric shapes moving across
the domain. As these shapes move through the mesh and
change size, their boundary or volume can be used to define
which blocks are refined. These can be used to model physical
structures in the problem, such as modeling a shock wave with
an expanding sphere.

The blocks are stored in an array of structures, in which each
block is represented by a structure that has its number, level of
refinement, information about its parents, information about its
neighboring blocks, position, a pointer to the array of variables
that are associated with that block, and other information about
the block. Inactive blocks are given a negative number, and are
free to be reused. When a block is refined, its information
is recorded into a parent block, which stores some of the
information about the block as well as information about the
block’s children.



Communication is done between all blocks which share a
face or portion of a face. Blocks that are adjacent to each other
will differ by at most one level of refinement. Adjacent blocks
on the same processor share data using a memory copy. Blocks
on different processors exchange data using MPI point-to-
point communication. When two blocks with different levels
of refinement are communicating, the value for a ghost cell
in the block that has the lower level of refinement is averaged
from the corresponding eight cells in the block with the higher
level of refinement. Likewise, the value for a ghost cell in the
block that has the higher level of refinement are copied from
the corresponding cell in the block that has the lower level of
refinement.

The data structure for each block contains information on
the neighbors for each of its faces. On-processor communi-
cation is accomplished by sweeping across the blocks and
exchanging ghost information with the blocks that are on the
same processor. For interprocessor communication, each pro-
cessor maintains a list for each communication direction, with
a list of processors and list of faces associated with blocks to
communicate. Lists are sorted so that each processor constructs
a message of ghost values for block faces that it sends and the
other processor can decipher since its communication list is
sorted in the same order.

Communication is performed in three stages, one for each
direction of the Cartesian coordinates. For the 27-point stencil,
which runs correctly on a uniform grid, this removes the need
for direct communication with adjacent diagonal processors,
by bringing that data along in the coordinated three-way
process. Each processor begins by going through its communi-
cation list in each direction, posting required receives, and then
packing and sending its data to neighboring processors. Then
the communication between blocks on the same processor
is performed, allowing messages to work their way through
the machine, enabling communication cost hiding. During this
phase, faces on the boundary apply reflective boundary con-
ditions. Then each processor waits for outstanding messages,
with faces unpacked and placed in the appropriate blocks are
receives are completed.

When a block is refined, it is decomposed into 8 blocks
which are half of the size of the original block in each
dimension, but with the same number of cells as the original
block. This results in new cells that are half of the size in each
dimension than the original cells. Communication information
for the parent block is modified and transferred to the 8
child blocks. On-processor communication updates child and
neighbor blocks. Off-processor communication updates the
communication list by deleting the parent’s communication
entry and adding ones for each of the child blocks which
have a face that is a subset of the parent block’s face. Before
the blocks are refined, information is exchanged through the
communication list of blocks being refined. Thus when a block
is being refined, its neighbors on other processors can also
update their communication list to account for the refinement.
The process is similar when blocks are coarsened. When a
block is refined, a parent block is created which holds the

processor location of the child blocks, so when those children
are coarsened, the block can be put back together. Once all
child blocks belonging to a parent block have been coarsened,
all of those blocks will be moved back to the processor on
which the parent block resides. Once that is done, the child
blocks are consolidated back into the parent block. When the
child blocks are moved back, the communication lists are
updated and consolidated.

Next, the workload is re-balanced using Recursive Coor-
dinate Bisection (RCB) [5]. For each step, a direction and a
number of divisions is chosen and the blocks are sorted in that
direction and divided into equal sized sets. Divisions are based
on the prime factorization of the total number of processors
and the number of blocks in each direction of the original
mesh. Each set corresponds to a group of processors such that
a processor maintains its region throughout the calculation.
The sorting is done by binning the centers of the blocks in the
current set in the chosen direction so that each processor can
determine the division points. The number of positions that
the centers and corners of the blocks can be located at is

b ∗ (2(r+1)) + 1,

for b blocks in the original mesh in each direction and r
maximum levels of refinement.

If there are multiple blocks at the binning position chosen
for the cut, then those blocks are binned again in one of
the other directions, and if there is a tie for the cut, then
the blocks that tied are binned in the third direction, where
there is guaranteed to be no ties and a cut can be made. Each
block in this process is represented by a smaller data structure,
a “dot” which contains the block number, the processor it
started on, and the integer coordinates of the center of the
block, which is then passed to a processor in the division that
is chosen. This process is repeated with each of the sets of
processors, until the dots eventually get to the processors that
their corresponding blocks will be assigned to. The processor
number where the dots end up is then communicated back to
the processor where the corresponding block is located, and
the blocks are be packed and sent to their new processors.

Once it is known which blocks are being moved, this
information is sent to all of the neighboring blocks using the
list for communicating ghost face values. This information
is used to delete information from the communication list
on each processor for the blocks being moved from that
processor and to modify the communication list for those
blocks that are being moved from one neighboring processor to
another neighboring processor. Once the blocks are moved, the
communication links with the blocks on its new processor are
established, and its neighbors are added to the new processor’s
communication list.

IV. EXPERIMENTS

We compared the performance of miniAMR with CTH
using two distinct problem definitions. The first is a sphere
hitting a block of material at an oblique angle producing a
shock wave. The deforming sphere, the crater it leaves, and



the shock wave in the block are all regions of the problem
that are refined by AMR. The second problem, illustrated in
Figure 4, consists of four spheres moving in the mesh such that

Fig. 4. CTH visualization of four spheres problem

they will not collide The dark blue spheres are moving in the
positive X direction, while the light gray spheres are moving
in the negative X direction. The boundary of the spheres is
the portion of the mesh that is refined. Since both of these
problems have two materials, there are 32 variables in the
boundary exchange and 62 reductions per time step.

MiniAMR has been tested on several computing platforms.
Work presented here is performed on Cielo [10], an instan-
tiation of a Cray XE6, which gives us a very large number
of processors. Cielo is composed of 8,944 compute nodes,
connected using a Cray custom interconnect named Gemini,
and a light-weight kernel (LWK) operating system called
Compute Node Linux. Each node consists of two oct-core
AMD Opteron Magny-Cours processors, for a total of 143,104
cores. Each core has a dedicated 64 kByte L1 data cache, a 64
kByte L1 instruction cache, and a 512 kByte L2 data cache,
and the cores within a NUMA node share a 6 MByte L3 cache
(of which 5 MBytes are user available). Each Magny-Cours
processor is divided into two memory regions, called NUMA
nodes, each consisting of four processor cores and 8 GBytes
of DDR3 1333 MHz memory. Thus each compute node
consists of 16 processor cores, 32 GBytes of memory, evenly
divided among four NUMA nodes, which are connected using
HyperTransport version 3. The links between NUMA nodes
run at 6.4 GigaTransfers per second (GT/s). For convenience
of access, we also used a surrogate for Cielo called Muzia.
Muzia serves as a small scale testbed for Cielo, and therefore
it configuration and environment mirrors Cielo.

Sphere/Block Four spheres
CTH miniAMR CTH miniAMR

Calculation 27.3 35.4 29.5 30.1
Communication 61.5 64.0 67.3 69.6
Refinement 11.2 0.6 3.2 0.3

TABLE I
TIME PROPORTIONS ON 128 CORES. ALL VALUES PERCENTAGE (%)

AMR presents challenges with regard to weak scaling
behavior due to the dynamic nature of problem execution. In
particular, the workload per processor will change based on the
number of processors employed, and therefore care must be
taken in analyzing profiled performance. Scaling performance
of the “sphere hitting a block” problem is shown in Figure 5(a).
The same problem description was used for each of the runs
and the number of starting blocks was changed to match the
number of processors the problem was run on. This results
in the average number of blocks ranging from 248 on 24

processors to 30 on 217 processors4. The times are scaled by
the average number of blocks per processor.

There are several things to note with this graph. The
overall time grows moderately up to about 32K processors
and then starts growing faster. The time for the calculation
portion of the code is fairly constant over the range, which
is expected since the time is scaled by the average number
of blocks per processor and the same number of calculations
are performed on each block. Communication time gradually
rises as the number of processors increases, with the bigger
increases attributable to refinement and summation across the
grid (gridsum). This is also expected since the number of
blocks per processor decreases as the number of processors
rises.

To further illustrate, we ran miniAMR using an AMR ver-
sion of the CTH shaped charge problem, which was visualized
above in Figure 2. Scaling results are shown in Figure 5(b).
In this simulation, the average number of blocks per processor
ranges from 1009 on 16 processors to 415 on 64K processors.
As a result, the problem scales better with the increase in time
not being as dramatic as the run scales to larger numbers of
processors. Also note that the time for the gridsum operation
and refinement do not rise as much as with the sphere and
block problem.

The sphere hitting a block problem that we used for the
first scaling study matches a CTH problem. The time spent in
communication dominates in miniAMR as well as for CTH.
Table I shows the breakdown in time for both codes when run
on 128 Muzia cores. Communication is simply the boundary
communication and the collective operations are included in
the calculate portion, since they are interspersed in the code in
CTH. For both problems, CTH and miniAMR spend about the
same percentage of the time in the calculate and communicate
phases of the codes. Using more time for communication while

4From here on, we abbreviate the processor count by the thousands, using
“K” notation and assuming base 2. Thus for example, 128K means 217 =
131,072.



(a) Sphere hitting block (b) Shaped charge

Fig. 5. miniAMR scaling

using less memory for the refined portion of the simulation is
one of the tradeoffs of using AMR.

The other thing to note is that CTH spends significantly
more time in the refinement stage. Part of this difference is
that CTH performs several load balancing steps during this
work; we continue to explore alternative reasons for this.

The graphs shown in Figure 5 show miniAMR scaling is
similar for both problems, up to a large number of processors.
We have also looked at the CTH percentages for a few other
numbers of processors and found that those are also consistent.

In the four spheres problem, the spheres do not interact or
deform, and therefore we expect (and see that) mesh dynamics
are similar in CTH and miniAMR. We also ran both codes to
a similar end point and found that CTH had an average of
685.8 blocks per processor over the coarse of the simulation,
while miniAMR had an average of 669.3 blocks per processor,
a 2.5% difference. This is reasonably close given that the
process of determining which blocks to refine or coarsen
differs between the codes. Further, with CTH, we averaged
18.4 messages per processor per communication stage with
an average message size of 503 kilobytes (KBytes). With
miniAMR, we averaged 17.3 messages per processor and had
an average message size of 593 KBytes. Again, these numbers
are in reasonable agreement.

Point-to-point communication patterns for CTH and mini-
AMR are somewhat different, as illustrated in Figure 6 by
the communication matrices for the boundary exchange of the
“four spheres” problem. The processor in row i communicates
with the processor in row j, with green representing a small
number of messages and red representing a larger number of
messages. Empty positions in the matrix represent no commu-
nication between those processors. Since the communication
pattern for both codes changes as the simulation progresses,
we chose a time in each calculation such that both codes have
progressed to a similar spot in the simulation. Point-to-point

communication patterns for the “sphere hits block problem”
are illustrated in Figure 7.

Further investigation showed that three factors contribute
to the differences, each relating to the implementation of the
RCB algorithm in the load balancing phase. In CTH, when
there are several blocks that lie along the cut between groups
of blocks that will be assigned to one processor set or another,
the blocks are effectively assigned to one set or the other in a
random fashion. In miniAMR, those blocks are assigned based
on their position in the cutting plane so that blocks that are
nearby are more likely to be assigned to the same set.

The second difference is that CTH only allows a certain
percentage of blocks to be moved during any refinement
step in order to limit the size of the messages that are
being sent. This results in random blocks not being moved
to the proper processor and has the effect of a processor
communicating with more other processors. The simulation
time in the above figure was chosen so that this effect was
minimized, or else the matrix would have more random entries
in it. The third difference is that CTH allows the cut direction
for each group of blocks to be determined when the cut is
being made, while miniAMR determines the order of cuts
once at the beginning. This is what causes the miniAMR
matrix to have more structure with the diagonals that are
offset from the main diagonal. We implemented those changes
into miniAMR and the results are shown in Figure 8. These
communication matrices have closer structure to those from
CTH. The differences can be explained in that the two codes
are not making all of the same choices for each of the cuts or
for which block is assigned to each processor in the simulation.
For the four spheres problem, these changes cause the refine
time in miniAMR to nearly triple since the number of blocks
that are moved between processors is multiplied by a factor
of over 8. The number of communication partners increases
to 20.4 messages per processor per communication stage and



(a) CTH (b) miniAMR

Fig. 6. Four spheres communication matrices

the average message size increases to 622 KBytes. As a result,
the communication time also increases by 14%.

The communication matrices for the refinement portion of
the codes for the sphere hits block problem, as illustrated
in Figure 9, show a large difference between the two codes.
Each matrix in the figure has the communication matrix for
the boundary exchange, shown above, embedded into it since
those neighbors have to be communicated with in order to
pass information about which blocks are being refined. This
information is necessary to ensure that when those blocks
are refined, the neighbor lists on neighboring blocks can be
updated correctly. If this is not done, then the mesh can
become misconnected and the calculation will not be able
to proceed. The rest of the structure in the matrices include
messages to perform the load balancing, messages to exchange
blocks between processors, and message to and from parent

blocks. The diagonal lines in the miniAMR communication
matrix is communication for load balancing where one pro-
cessor in a group of processors is communicating with one
processor in the other group of processors. The messages to
and from parent blocks are necessary to allow blocks to be
recombined when the region no longer needs to be refined.
Since CTH load balances the parent blocks, these blocks are
evenly distributed throughout the mesh, and this explains the
nearly all to all communication pattern in the CTH matrix.
There are not a lot of messages to and from the parent block,
so the all to all pattern is in green with a fewer number of
messages. In contrast, in miniAMR, the parent blocks stay
on the processor where they are created and that tends to be
closer to the processors where the child blocks are distributed
to. For this simulation, CTH uses 34 times as many messages
and communicates 56 times as much information on average

(a) CTH (b) miniAMR

Fig. 7. Sphere hits block communication matrices



(a) Four spheres (b) Sphere hits block

Fig. 8. Modified communication matrices miniAMR

for the refinement steps than miniAMR. This partially explains
the above statistics that show that CTH spends more time
performing refinement.

In order to compare the calculations in the two codes, we
profiled portions of both codes using PAPI counters. This was
run with the sphere hits block problem. For CTH, we profiled
one of the convection routines. There are three convection
routines and together they use between 20% and 25% of the
compute time for the problems that we are running. These
routines are fairly representative of the computations in CTH
and all three of them have similar profiles. For miniAMR,
we used the stencil calculation. What we find is that although
CTH has better cache utilization, with a 99.1% L1 and 57.6%
L2 cache hit rate, than miniAMR, with a 98.8% L1 and
9.8% L2 cache hit rate, CTH achieves a lower floating point
operation rate, 22.4 MFLOPs, than miniAMR, 475.4 MFLOPs.

Another difference is that CTH routines do several conditional
calculations in the innermost loop resulting in several branches
per cell, while miniAMR is a simple stencil calculation with
no conditionals.

V. SUMMARY AND FUTURE PLANS

MiniAMR, a new miniapp in the Mantevo suite, enables
tractable exploration of some important performance issues
in Adaptive Mesh Refinement finite difference and volume
codes. We have compared miniAMR to CTH in several regards
and found that it does model the communication portion of
CTH in a meaningful ways. We have also shown places where
the two codes differ, such as the communication patterns for
the refinement operation and differences in the profiling of
the calculation portion of the simulations. The latter is not
unexpected since we were not trying to simulate any of the

(a) CTH (b) miniAMR

Fig. 9. Communication matrices for refinement



physics from CTH in the calculation in miniAMR.
Additionally, some design choices in miniAMR are in-

tended to illustrate the value of alternative strategies, for
consideration by CTH developers and others. Often application
design choices are out-dated or were made for convenience,
and miniAMR can be used to drive modifications to the
application.

That said, miniapps are not intended to perfectly represent
a particular application, but are instead designed to enable
tractable exploration of relevant performance behavior [2]. It
is imperative that the user understand what those differences
are, and how the miniapp may be used to effectively manage
performance in their code. Toward that end, we are encouraged
that differences between CTH and miniAMR were relatively
easy to understand and attribute. Further, as with any well
designed miniapp, the modular nature of miniAMR allows a
user to easily modify and extend its capabilities.

Future plans include implementation of an MPI-OpenMP
hybrid scheme (in progress), a task parallel implementation
(the basis of which is described using miniGhost in [3][13],
and incorporation of other load balancing schemes, such as
those found in Zoltan [9].

ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

REFERENCES

[1] R.F. Barrett, P.S. Crozier, M.A. Heroux, P.T. Lin, T.G. Trucano, and
C.T. Vaughan. Assessing the Validity of the Role of Mini-Applications
in Predicting Key Performance Characteristics of Scientific and Engi-
neering Applications. Journal of Parallel and Distributed Computing,
75, 2015.

[2] R.F. Barrett, S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A.
Heroux, J.P. Luitjens, and D. Roweth. Navigating An Evolutionary
Fast Path to Exascale. In Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS12), 2012.

[3] R.F. Barrett, D.T. Stark, C.T. Vaughan, R.E. Grant, S.L. Olivier, and
K.T. Pedretti. Toward an evolutionary task parallel integrated mpi + x
programming model. In Proceedings of the Workshop on Programming
Models and Applications for Multicores and Manycores, PMAM ’15,
2015.

[4] R.F. Barrett, C.T. Vaughan, and M.A. Heroux. MiniGhost: A Miniapp for
Exploring Boundary Exchange Strategies Using Stencil Computations
in Scientific Parallel Computing; Version 1.0. Technical Report 2012-
10431, Sandia National Laboratories, 2012.

[5] M.J. Berger and S.H. Bokhari. A Partitioning Strategy for Nonuniform
Problems on Multiprocessors. IEEE Trans. Comput., 36:570–580, May
1987.

[6] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of computational Physics, 82(1):64–84, 1989.

[7] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic par-
tial differential equations. Journal of Computational Physics, 53(3):484
– 512, 1984.

[8] P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen, N. D. Keen, T. J.
Ligocki, D. F. Martin, P. W. Mccorquodale, D. Modiano, P. O. Schwartz,
T. D. Sternberg, and B. Van Straalen. Chombo software package for
AMR applications design document. Technical report, 2003.

[9] K. Devine, B. Hendrickson, E. Boman, M. St.John, and C. Vaughan.
Zoltan: A dynamic load-balancing library for parallel applications; user’s
guide. Technical Report SAND99-1377, Sandia National Laboratories,
1999.

[10] D.W. Doerfler, M. Rajan, C. Nuss, C. Wright, and T. Spelce.
Application-Driven Acceptance of Cielo, an XE6 Petascale Capability
Platform. In Proc. 53rd Cray User Group Meeting, 2011.

[11] E.S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I.
Kerley, J. M. Mcglaun, S. V. Petney, S. A. Silling, P. A. Taylor, and
L. Yarrington. CTH: A Software Family for Multi-Dimensional Shock
Physics Analysis. In Proceedings, 19th International Symposium on
Shock Waves, pages 377–382, 1993.

[12] R.D Hornung and S.R. Kohn. Managing application complexity in the
SAMRAI object-oriented framework. Concurrency and Computation:
Practice and Experience, 14(5):347–368, 2002.

[13] D.T. Stark, R.F. Barrett, R.E. Grant, S.L. Olivier, K.T. Pedretti, and C.T.
Vaughan. Early experiences co-scheduling work and communication
tasks for hybrid mpi+x applications. In Proceedings of the 2014
Workshop on Exascale MPI, ExaMPI ’14, pages 9–19, Piscataway, NJ,
USA, 2014. IEEE Press.

[14] C.T. Vaughan and S.P. Goudy. Analysis of an Application on Red Storm.
In Proc. 48th Cray User Group Meeting, 2006.


