
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP 

What	
  is	
  the	
  DHARMA	
  project?	
  

Janine	
  Benne(	
  (PI),	
  Jeremiah	
  Wilke	
  (Chief	
  Architect)	
  	
  
Ken	
  Franko,	
  Hemanth	
  Kolla,	
  Paul	
  Lin,	
  Greg	
  
Sjaardema,	
  Nicole	
  Sla(engren,	
  Keita	
  Teranishi	
  
	
  
MAWG	
  MeeHng	
  
2/5/2015	
  

SAND2015-4043PE



To	
  start,	
  the	
  DHARMA	
  project	
  is	
  not	
  LOST	
  ;)	
  



Before	
  the	
  “What”	
  a	
  bit	
  about	
  the	
  “Why”	
  
	
  

We	
  expect	
  a	
  lot	
  from	
  our	
  programming	
  models	
  
§  Programmability,	
  expressiveness	
  

§  Data	
  parallelism:	
  Same	
  computaHon	
  on	
  different	
  data	
  
§  Task	
  parallelism:	
  Different	
  computaHons	
  on	
  same	
  or	
  different	
  data	
  

§  Performance,	
  scalability	
  
§  Appropriate	
  level	
  of	
  fault-­‐tolerance	
  
§  Ability	
  to	
  debug/trace/analyze	
  
§  Portability	
  

§  AbstracHons	
  separate	
  code	
  specificaHon	
  from	
  	
  
	
  	
  	
  	
  	
  opHmizaHon	
  for	
  different	
  architectures	
  

§  Future-­‐proof	
  
§  How	
  much	
  of	
  the	
  applicaHon	
  code	
  needs	
  to	
  be	
  	
  
	
  	
  	
  	
  	
  rewri(en	
  when	
  moving	
  to	
  new	
  architectures?	
  

3	
  



Performance	
  and	
  programmability	
  are	
  achieved	
  by	
  
targeJng	
  an	
  underlying	
  abstract	
  machine	
  model	
  

4	
  

p p p…	
  
m	
  

Machine	
  model:	
  PRAM/SMP	
  

Programming	
  model:	
  threads	
  

Machine	
  model:	
  	
  
Bulk	
  Synchronous	
  Model	
  

Programming	
  model:	
  MPI	
  	
  

pp p p…	
   p p p…	
   p p …	
  …	
  m	
   m	
  m	
  

Machine	
  model:	
  Hybrid	
  Candidate	
  Type	
  Architecture	
  (CTA)	
  

Programming	
  model:	
  Hybrid	
  Bulk	
  Synchronous	
  MPI	
  +	
  X	
  	
  

m
p

m
p

m
p

…	
  
network	
  

network	
  



Is	
  hybrid	
  bulk	
  synchronous	
  MPI+X	
  future	
  proof?	
  

5	
  

Programmability	
   Performance	
  
Appropriate	
  level	
  of	
  fault	
  tolerance	
   Ability	
  to	
  debug/trace/analyze	
  
Portability	
   Future	
  Proof	
  

p p p…	
  
m	
  

Machine	
  model:	
  PRAM/SMP	
  

Programming	
  model:	
  threads	
  

Machine	
  model:	
  	
  
Bulk	
  Synchronous	
  Model	
  

Programming	
  model:	
  MPI	
  	
  

pp p p…	
   p p p…	
   p p …	
  …	
  m	
   m	
  m	
  

Machine	
  model:	
  Hybrid	
  Candidate	
  Type	
  Architecture	
  (CTA)	
  

Programming	
  model:	
  Hybrid	
  Bulk	
  Synchronous	
  MPI	
  +	
  X	
  	
  

m
p

m
p

m
p

…	
  
network	
  

network	
  



Consider	
  the	
  abstract	
  machine	
  model	
  of	
  an	
  
exascale	
  node	
  

6	
  

Image	
  courtesy	
  of	
  www.cal-­‐design.org	
  	
  

Overarching	
  abstract	
  machine	
  	
  
model	
  of	
  an	
  exascale	
  node	
  



This	
  new	
  abstract	
  machine	
  model	
  introduces	
  
significant	
  complexiJes	
  	
  

7	
  

Challenges	
  
§  Increases	
  in	
  concurrency	
  

§  Deep	
  memory	
  hierarchies	
  

§  Increased	
  fail-­‐stop	
  errors	
  	
  

§  Performance	
  heterogeneity	
  	
  
§  Accelerators	
  
§  Thermal	
  thro(ling	
  
§  General	
  system	
  noise	
  
§  Responses	
  to	
  transient	
  

failures	
  

Image	
  courtesy	
  of	
  www.cal-­‐design.org	
  	
  

Overarching	
  abstract	
  machine	
  	
  
model	
  of	
  an	
  exascale	
  node	
  



Bulk	
  synchronous	
  MPI+X	
  does	
  not	
  address	
  all	
  the	
  
challenges	
  posed	
  by	
  the	
  exascale	
  machine	
  model	
  

8	
  

Challenges	
  
§  Increases	
  in	
  concurrency	
  

§  Deep	
  memory	
  hierarchies	
  

§  Increased	
  fail-­‐stop	
  errors	
  	
  

§  Performance	
  heterogeneity	
  	
  
§  Accelerators	
  
§  Thermal	
  thro(ling	
  
§  General	
  system	
  noise	
  
§  Responses	
  to	
  transient	
  

failures	
  

§  Complexity	
  of	
  applicaHon	
  code	
  
increases	
  with	
  proposed	
  soluHons	
  

§  Over-­‐decomposiHon	
  on	
  node	
  can	
  
help	
  but	
  does	
  not	
  solve	
  the	
  problem	
  

§  Algorithmic	
  research	
  required	
  



Asynchronous	
  many-­‐task	
  (AMT)	
  programming	
  
models	
  show	
  promise	
  against	
  exascale	
  challenges	
  

§  RunHme	
  systems	
  show	
  promise	
  at	
  
sustaining	
  performance	
  despite	
  node-­‐
degradaHon	
  and	
  failure	
  

§  Data	
  flow	
  programming	
  model	
  
§  Tasks	
  are	
  nodes	
  in	
  graph	
  
§  Data	
  dependencies	
  are	
  edges	
  in	
  graph	
  

§  Facilitate	
  expression	
  of	
  task-­‐	
  and	
  data-­‐
parallelism	
  

§  AcHve	
  area	
  of	
  research	
  
§  Charm++,	
  DAGuE,	
  DHARMA,	
  HPX,	
  Legion,	
  

OCR,	
  STAPL,	
  Uintah,	
  …	
  

	
  
9	
  

Bulk	
  synchronous	
  +	
  node-­‐level	
  AM
T	
  

HolisJc	
  AM
T	
  

Images	
  courtesy	
  of	
  Jack	
  Dongarra	
  



DHARMA	
  project:	
  Distributed	
  asyncHronous	
  
AdapJve	
  Resilient	
  Management	
  of	
  ApplicaJons	
  	
  

§  Project	
  Mission:	
  Assess	
  &	
  address	
  fundamental	
  challenges	
  
imposed	
  by	
  the	
  need	
  for	
  performant,	
  portable,	
  scalable,	
  fault-­‐
tolerant	
  programming	
  models	
  at	
  extreme-­‐scale	
  

§  Assess	
  rich	
  feature	
  sets/usability/performance	
  of	
  exisHng	
  AMT	
  
runHmes	
  in	
  the	
  context	
  of	
  ASC	
  workloads	
  

§  Research	
  in	
  programmability,	
  dynamic	
  load-­‐balancing,	
  and	
  fault-­‐
tolerance	
  of	
  AMT	
  runHmes	
  

	
  

10	
  

DHARMA	
  is	
  a	
  fundamental	
  Hindu	
  concept	
  referring	
  to	
  	
  
•  the	
  order	
  and	
  custom	
  which	
  make	
  life	
  and	
  a	
  universe	
  possible	
  
•  the	
  behaviors	
  appropriate	
  to	
  the	
  maintenance	
  of	
  that	
  order	
  
	
  
The	
  classical	
  Sanskrit	
  noun	
  DHARMA	
  derives	
  from	
  dhr	
  
•  meaning	
  to	
  hold,	
  maintain,	
  keep	
  

	
  
	
  

FY15	
  
GOALS	
  

	
  
	
  
	
  



DHARMA	
  project:	
  Distributed	
  asyncHronous	
  
AdapJve	
  Resilient	
  Management	
  of	
  ApplicaJons	
  	
  

§  Project	
  Mission:	
  Assess	
  &	
  address	
  fundamental	
  challenges	
  
imposed	
  by	
  the	
  need	
  for	
  performant,	
  portable,	
  scalable,	
  fault-­‐
tolerant	
  programming	
  models	
  at	
  extreme-­‐scale	
  

§  Assess	
  rich	
  feature	
  sets/usability/performance	
  of	
  exisHng	
  AMT	
  
runHmes	
  in	
  the	
  context	
  of	
  ASC	
  workloads	
  

§  Research	
  in	
  programmability,	
  dynamic	
  load-­‐balancing,	
  and	
  fault-­‐
tolerance	
  of	
  AMT	
  runHmes	
  

	
  

11	
  

DHARMA	
  is	
  a	
  fundamental	
  Hindu	
  concept	
  referring	
  to	
  	
  
•  the	
  order	
  and	
  custom	
  which	
  make	
  life	
  and	
  a	
  universe	
  possible	
  
•  the	
  behaviors	
  appropriate	
  to	
  the	
  maintenance	
  of	
  that	
  order	
  
	
  
The	
  classical	
  Sanskrit	
  noun	
  DHARMA	
  derives	
  from	
  dhr	
  
•  meaning	
  to	
  hold,	
  maintain,	
  keep	
  

	
  
Level	
  2	
  	
  

	
  

Level	
  2	
  &	
  	
  
DHARMA	
  
runJme	
  



ASC	
  ATDM	
  Level	
  2	
  milestone	
  descripJon	
  

§  Overarching	
  goal:	
  Provide	
  guidance	
  to	
  the	
  code	
  development	
  
road	
  map	
  for	
  ATDM	
  in	
  the	
  context	
  of	
  AMT,	
  based	
  on	
  in-­‐depth	
  
exploraHon	
  using	
  realisHc	
  proxies	
  of	
  ASC	
  codes	
  	
  

	
  
§  Key	
  deliverables:	
  

§  ImplementaHons	
  of	
  one	
  or	
  mini-­‐apps	
  in	
  three	
  or	
  more	
  AMT	
  runHmes	
  
§  Analysis	
  of	
  the	
  performance,	
  programmability,	
  and	
  mutability	
  of	
  the	
  

AMT	
  runHmes	
  	
  
§  An	
  analysis	
  of	
  the	
  interoperability	
  of	
  the	
  runHmes	
  
§  A	
  report	
  to	
  inform	
  the	
  code	
  development	
  road	
  map	
  guiding	
  the	
  Sandia	
  

ASC	
  code	
  strategy	
  for	
  next	
  generaHon	
  plalorms	
  in	
  the	
  context	
  of	
  
alternaHve	
  programming	
  models	
  

	
  
12	
  



Level	
  2	
  technical	
  roadmap:	
  programmability	
  

§  Does	
  this	
  programming	
  model	
  and	
  RTS	
  support	
  the	
  natural	
  
expression	
  and	
  execuHon	
  of	
  the	
  ASC	
  applicaHons	
  of	
  interest	
  
§  Implement	
  miniapps	
  in	
  different	
  RTS	
  

§  To	
  start	
  miniAero	
  in	
  Charm++,	
  Legion,	
  Uintah	
  

§  QualitaHve	
  quesHons	
  for	
  applicaHon	
  developers	
  
§  Rate	
  abstracHons,	
  APIs	
  	
  

§  QuanHtaHve	
  data	
  	
  
§  Size	
  of	
  code	
  	
  
§  Length	
  of	
  Hme	
  to	
  code/opHmize	
  
§  Amount	
  of	
  code	
  reuse	
  from	
  bulk-­‐synchronous	
  baseline	
  implementaHon	
  

13	
  



Level	
  2	
  technical	
  roadmap:	
  programmability	
  

§  Does	
  this	
  programming	
  model	
  and	
  RTS	
  support	
  the	
  natural	
  
expression	
  and	
  execuHon	
  of	
  the	
  ASC	
  applicaHons	
  of	
  interest	
  
§  Implement	
  miniapps	
  in	
  different	
  RTS	
  

§  To	
  start	
  miniAero	
  in	
  Charm++,	
  Legion,	
  Uintah	
  

§  QualitaHve	
  quesHons	
  for	
  applicaHon	
  developers	
  
§  Rate	
  abstracHons,	
  APIs	
  	
  

§  QuanHtaHve	
  data	
  	
  
§  Size	
  of	
  code	
  	
  
§  Length	
  of	
  Hme	
  to	
  code/opHmize	
  
§  Amount	
  of	
  code	
  reuse	
  from	
  bulk-­‐synchronous	
  baseline	
  implementaHon	
  

§  Where	
  we	
  would	
  like	
  your	
  help:	
  
§  Exploring	
  more	
  applicaHons!	
  
§  Characterizing	
  the	
  ASC	
  workload	
  

14	
  



Level	
  2	
  technical	
  roadmap:	
  performance	
  

§  How	
  long	
  did	
  it	
  take	
  to	
  opHmize	
  the	
  mini	
  app	
  code	
  for	
  performance	
  and	
  what	
  were	
  the	
  
performance	
  gains?	
  

§  What	
  are	
  the	
  scaling	
  properHes	
  of	
  the	
  mini	
  app	
  in	
  this	
  RTS	
  before	
  and	
  aoer	
  
performance	
  opHmizaHon?	
  

§  How	
  do	
  the	
  scaling	
  properHes	
  and	
  the	
  runHme	
  of	
  the	
  mini-­‐app	
  compare	
  with	
  the	
  bulk-­‐
synchronous	
  implementaHon?	
  

§  What	
  are	
  the	
  scaling	
  properHes	
  of	
  the	
  RTS	
  itself?	
  
§  How	
  performance	
  portable	
  is	
  the	
  RTS	
  for	
  ATSx-­‐scale	
  plalorm	
  architectures?	
  In	
  other	
  

words,	
  how	
  shielded	
  are	
  the	
  physics	
  developers	
  from	
  changes	
  in	
  system	
  architectures?	
  	
  	
  
§  How	
  does	
  the	
  scaling	
  of	
  the	
  mini	
  app	
  in	
  this	
  RTS	
  change	
  with	
  task	
  granularity	
  and	
  

different	
  levels	
  of	
  over-­‐decomposiHon?	
  
§  How	
  does	
  this	
  RTS	
  provide	
  support	
  for	
  dynamic	
  load	
  balancing?	
  
§  Can	
  the	
  applicaHon	
  scienHst	
  directly	
  control	
  load	
  balancing	
  and/or	
  provide	
  load-­‐

balancing	
  hints	
  (e.g.,	
  physics/domain	
  specific	
  knowledge)	
  to	
  the	
  RTS?	
  	
  
§  How	
  well	
  does	
  the	
  RTS	
  support	
  fault	
  containment	
  and	
  recovery?	
  
§  How	
  does	
  this	
  RTS	
  facilitate	
  code	
  coupling	
  (e.g.	
  in	
  situ	
  analysis	
  and	
  visualizaHon,	
  mulH-­‐

physics?	
  

15	
  



Level	
  2	
  technical	
  roadmap:	
  performance	
  

§  Planned	
  experiments:	
  
§  Scaling	
  studies	
  
§  Work-­‐granularity	
  studies	
  	
  

§  Data:	
  over-­‐decomposiHon	
  levels	
  	
  
§  Task:	
  granularity	
  (how	
  much	
  code	
  is	
  in	
  the	
  task)	
  

§  Load	
  balancing	
  studies	
  
§  System-­‐induced	
  imbalance	
  
§  ApplicaHon-­‐induced	
  imbalance	
  

	
  

16	
  



Level	
  2	
  technical	
  roadmap:	
  performance	
  

§  Planned	
  experiments:	
  
§  Scaling	
  studies	
  
§  Work-­‐granularity	
  studies	
  	
  

§  Data:	
  over-­‐decomposiHon	
  levels	
  	
  
§  Task:	
  granularity	
  (how	
  much	
  code	
  is	
  in	
  the	
  task)	
  

§  Load	
  balancing	
  studies	
  
§  System-­‐induced	
  imbalance	
  
§  ApplicaHon-­‐induced	
  imbalance	
  

§  Where	
  we	
  would	
  like	
  your	
  help:	
  
§  ExperimenHng	
  with	
  addiHonal	
  applicaHons	
  implemented	
  in	
  the	
  RTS	
  
§  How	
  does	
  the	
  RTS	
  perform	
  from	
  a	
  power	
  and/or	
  energy	
  perspecHve?	
  
§  What	
  is	
  the	
  RTS	
  impact	
  on	
  network	
  behavior/saturaHon?	
  

17	
  



L2	
  technical	
  roadmap:	
  mutability	
  

§  How	
  easy	
  would	
  it	
  be	
  to	
  adopt	
  this	
  code	
  base	
  and	
  make	
  the	
  
changes	
  necessary	
  to	
  suit	
  ASC	
  needs?	
  	
  
§  IdenHfy	
  key	
  design	
  decisions	
  &	
  associated	
  impacts	
  
§  Assess	
  interoperability	
  with	
  other	
  models/languages	
  
§  Assess	
  reusability/modularity	
  of	
  RTS	
  components	
  
§  Assess	
  what	
  a	
  partnership	
  strategy	
  might	
  look	
  like	
  
§  Describe	
  state	
  of	
  tool	
  chain	
  (compiler,	
  debugger,	
  performance	
  analysis)	
  

18	
  



L2	
  technical	
  roadmap:	
  mutability	
  

§  How	
  easy	
  would	
  it	
  be	
  to	
  adopt	
  this	
  code	
  base	
  and	
  make	
  the	
  
changes	
  necessary	
  to	
  suit	
  ASC	
  needs?	
  	
  
§  IdenHfy	
  key	
  design	
  decisions	
  &	
  associated	
  impacts	
  
§  Assess	
  interoperability	
  with	
  other	
  models/languages	
  
§  Assess	
  reusability/modularity	
  of	
  RTS	
  components	
  
§  Assess	
  what	
  a	
  partnership	
  strategy	
  might	
  look	
  like	
  
§  Describe	
  state	
  of	
  tool	
  chain	
  (compiler,	
  debugger,	
  performance	
  analysis)	
  

§  Where	
  we	
  would	
  like	
  your	
  help:	
  
§  Again,	
  answer	
  these	
  quesHons	
  from	
  the	
  perspecHve	
  of	
  addiHonal	
  

applicaHons!	
  
§  IdenHfy	
  integraHon	
  path	
  forward	
  for	
  RTS	
  +	
  node-­‐level	
  libraries	
  (Kokkos,	
  

Qthreads,	
  …)	
  
	
   19	
  



L2	
  milestone	
  implementaJon	
  plan	
  

§  We	
  considered	
  many	
  runHmes	
  over	
  the	
  summer	
  of	
  FY14	
  
§  Charm++,	
  Legion,	
  Uintah,	
  STAPL,	
  HPX,	
  OCR,	
  Swio/T	
  

§  We	
  se(led	
  on	
  Charm++,	
  Legion,	
  Uintah	
  as	
  our	
  top	
  three	
  for	
  the	
  L2	
  
§  Demonstrated	
  science	
  applicaHons	
  at	
  scale	
  
§  Maturity	
  of	
  runHme	
  
§  Three	
  very	
  different	
  implementaHons,	
  APIs,	
  sets	
  of	
  abstracHons	
  
§  Accessibility	
  of	
  team	
  

§  Coding	
  Bootcamps	
  
§  November	
  10-­‐12	
  @	
  U.	
  Utah	
  (Uintah)	
  

§  Dec	
  4-­‐5	
  @	
  Stanford	
  (Legion)	
  

§  March	
  9-­‐12	
  @	
  SNL	
  CA	
  (Charm++)	
  

§  Aim	
  to	
  be	
  done	
  with	
  iniHal	
  implementaHons	
  by	
  end	
  of	
  April	
  

§  OpHmizaHon/performance	
  analysis/experiments	
  April-­‐July	
  

20	
  



L2	
  milestone	
  status	
  

§  Uintah	
  	
  
§  IniHal	
  implementaHon	
  of	
  

miniAero	
  nearly	
  complete	
  

§  Legion	
  
§  Mesh	
  generaHon	
  making	
  

progress	
  

§  Charm++	
  
§  IniHal	
  lecture	
  online	
  
§  Bootcamp	
  in	
  March	
  
§  Start	
  coding	
  miniAero	
  at	
  

bootcamp	
  

21	
  

Uintah	
  iniHal	
  scaling	
  results	
  	
  



DHARMA	
  project:	
  Distributed	
  asyncHronous	
  
AdapJve	
  Resilient	
  Management	
  of	
  ApplicaJons	
  	
  

§  Project	
  Mission:	
  Assess	
  &	
  address	
  fundamental	
  challenges	
  
imposed	
  by	
  the	
  need	
  for	
  performant,	
  portable,	
  scalable,	
  fault-­‐
tolerant	
  programming	
  models	
  at	
  extreme-­‐scale	
  

§  Assess	
  rich	
  feature	
  sets/usability/performance	
  of	
  exisHng	
  AMT	
  
runHmes	
  in	
  the	
  context	
  of	
  ASC	
  workloads	
  

§  Research	
  in	
  programmability,	
  dynamic	
  load-­‐balancing,	
  and	
  fault-­‐
tolerance	
  of	
  AMT	
  runHmes	
  

	
  

22	
  

DHARMA	
  is	
  a	
  fundamental	
  Hindu	
  concept	
  referring	
  to	
  	
  
•  the	
  order	
  and	
  custom	
  which	
  make	
  life	
  and	
  a	
  universe	
  possible	
  
•  the	
  behaviors	
  appropriate	
  to	
  the	
  maintenance	
  of	
  that	
  order	
  
	
  
The	
  classical	
  Sanskrit	
  noun	
  DHARMA	
  derives	
  from	
  dhr	
  
•  meaning	
  to	
  hold,	
  maintain,	
  keep	
  

	
  
Level	
  2	
  	
  

	
  

Level	
  2	
  &	
  	
  
DHARMA	
  
runJme	
  



What	
  makes	
  support	
  of	
  fault	
  tolerance	
  in	
  an	
  AMT	
  
runJme	
  challenging?	
  

Bulk-­‐synchronous	
  approach	
  is	
  socialism	
  
Task	
  over-­‐decomposiHon	
  is	
  anarchy	
  

23	
  

Bulk-­‐synchronous	
   AMT	
  

Everybody	
  gets	
  a	
  fair	
  share	
  of	
  work	
   Everybody	
  takes	
  as	
  much	
  work	
  as	
  
they	
  can	
  do	
  

Data	
  dependencies	
  appear	
  in	
  
regular,	
  well-­‐defined	
  locaHons	
  

Data	
  dependencies	
  can	
  appear	
  
anywhere	
  

CollecHves/synchronizaHon	
  signal	
  
WHEN	
  dependencies	
  are	
  available	
  

Data	
  dependencies	
  can	
  appear	
  
anyHme	
  

When	
  my	
  work	
  is	
  done,	
  my	
  work	
  is	
  
done	
  

TerminaHon	
  detecHon	
  is	
  a	
  
challenging	
  problem	
  

Everyone	
  agrees	
  at	
  beginning/end	
  of	
  
iteraHon	
  on	
  global	
  state	
  

Everyone	
  constantly	
  agreeing	
  on	
  
global	
  state	
  



We	
  have	
  a	
  distributed,	
  resilient	
  database	
  consistency	
  problem	
  
	
  

§  Group	
  independent	
  tasks	
  into	
  collecHons	
  
§  Agree	
  at	
  beginning	
  of	
  collecHon	
  that	
  all	
  tasks	
  are	
  created,	
  scheduled	
  
§  Agree	
  at	
  end	
  of	
  collecHon	
  that	
  there	
  are	
  no	
  tasks	
  leo	
  to	
  run	
  
§  Agree	
  at	
  end	
  of	
  collecHon	
  that	
  all	
  tasks	
  expected	
  were	
  actually	
  run	
  
§  Task	
  collecHons	
  can	
  overlap	
  	
  

We	
  do	
  NOT	
  force	
  rigorous	
  agreement	
  on	
  each	
  database	
  transacHon	
  
	
  

24	
  

In	
  DHARMA	
  a	
  coarse-­‐grained	
  DAG	
  defines	
  stages	
  
of	
  agreement	
  for	
  collecJons	
  of	
  tasks	
  



§  Distributed	
  Hash	
  Table	
  (DHT):	
  Manage	
  where/when	
  data	
  exists	
  
§  CollecHon/Task	
  Queue:	
  Manage	
  where/when	
  tasks	
  run	
  
§  Resilient	
  Transport	
  Layer:	
  Manage	
  terminaHon	
  detecHon	
  and	
  failed	
  

node	
  detecHon	
  
§  Fault-­‐aware	
  collecHves:	
  can	
  detect	
  errors	
  and	
  abort	
  cleanly	
  
§  Fault-­‐tolerant	
  collecHves:	
  always	
  return	
  valid	
  result	
  and	
  rigorously	
  
agree	
  on	
  failed	
  nodes	
  	
  

	
  

25	
  

Node	
  0	
  
Task	
  
queue	
  

DHT	
  

Workers	
  	
  

Node	
  1	
  
Task	
  
queue	
  

Workers	
  	
  

Node	
  n	
  
Task	
  
queue	
  

Workers	
  	
  

Transport	
  Layer	
  

DHT	
   DHT	
  

The	
  DHARMA	
  runJme	
  comprises	
  fault-­‐tolerant	
  
components	
  

All	
  runHme	
  components	
  	
  
are	
  listening	
  to	
  system	
  
heartbeat	
  implemented	
  via	
  
fault-­‐tolerant	
  collecHves	
  



Core	
  programmability	
  quesJons	
  

26	
  

§  What	
  APIs	
  and	
  abstracHons	
  are	
  needed	
  to	
  express	
  the	
  ASC	
  
workloads	
  of	
  interest?	
  

§  What	
  constraints	
  on	
  data	
  structures	
  are	
  good/bad?	
  
§  Do	
  ASC	
  developers	
  feel	
  their	
  workloads	
  are	
  be(er	
  expressed	
  via:	
  

§  Explicit	
  task-­‐graph	
  vs.	
  Implicit	
  task-­‐graph	
  specificaHon	
  
§  ImperaHve	
  vs.	
  DeclaraHve	
  programming	
  paradigms	
  
§  User-­‐specified	
  vs.	
  AutomaHc	
  extracHon	
  of	
  task-­‐parallelism	
  



Core	
  programmability	
  quesJons	
  

§  What	
  APIs	
  and	
  abstracHons	
  are	
  needed	
  to	
  express	
  the	
  ASC	
  
workloads	
  of	
  interest?	
  

§  What	
  constraints	
  on	
  data	
  structures	
  are	
  good/bad?	
  
§  Do	
  ASC	
  developers	
  feel	
  their	
  workloads	
  are	
  be(er	
  expressed	
  via:	
  

§  Explicit	
  task-­‐graph	
  vs.	
  Implicit	
  task-­‐graph	
  specificaHon	
  
§  ImperaHve	
  vs.	
  DeclaraHve	
  programming	
  paradigms	
  
§  User-­‐specified	
  vs.	
  AutomaHc	
  extracHon	
  of	
  task-­‐parallelism	
  
	
  
	
  

§  L2	
  comparison	
  study	
  
§  	
  Charm++,	
  Legion,	
  Uintah	
  

§  DHARMA	
  v1.0	
  runHme	
  philosophy	
  
§  Use	
  your	
  own	
  data	
  structures,	
  explicit	
  task-­‐graph,	
  	
  
	
  	
  	
  	
  	
  declaraHve,	
  automaHc	
  extracHon	
  of	
  task-­‐parallelism	
   27	
  

ApplicaJon	
  	
  
Developers	
  

RunJme	
  
Developers	
  

FY15	
  plans:	
  



Core	
  distributed	
  load-­‐balancing	
  quesJons	
  	
  
§  What	
  is	
  the	
  right	
  granularity	
  of	
  work?	
  

§  What	
  is	
  the	
  right	
  level	
  of	
  over-­‐decomposiHon?	
  
§  How	
  much	
  work	
  should	
  a	
  task	
  comprise?	
  
§  How	
  do	
  these	
  numbers	
  differ	
  for	
  load-­‐balancing	
  intra-­‐	
  and	
  inter-­‐node?	
  
§  How	
  do	
  these	
  numbers	
  change	
  for	
  different	
  applicaHons	
  &	
  architectures?	
  

§  Which	
  automaHc	
  load-­‐balancing	
  strategies	
  work	
  best	
  for	
  ASC	
  applicaHons?	
  
§  What	
  are	
  good	
  mechanisms	
  for	
  allowing	
  applicaHon	
  developers	
  

§  To	
  directly	
  control	
  load-­‐balancing?	
  	
  
§  To	
  provide	
  physics-­‐based	
  hints	
  for	
  load-­‐balancing?	
  

§  What	
  is	
  the	
  integraHon	
  path	
  forward	
  for	
  node-­‐level,	
  fine-­‐grained	
  parallelism	
  
libraries	
  and	
  distributed	
  AMT	
  runHmes?	
  

	
  	
  

28	
  



Core	
  distributed	
  load-­‐balancing	
  quesJons	
  	
  
§  What	
  is	
  the	
  right	
  granularity	
  of	
  work?	
  

§  What	
  is	
  the	
  right	
  level	
  of	
  over-­‐decomposiHon?	
  
§  How	
  much	
  work	
  should	
  a	
  task	
  comprise?	
  
§  How	
  do	
  these	
  numbers	
  differ	
  for	
  load-­‐balancing	
  intra-­‐	
  and	
  inter-­‐node?	
  
§  How	
  do	
  these	
  numbers	
  change	
  for	
  different	
  applicaHons	
  &	
  architectures?	
  

§  Which	
  automaHc	
  load-­‐balancing	
  strategies	
  work	
  best	
  for	
  ASC	
  applicaHons?	
  
§  What	
  are	
  good	
  mechanisms	
  for	
  allowing	
  applicaHon	
  developers	
  

§  To	
  directly	
  control	
  load-­‐balancing?	
  	
  
§  To	
  provide	
  physics-­‐based	
  hints	
  for	
  load-­‐balancing?	
  

§  What	
  is	
  the	
  integraHon	
  path	
  forward	
  for	
  node-­‐level,	
  fine-­‐grained	
  parallelism	
  
libraries	
  and	
  distributed	
  AMT	
  runHmes?	
  

	
  	
  
§  L2	
  milestone	
  

§  Load-­‐balancing	
  performance	
  analysis	
  studies	
  	
  
§  Work	
  granularity	
  studies	
  

29	
  

FY15	
  Plans:	
  



Core	
  fault	
  tolerance	
  quesJons	
  

30	
  

§  How	
  do	
  you	
  make	
  an	
  AMT	
  flexible	
  to	
  different	
  check-­‐
poinHng/recovery	
  strategies?	
  

§  What	
  is	
  required	
  to	
  transparently	
  handle	
  fail-­‐stop	
  node-­‐
crashes?	
  

§  What	
  support	
  mechanisms	
  are	
  needed	
  for	
  silent	
  data	
  
corrupHon	
  detecHon/correcHon?	
  



Core	
  fault	
  tolerance	
  quesJons	
  

§  How	
  do	
  you	
  make	
  an	
  AMT	
  flexible	
  to	
  different	
  check-­‐
poinHng/recovery	
  strategies?	
  

§  What	
  is	
  required	
  to	
  transparently	
  handle	
  fail-­‐stop	
  node-­‐
crashes?	
  

§  What	
  support	
  mechanisms	
  are	
  needed	
  for	
  silent	
  data	
  
corrupHon	
  detecHon/correcHon?	
  

§  Build-­‐out	
  of	
  DHARMA	
  v1.0	
  runHme	
  
§  Transparently	
  handles	
  fail-­‐stop	
  node	
  crashes	
  
§  Previous	
  implementaHon	
  in	
  Structural	
  SimulaHon	
  Toolkit	
  	
  
	
  	
  	
  	
  	
  (ASC/CSSE	
  FY14)	
  

§  L2	
  milestone	
  
31	
  

FY15	
  Plans:	
  

h(p://sst.sandia.gov	
  



OpportuniJes	
  for	
  collaboraJon	
  

§  ExperimenHng	
  with	
  addiHonal	
  applicaHons	
  
§  Characterizing	
  the	
  ASC	
  applicaHon	
  workload	
  
§  Performance	
  analysis	
  and	
  tools	
  
§  Exploring	
  integraHon	
  path	
  forward	
  with	
  other	
  areas	
  
of	
  the	
  sooware	
  stack	
  
§  Kokkos,	
  data	
  warehouse/Kelpie,	
  Qthreads…	
  

§  Solvers,	
  UQ	
  

32	
  


