SAND2015- 4043PE

What is the DHARMA project?

Janine Bennett (Pl), Jeremiah Wilke (Chief Architect)

Ken Franko, Hemanth Kolla, Paul Lin, Greg
Sjaardema, Nicole Slattengren, Keita Teranishi

ED andia MAWG Meeting
aboratorie 2/5/2015

), 4,
Sy U.S. DEPARTMENT OF
) ' VA %)
T s ENERGY VA 4

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

To start, the DHARMA project is not LOST ;)

Before the “What” a bit about the “Why” o

Laboratories

We expect a lot from our programming models

= Programmability, expressiveness

= Data parallelism: Same computation on different data
= Task parallelism: Different computations on same or different data

= Performance, scalability

Scientific Grand Challenges

= Appropriate level of fault-tolerance

for Extreme Scale Computing
ember 8-10, 2009 | San Diego, CA

= Ability to debug/trace/analyze

= Portability

= Abstractions separate code specification from
optimization for different architectures

= Future-proof
= How much of the application code needs to be

~ @ENERGY

rewritten when moving to new architectures?

Performance and programmability are achieved by) e,
targeting an underlying abstract machine model

Machine model:
Bulk Synchronous Model

I I network I
L
 NY P

Programming model: threads Programming model: MPI

Machine model: PRAM/SMP

Machine model: Hybrid Candidate Type Architecture (CTA)

I I network I

Programming model: Hybrid Bulk Synchronous MPI + X

National

Is hybrid bulk synchronous MPI+X future proof?) S

Machine model:
Bulk Synchronous Model

I [network I
LN
 NY P

Programming model: threads Programming model: MPI

Machine model: PRAM/SMP

Machine model: Hybrid Candidate Type Architecture (CTA)

I I network I

Programming model: Hybrid Bulk Synchronous MPI + X

< Programmability < Performance
 Appropriate level of fault tolerance ~ « Ability to debug/trace/analyze
Portability 2 Future Proof

Consider the abstract machine model of an
exascale node

@ COMPUTER
ARCHITECTURE
LABORATORY

EXASCALE DESIGN SPACE EXPLORATION

(Low Capacity, High Bandwidth)

3D Stacked

Abstract Machine Models and Proxy
Architectures for Exascale Computing

Rev 1.1

Sandia National Laboratories, NM*
Lawrence Berkeley National Laboratory, CA2

May, 16 2014
Integrated NIC

for Off-Chip
Communication

Sandia
|‘|'| National

Laboratories

Overarching abstract machine
model of an exascale node

E——

(High Capacity,
Low Bandwidth)

EXASCALE DI

A p . COMPUTER
Image courtesy of www.cal-design.org 0

ARCHITECTURE
LABORATORY
ESIGN SPACE EXPLO!

This new abstract machine model introduces) e
Laboratories
significant complexities

Challenges

= |ncreases in concurrency 3D Stacked (High Capacity,
Low Bandwidth)

Overarching abstract machine
model of an exascale node

(Low Capacity, High Bandwidth)

= Deep memory hierarchies

Thin Cores / Accelerators

= |ncreased fail-stop errors

= Performance heterogeneity
= Accelerators
= Thermal throttling
= General system noise
= Responses to transient
failures

Integrated NIC
for Off-Chip
Communication

COMPUTER

ARCHITECTURE

Image courtesy of www.cal-design.org 0 LABORATORY

Bulk synchronous MPI+X does not address all the ;) i
challenges posed by the exascale machine model

Challenges

Bl Increases in concurrency

Deep memory hierarchies

Increased fail-stop errors

B Performance heterogeneity
= Accelerators
= Thermal throttling
= General system noise
= Responses to transient
failures

National _
Laboratories

Complexity of application code
increases with proposed solutions

Over-decomposition on node can
help but does not solve the problem
Algorithmic research required

Sandia
National
Laboratories

Asynchronous many-task (AMT) programming
models show promise against exascale challenges

=

=

= Runtime systems show promise at “:;' if
sustaining performance despite node- s 3
degradation and failure f& %

= Data flow programming model) ; | 3
= Tasks are nodes in graph .éi %

= Data dependencies are edges in graph E:‘ g

=

= Facilitate expression of task- and data-
parallelism

= Active area of research

= Charm++, DAGUE, DHARMA, HPX, Legion,
OCR, STAPL, Uintah, ...

1INV dusijoH

Images courtesy of Jack Dongarra

DHARMA project: Distributed asyncHronous) e
Adaptive Resilient Management of Applications

Laboratories

= Project Mission: Assess & address fundamental challenges
imposed by the need for performant, portable, scalable, fault-
tolerant programming models at extreme-scale

Assess rich feature sets/usability/performance of existing AMT
runtimes in the context of ASC workloads

Research in programmability, dynamic load-balancing, and fault-
tolerance of AMT runtimes

| [} DHARMA is a fundamental Hindu concept referring to
KEEP * the order and custom which make life and a universe possible
CALM * the behaviors appropriate to the maintenance of that order

AND

PUT
DHARMA The classical Sanskrit noun DHARMA derives from dhr

ON * meaning to hold, maintain, keep

10

DHARMA project: Distributed asyncHronous) e
Adaptive Resilient Management of Applications

Laboratories

Project Mission: Assess & address fundamental challenges
imposed by the need for performant, portable, scalable, fault-
tolerant programming models at extreme-scale

- Assess rich feature sets/usability/performance of existing AMT

L 12 . .
- runtimes in the context of ASC workloads
EFXM Research in programmability, dynamic load-balancing, and fault-

DHARMA .
el tolerance of AMT runtimes

| [} DHARMA is a fundamental Hindu concept referring to
KEEP * the order and custom which make life and a universe possible
CALM * the behaviors appropriate to the maintenance of that order

AND

PUT
DHARMA The classical Sanskrit noun DHARMA derives from dhr

ON * meaning to hold, maintain, keep

11

ASC ATDM Level 2 milestone description) i,

= Qverarching goal: Provide guidance to the code development
road map for ATDM in the context of AMT, based on in-depth

exploration using realistic proxies of ASC codes

= Key deliverables:
" |Implementations of one or mini-apps in three or more AMT runtimes
= Analysis of the performance, programmability, and mutability of the
AMT runtimes
= An analysis of the interoperability of the runtimes

= Areport to inform the code development road map guiding the Sandia
ASC code strategy for next generation platforms in the context of
alternative programming models

12

Level 2 technical roadmap: programmability LL

= Does this programming model and RTS support the natural
expression and execution of the ASC applications of interest
= |mplement miniapps in different RTS
To start miniAero in Charm++, Legion, Uintah
= (Qualitative questions for application developers
Rate abstractions, APls
= Quantitative data
Size of code
Length of time to code/optimize
Amount of code reuse from bulk-synchronous baseline implementation

Sandia
National _
Laboratories

13

Level 2 technical roadmap: programmability LL

= Does this programming model and RTS support the natural
expression and execution of the ASC applications of interest
= |mplement miniapps in different RTS
To start miniAero in Charm++, Legion, Uintah
= (Qualitative questions for application developers
Rate abstractions, APls

= Quantitative data
Size of code
Length of time to code/optimize
Amount of code reuse from bulk-synchronous baseline implementation

= Where we would like your help:

= Exploring more applications!
= Characterizing the ASC workload

Sandia
National _
Laboratories

14

National

Sandia
Level 2 technical roadmap: performance) toer,

= How long did it take to optimize the mini app code for performance and what were the
performance gains?

= What are the scaling properties of the mini app in this RTS before and after
performance optimization?

= How do the scaling properties and the runtime of the mini-app compare with the bulk-
synchronous implementation?

= What are the scaling properties of the RTS itself?

= How performance portable is the RTS for ATSx-scale platform architectures? In other
words, how shielded are the physics developers from changes in system architectures?

= How does the scaling of the mini app in this RTS change with task granularity and
different levels of over-decomposition?

= How does this RTS provide support for dynamic load balancing?

= Can the application scientist directly control load balancing and/or provide load-
balancing hints (e.g., physics/domain specific knowledge) to the RTS?

= How well does the RTS support fault containment and recovery?
= How does this RTS facilitate code coupling (e.g. in situ analysis and visualization, multi-
physics?

15

Sandia
Level 2 technical roadmap: performance) e

= Planned experiments:
= Scaling studies
= Work-granularity studies

= Data: over-decomposition levels
= Task: granularity (how much code is in the task)

= Load balancing studies

= System-induced imbalance

= Application-induced imbalance

Level 2 technical roadmap: performance

= Planned experiments:
= Scaling studies
= Work-granularity studies

Data: over-decomposition levels
Task: granularity (how much code is in the task)

= Load balancing studies

System-induced imbalance
Application-induced imbalance

= Where we would like your help:

= Experimenting with additional applications implemented in the RTS
= How does the RTS perform from a power and/or energy perspective?
= What is the RTS impact on network behavior/saturation?

Sandia
National _
Laboratories

17

L2 technical roadmap: mutability

Sandia
’11 National
Laboratories

= How easy would it be to adopt this code base and make the
changes necessary to suit ASC needs?

Identify key design decisions & associated impacts
Assess interoperability with other models/languages
Assess reusability/modularity of RTS components

Assess what a partnership strategy might look like
Describe state of tool chain (compiler, debugger, performance analysis)

18

L2 technical roadmap: mutability

Sandia
’11 National
Laboratories

= How easy would it be to adopt this code base and make the
changes necessary to suit ASC needs?

Identify key design decisions & associated impacts

Assess interoperability with other models/languages

Assess reusability/modularity of RTS components

Assess what a partnership strategy might look like

Describe state of tool chain (compiler, debugger, performance analysis)

= Where we would like your help:
= Again, answer these questions from the perspective of additional

applications!

= |dentify integration path forward for RTS + node-level libraries (Kokkos,

Qthreads, ...)
19

National

Sandia
L2 milestone implementation plan)t

= We considered many runtimes over the summer of FY14
= Charm++, Legion, Uintah, STAPL, HPX, OCR, Swift/T
= We settled on Charm++, Legion, Uintah as our top three for the L2
= Demonstrated science applications at scale
= Maturity of runtime
= Three very different implementations, APIs, sets of abstractions

iSCI i

I\Qllll It

= Accessibility of team

= Coding Bootcamps
= November 10-12 @ U. Utah (Uintah)
= Dec4-5 @ Stanford (Legion)
= March 9-12 @ SNL CA (Charm++)

PPL PARALLEL

LS| PROGRAMMING
S| | ABORATORY

= Aim to be done with initial implementations by end of April

= Optimization/performance analysis/experiments April-July

20

L2 milestone status

= Uintah

= |nitial implementation of
miniAero nearly complete

= Legion
= Mesh generation making
progress
= Charm++

= |nitial lecture online
= Bootcamp in March

= Start coding miniAero at
bootcamp

Mean Time Per Timestep (s)

1 ———————————
10 F &
"
ol XTI
10
Runge Kutta: 1
Unified Scheduler
10-1 | I I I L L 1 1 1 1

Sandia
I Natonal
Laboratories

Uintah:MiniAero - Riemann 3D : Titan

32 64 128 256 512 1K 2K 4K

Cores

8K 16K 32.7K65.5K 131K

Uintah initial scaling results

21

DHARMA project: Distributed asyncHronous) e
Adaptive Resilient Management of Applications

Laboratories

Project Mission: Assess & address fundamental challenges
imposed by the need for performant, portable, scalable, fault-
tolerant programming models at extreme-scale

- Assess rich feature sets/usability/performance of existing AMT

L 12 . .
- runtimes in the context of ASC workloads
EFXM Research in programmability, dynamic load-balancing, and fault-

DHARMA .
el tolerance of AMT runtimes

| [} DHARMA is a fundamental Hindu concept referring to
KEEP * the order and custom which make life and a universe possible
CALM * the behaviors appropriate to the maintenance of that order

AND

PUT
DHARMA The classical Sanskrit noun DHARMA derives from dhr

ON * meaning to hold, maintain, keep

22

What makes support of fault tolerance in an AMT (g s,
runtime challenging?

Laboratories

Bulk-synchronous approach is socialism
Task over-decomposition is anarchy

Bulk-synchronous AMT

Everybody gets a fair share of work Everybody takes as much work as

they can do
Data dependencies appear in Data dependencies can appear
regular, well-defined locations anywhere
Collectives/synchronization signal Data dependencies can appear
WHEN dependencies are available anytime
When my work is done, my work is Termination detection is a
done challenging problem

Everyone agrees at beginning/end of Everyone constantly agreeing on
iteration on global state global state

23

In DHARMA a coarse-grained DAG defines stages () o,
of agreement for collections of tasks

We have a distributed, resilient database consistency problem

= Group independent tasks into collections

= Agree at beginning of collection that all tasks are created, scheduled
= Agree at end of collection that there are no tasks left to run

= Agree at end of collection that all tasks expected were actually run

= Task collections can overlap

We do NOT force rigorous agreement on each database transaction

The DHARMA runtime comprises fault-tolerant

components

Sandia
fl'l National

Laboratories

Distributed Hash Table (DHT): Manage where/when data exists
Collection/Task Queue: Manage where/when tasks run

Resilient Transport Layer: Manage termination detection and failed
node detection

= Fault-aware collectives: can detect errors and abort cleanly

= Fault-tolerant collectives: always return valid result and rigorously
agree on failed nodes

Node O

Task
queue

DHT
‘X x
‘XTI K

Node 1

.
queue
DHT »P P9 S
P P9 ®
Workers

Node n
+
queue
DHT
» 2 »
» P9 S

N EE———

All runtime components
are listening to system
heartbeat implemented via
fault-tolerant collectives

National

Sandia
Core programmability questions LU

What APls and abstractions are needed to express the ASC
workloads of interest?

What constraints on data structures are good/bad?

Do ASC developers feel their workloads are better expressed via:
= Explicit task-graph vs. Implicit task-graph specification
= |mperative vs. Declarative programming paradigms
= User-specified vs. Automatic extraction of task-parallelism

26

Sandia
Core programmability questions LU

= What APIs and abstractions are needed to express the ASC
workloads of interest?

= What constraints on data structures are good/bad?

= Do ASC developers feel their workloads are better expressed via:
= Explicit task-graph vs. Implicit task-graph specification
= |mperative vs. Declarative programming paradigms
= User-specified vs. Automatic extraction of task-parallelism

FY15 plans:
pplicatio
= L2 comparison study Developers
= Charm++, Legion, Uintah -
= DHARMA v1.0 runtime philosophy M

= Use your own data structures, explicit task-graph,

declarative, automatic extraction of task-parallelism .

Sandia
Core distributed load-balancing questions) e

= Whatis the right granularity of work?

= What is the right level of over-decomposition?

= How much work should a task comprise?

= How do these numbers differ for load-balancing intra- and inter-node?

= How do these numbers change for different applications & architectures?
= Which automatic load-balancing strategies work best for ASC applications?
= What are good mechanisms for allowing application developers

= To directly control load-balancing?

= To provide physics-based hints for load-balancing?

= Whatis the integration path forward for node-level, fine-grained parallelism
libraries and distributed AMT runtimes?

28

Core distributed load-balancing questions

= Whatis the right granularity of work?

= What is the right level of over-decomposition?
= How much work should a task comprise?

= How do these numbers differ for load-balancing intra- and inter-node?
= How do these numbers change for different applications & architectures?

Sandia
National _
Laboratories

= Which automatic load-balancing strategies work best for ASC applications?

= What are good mechanisms for allowing application developers

= To directly control load-balancing?
= To provide physics-based hints for load-balancing?

= Whatis the integration path forward for node-level, fine-grained parallelism

libraries and distributed AMT runtimes?

FY15 Plans:

= L2 milestone

= Load-balancing performance analysis studies
= Work granularity studies

29

Sandia
m National
Laboratories

Core fault tolerance questions

= How do you make an AMT flexible to different check-
pointing/recovery strategies?

= What is required to transparently handle fail-stop node-
crashes?

= What support mechanisms are needed for silent data
corruption detection/correction?

National

Sandia
Core fault tolerance questions LU

= How do you make an AMT flexible to different check-
pointing/recovery strategies?

= What is required to transparently handle fail-stop node-
crashes?

= What support mechanisms are needed for silent data
corruption detection/correction?

FY15 Plans:
= Build-out of DHARMA v1.0 runtime

= Transparently handles fail-stop node crashes
= Previous implementation in Structural Simulation Toolkit
(ASC/CSSE FY14)

= |2 milestone

http://sst.sandia.gov

31

Opportunities for collaboration

= Experimenting with additional applications
" Characterizing the ASC application workload
= Performance analysis and tools

" Exploring integration path forward with other areas

of the software stack

= Kokkos, data warehouse/Kelpie, Qthreads...

= Solvers, UQ

Sandia
National _
Laboratories

32

