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Introduction
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. Radical of interest in the current work, neopentyl radical, which is formed from
neopentane by H-atom abstraction, is a good fuel radical to study chain-
branching since no B-hydrogen is available and all hydrogen are primary.

. We study Cl-atom initiated oxidation chemistry of neopentane in the
temperature range 550 — 700 K using both Low-Pressure (LP, P = 8 Torr) and
High-Pressure (HP, P = 1 — 2 atm) reactors.
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A PESs of R + O,, QOOH + O,, and KHP decomposition

e Due to simple and symmetric molecular structures of neopentane and neopentyl
radical, relatively compact representation is possiblefor the ketohydroperoxide
formation under low-temperature combustion conditions.

e Ketohydroperoxide decomposition channel leading to oxo-radical + OH + OH results in
chain-branching — particularly important for autoignition. But it might not be the sole
KHP decomposition channel.
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CRE Reaction Mechanism

e Interestingly, Wang et al. also observed significant formic acid formation which they
did not managed to explain.

CH,
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m/z=118 | ~0—OH ’ H>o—on

Wang S. et al. Combust. Flame. 1999, 118, 415
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Experimental

Laser photolysis — flow reactors coupled to time-of-flight
mass spectrometer with synchrotron photoionization
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CRE Results: Low-Pressure (8 Torr)

Signal Intensity / a.u.
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e Neopentane oxidation initiated by 248 nm photolysis of (COCI), - 2 CO + 2 Cl

Important products for autoignition
observed at m/z =30 (H,CO), m/z =
56 (isobutene + 3,3-dimethyl-
oxetane), m/z =71 (RO,), m/z=72
(methyl propanal), m/z = 100, and
m/z = 118 (KHP)

Decay of RO, becomes faster with
increasing temperature and m/z = 30
and m/z = 56 formation become
faster as well. Intensity of KHP signal
reaches maximum around 650 K

Formation of both m/z =72 and m/z
= 100 products become faster with
temperature. But what is (are) the
mechanism(s) of their formation?
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C/I\QF Results: Low-Pressure (8 Torr)

e Recently suggested Korcek decomposition of y-ketohydroperoxide* might explain
methylpropanal formation

* Jalan et al. et al. J. Am. Chem. Soc. 135 (2013), 11100 Korcek decomposition of y-ketohydroperoxide
| l 1
/CH3 CH; C\Hz __» CH;CHCHCHO + HCOOH (1)
H}C "--._C CHZ . HBC \C_CHZ C /CHZ m/z=72 m/z =46
/ + OH —— / N | — HyC—
HC o HC” vKHP 0 | /O
| | HO Mo~ Y
0 O J HO CH,0 + CH;CH(CH3)COOH (2)
H:C CH, HyC CH,
\C/ . \C/ .
— A +
o |
.C |
(0]
I OH
0 m/z =58
s HyC CH
3 3 HyC CH
H3C.'--“C—CHQ — \c./ + H.C=—0 10, 3 AN / :
ge==—=W ——== C
/ / e
HC [0} HC HC |
I I [
(0] 0 *
H,C CH CHs
3 Z
N\ | :
C—_ —» HC—C—CH, + HO,
O /
I I (0] m/z =170
| on
(0]

e Observed product at m/z = 100 could well be 2,2-
dimethyl-propanedial.

ni/z =100
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Normalized Signal Intensity

1526 Torr, 575 K
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e Time dependency of signals at m/z =
58 and 70 lag behind m/z = 100 signal,
in agreement with the suggested

mechanism
| |

e However, a stronger temperature
dependency of m/z = 100 signal in
comparison to m/z = 58 and 70 signals
is not easily explained by the
suggested mechanism
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Normalized Relative Intensity / a.u.

KHP formation kinetics and the effect of [O,]

Normalization based on neopentane signal
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e Experimental time profiles are
very similar at various [O,], only
the signal intensities change due
to increased interception of
QOOH radicals by O,.

Normalized Relative Intensity / a.u.

NUI Galway new C5 -model
used in simulations

KHP formation and decay at 575 K, 1545 Torr
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e Simulations reproduce experimental
KHP time-behavior accurately once
additional KHP decomposition rate
28 s is added to the model

e In addition, simulations reproduce
experimentally observed KHP signal
intensity dependence on [O,] with
good accuracy.
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575K, 1526 Torr, [0,] =5.2x 10" cm”

Unmodified Model: k(KHP —> OH + oxy-radical) ~ 1s'1
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2\ Exp. Kinetics vs. Model Simulations

e Cl+neopentane + O, —system was modelled using NUI Galway new C5-model. Without any
adjustment, modelled [KHP] increases rapidly that is not observed in the experiments

e Upon including additional KHP decomposition mechanism in the model which does not
produce OH, significantly better agreement observed between the model and the exp.

Modified Model: kK(KHP —> OH + oxy-radical) ~ 1 s_1

K(KHP —> not forming OH) ~ 28 s
k(KHP —> HCOOH + j-C3H,CHO) ~0.7 5™
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A\ 4 Conclusions and Acknowledgements

e Direct, time-resolved measurements of product formation in neopentane oxidation
experiments were performed both at low (~ 8 Torr) and high (1 — 2 atm) pressures.
Ketohydroperoxide (KHP) formation and decomposition clearly observed.

e Current observations of primary, secondary (e.g. KHP), and tertiary etc. product
formation semi-quantitatively agree with a recent kinetic neopentane oxidation
model.

° It is concluded that more direct studies of KHP decomposition, among other
studies of KHP, would be greatly helpful to improve current autoignition models.
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