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Current State of the Art in Energy Storage  The Lithium Ion 
Battery

• One of the greatest success in 
electrochemical energy storage

• It has been adapted to many different 
platforms and form factors 

• As transformative as this technology is it 
can be argued that it is reaching its 
theoretical limit

http://www.bombayharbor.com/Product/13263/Battery_Ion_Battery_Pack_Lithium_Battery_Lithium_Ion.html
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The Next Generation of Energy:  Beyond Lithium Ion…

Element Mass mA/hour mA/hour/g

LiC6 79 26801 339

H 1 26801 26801

Be 9.01 53603 5949

Li 6.94 26801 3862

Al 26.982 80404 2980

Mg 24.03 53603 2231

Ca 40 53603 1340

Na 23 26801 1165

K 39.098 26801 685

NiMnCoO2 66.018 53603 160

N 14 80404 5743

O 16 53603 3350

P 30.97 80404 2596

S 32 53603 1675

Mg2CoSiO4 201 107206 533

Mg aMnO2 110.9 53603 483

MgMoO3 167.94 53603 319

Mg V2O5 205.88 53603 260

Mg2Mo6S8 882.24 107206 122

• To move beyond Li ion different strategies 
are needed…

Use of a metallic anode

Multivalent ions

Chemical conversion vs intercalation

• A daunting task to overcome the past 20 
years of R+D put into current Li ion tech



Sulfur is ionically and electrically insulating
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Beyond Lithium Ion:  Lithium Sulfur Battery (chemical conversion)

Evers, S.; Nazar, L. F., New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes. Accounts Chem. Res. 2013, 46 (5), 1135-1143.

• Lithium sulfur batteries have been extensively 
studied

• They suffer from two major drawbacks…  

Sulfur shuttle mechanism

• Much of the work done in this field is done to 
mitigate these problems…
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Beyond Lithium Ion:  Prototype Mg Battery (multivalent ion)

Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E., Prototype systems for rechargeable magnesium batteries. Nature 
2000, 407 (6805), 724-727.

Aurbach, D.; Weissman, I.; Gofer, Y.; Levi, E., Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chemical Record 2003, 3 (1), 61-73.

• Proof of concept work proposed by 
Gregory showing intercalation of Mg into 
metal oxides and sulfides with a Grignard 
reagent

• Aurbach improved on Gregory’s work by 
introducing a new electrolyte and cathode 
that was able to reversibly intercalate Mg 
ions

• Aurbach’s electrolytes the dichlorocomplex
(DCC) and the all phenyl complex (APC) 
improved many aspects of performance

DCC

APC
+ -
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Magnesium Sulfur Utilizing all the Strategies

• Utilizing a multivalent ion may solve some 
of the experienced by LiS system

• Pairing two earth abundant elements  
allows for a low cost battery

• Muldoon showed proof of concept work 
using a new electrolyte.  Explains that the 
reactivity of the Grignard based 
electrolytes may cause problems.

• Is a Mg sulfur battery utilizing the well 
characterized Grignard based electrolyte 
possible?

Mg HMDS 
electrolyte

HMDS

DCC

Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y., Electrolyte roadblocks to a magnesium rechargeable battery. 
Energy & Environmental Science 2012, 5 (3), 5941-5950.

Hee Soo, K.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J., Structure and compatibility of a magnesium 
electrolyte with a sulphur cathode. Nature Communications 2011, 2, 427 
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Slow Scanning Cyclic Voltammetry  Results
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Cu→ Cu2+ +2e-

S6
2-?

S4
2-?

• Electrochemical activity

• Three reduction peaks  
possible short chain 
poly sulfide formation?

• Asymmetry between 
charge and discharge 
consistent with LiS
system

2Li+ + S8 + 2e- → Li2S6
2- 1.7 vs Mg

2Li+ + S6
2- + 2e- → Li2S4

2- 1.4 vs Mg
2Li+ + S4

2- + 2e- → Li2S2
2- 1.1 vs Mg
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Slow Scanning Cyclic Voltammetry  Differences in Electrolyte

Cu→ Cu2+ +2e-

S6
2-?

S4
2-?

• DCC reaches steady 
state faster than APC

• APC shows much larger 
S6 reduction

• DCC higher coloumbic
efficiency

• Conclusion:  In a full cell 
SSCV suggests that DCC 
would preform better

S2
2-?

2Li+ + S8 + 2e- → Li2S6
2- 1.7 vs Mg

2Li+ + S6
2- + 2e- → Li2S4

2- 1.4 vs Mg
2Li+ + S4

2- + 2e- → Li2S2
2- 1.1 vs Mg
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Full Cell Test Results

• Full cells were fabricated for both 
electrolytes and put on test

• Results show kinetic limitations

• 60C° discharge data shows behavior similar 
to lithium systems

• The capacity increases with cycle unlike Li 
systems
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Full Cell Test Results

• APC behaves very similar to DCC

• Consistent with SSCV results DCC increases 
in capacity more rapidly than APC

• The voltammetry  of APC is more defined 
than DCC this because APC has higher 
conductivity

• In both cases a stable discharge voltage of 
~1.1V vs Mg and increasing capacity persist.



Postmortem Analysis of Anode

• SEM elemental map and spectra of the Mg Metal 
anode

• We do not see evidence of sulfur

• Metal anodes removed after 10 cycles of SSCV at 
100V/s at RT

Lithium Magnesium

Pristine

Cycled

Sulfur



Post Mortem SEM of Separator (Anode Side)

• If sulfur is not present on the anode will it 
be present in the cathode?

• It can be argued that that the trace signal in 
the sulfur map is material ripped off the 
cathode

• This indicates that very little polysulfides
are made

Separator anode 
Side

Lithium Magnesium

Separators removed after 10 cycles of SSCV at 
100V/s at RT



Post Mortem SEM of Cathode

• EDX shows a precipitated MgxSy compound 
onto the cathode

• Is this compound a result of insoluble 
polysulfides?

• It is believed that copper may be playing a 
role in this chemistry but more studies are 
required



Impact and Future Directions
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• Grignard based electrolytes do work in a sulfur system

• No evidence of accumulated sulfur on anode or in separator suggesting the suppression 
of polysulfides

• Will utilization of a nanostructured electrode improve the performance of this 
chemistry?

• What we learn from a Mg system could be applied to a Ca system increasing the energy 
density…

Key Take-Away

• A new sulfur chemistry was developed which suppresses the formation of polysulfides
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