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Today’s Discussion

* |Introduction

* Defining Resilience

* Resilience Metrics

* Resilience Analysis and Improvements
* Microgrid Designs for Resilience
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Where Is New/ Viexico?
* 5t |argest state in .

the US

* Population: 2.1
million

e New Mexico is known
for its beautiful
landscape, rich
culture, high tech
industry, plentiful
wind and solar
resources
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Defining Resilience
Presidential Policy Directive (PPD) 21

1. “[preserve] infrastructure that are vital to the public confidence and the
Nation's safety, prosperity, and well-being.”

2. “[prevent] debilitating impact on the national security, economic stability,
public health and safety, or any combination thereof”

3. “...analyze threats to, vulnerabilities of, and potential consequences from
all hazards on critical infrastructures”.

-PPD-21: Critical Infrastructure Security and Resilience

“without some numerical basis for assessing resilience, it would be impossible
to monitor changes or show that community resilience has improved. At
present, no consistent basis for such measurement exists...”
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-Disaster Resilience: A National Imperative, National Academy of Sciences
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Resilience: A Risk-Based Approach

Probability of Consequences =

f(vulnerabillity, threat)
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Resilience Metrics and Their Gaps

Attribute based metrics are primarily used today (e.g. number of
critical spare transformers)

— They don’t quantify resilience
— They don’t indicate certainty about effectiveness
* Performance based metrics:

— Are quantitative and denote uncertainty

— Allow optimal allocation of resources in system planning and
operations

— Provide an ability to differentiate resilience among systems

— Inform development of policy goals and the assessment of
their effectiveness

— Achieve utility in exchange for complexity
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Resilience versus Reliability

Differentiating reliability and resilience is important

* Reliability is compulsory
« Reliability is related to rate recovery
» Adoption of resilience metrics will be easier if reliability definitions remain as-is

Reliability

High Probability, Low Consequence Low Probability, High Consequence
(SAIDI/SAIFI exclude storm data)

Not risk based Risk Based, includes:
Threat (you are resilient to something)
System Vulnerability (~reliability)
Consequence (beyond the system)

Operationally, You are reliable, or you are Resilience is a continuum, confidence is
not [0 1]. Confidence is unspecified specified

Focus is on the measuring impact to the Focus is on measuring impact to humans
system
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Reliability versus Resilience

* |s it possible to have two systems with
identical reliability but different resilience?

— Yes

 Why? Because reliability focuses on the
system and resilience focuses on the social
impact (via the system).
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Moving Forward with Resilience Analysis

Define System Define
& Resilience @ High Level

Goals

Characterize
Threats

Evaluate
Resilience
Improvements

Determine Calculate

Level of M Consequence
Disruption
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Resilience Metrics
Probability of Consequence X, Given Threat Y

Category 5 Hurricane

Flood, Ice Storm

Geo-Magnetic Disturbance
Combined Physical/Cyber Attack

Threat Vector * Financial Loss
e Lives at Risk

* Environmental
Loss

Probability of Consequence X
given Threat Y
\

Consequence X
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Evaluating System Improvements

[\Reduced Expected Financial Consequence
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Improvements must cost
significantly less than this
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Ex: How Should We Invest S100M?

listogram of Economic Losses Due to Hurricane

/ Mean = $990.3M

$100M of generator flood
walls only

Histogram of Economic Losses Due to Hurricane

Baseline
mean was
$990M
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Invest the same $100M in both
flood walls and burying cables

$100M of burying lines

only

Histogram of Economic Losses Due to Hurricane

Mean =

= $673M

1000 2000 3000 4000 5000
Economic Losses Incurred ($M USD)

$100M of burying lines
and generator flood walls

Histogram of Economic Losses Due to Hurricane
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Histogram of Economic Losses Due to Hurricane

Baseline- economic dispatch

1000 2000 3000 4000
Economic Losses Incurred ($M USD)

5000

Change the Dispatch Objective

Histogram of Economic Losses Due to Hurricane

100
80
Minimize the Consequence,
= “l Economic loss
40
VS
20
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Economic Losses Incurred ($M USD)

In our IEEE 118 bus resiliency example, it is possible to mitigate nearly all

economic consequences of the posited hurricane
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Designing Microgrids for Resilience

* Engage stakeholders

e Establish a design basis Define performance metrics
e Define system boundaries

e Collect system and operations info and data

* Generate feasible designs
— measure performance against the design basis
— improve the design

— repeat
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Pareto Optimality Using Genetic Algorithms

Genetic algorithm continues until

population ap;?:g);igz:!es the Pareto E Ve n t
3rd population D r I Ve n

selected by GA Simulation
selzenc(:elt)jolt:;lJ Iggz:lic TO p 0] I Ogy
algorithm (GA)
Pe rformance
Initial population M O n t e

selected at random C a rI O
Analysis

Performance

Each dot is a different
microgrid layout
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Mixed Integer Optimization
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