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Quantum Mechanics
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Dirac (1929)
“The general theory of quantum mechanics is now almost

complete... The underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much

too complicated to be soluble. ”

P.A.M. Dirac, Proc. R. Soc. London Ser. A 123, 714 (1929).

>

Note: For f-electron materials we probably need to solve the Dirac Equation. ID
L a—



How do we learn from the Quantum Mechanical
equations?

Ann E. Mattsson

Exact Hamiltonian with exact solution.
Exact Hamiltonian with approximate solution.
Approximate Hamiltonians with exact solutions.

Approximate Hamiltonians with approximate solutions.

Ideally we would like to solve for example the non-relativistic limit of the Dirac
Equation, the Schrodinger Equation, exactly. Only feasible for one-electron
systems such as the Hydrogen atom. Already for the two-electron system of the
He atom we need to start doing (at least numerical) approximations. For
Condensed Matter systems we cannot expect to solve the Dirac or SE directly,

even with the largest and fastest computers in the world. /
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Walter Kohn awarded the
Nobel Prize in Chemistry 1998 for
Density Functional Theory

Ann E. Mattsson

Hohenberg-Kohn theorem:

Phys. Rev. 136, B864 (1964).

The electron density contains all
information needed to determine
ground state properties of a system.

Kohn-Sham equations:

Phys. Rev. 140, 1133 (1965).
Practical scheme for solving the
guantum mechanical problem based
on the HK theorem.




DFT versus the Schrodinger Equation

Ann E. Mattsson

Properties of
the system

Hard problem to solve

Schrodinger view

Formally
equivalent

-_—am ==

O  Kohn-Sham particle
(non-interacting)
- - - effective potential

_ n(r’) , | OEy[n(r)]
Veﬁf(r)—V(r)'Ffﬁdr + 5n(r)

All many-body effects are included in the effective potential via the

Exchange-Correlation functional, Exc[n(r)]/

@ electron
<-+» interaction
— external potential
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Kohn-Sham equations:
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(—j—m V2 4 v (r)) b, ()= ey, ) V=12 ... N

N

n)= Y 1y, @)1

y=1

_ n(r’) , . OEy[n(r)]
Veﬁc(r)—v(r)+f 7 dr’ + 51 ()

If we had the divine exchange-correlation functional, self-consistently

solving these equations would give exactly the same density as the
Schrédinger Equation, and thus via the HK theorem, we should be able to

extract all information about the system.

We do not need the many-body wave functions. i




Approximations for the exchange-
correlation functional

Ann E. Mattsson

2
(—j—m V2 4 v (r)) b, ()= ey, ) V=12 ... N

N AMOS5, LDA,
n(r) = | r |2 GGA, Meta-
(r) Z "b”( ) GGA, Hybrids

y=1

_ n(r’) , . |0Exc[n (r)]
Veﬁc(r)—v(r)+f 7 dr +[ 51 ()

The form of the divine exchange-correlation functional is unknown.
We need to find good approximations.
There is nothing like a free lunch.
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DFT versus Mean Field Theory

Density = p in chemistry
n in physics

Ann E. Mattsson

Will always be
approximate, even with
the ‘divine’ functional.
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Perspective”, the chapter “Some practical considerations
for density functional theory studies of chemistry at metal

surfaces” to be published by Taylor and Francis in 2011.

From “Metallic Systems: A Quantum Chemist’s

B or) . [0E [0 ()] ( AMO5, LDA, GGA,
Ver (1) =V (r) + f o dr 50 (r) L Meta-GGA, Hybrids




Copenhagen interpretation of Quantum
Mechanics (quotes from Wikipedia)

The Copenhagen
Interpretation denies
that the wave
function is anything
more than a
theoretical concept

Ann E. Mattsson

Bohr emphasized that
science is concerned
with predictions of the
outcomes of
experiments, and that
any additional
propositions offered are
not scientific but meta-
physical

... the wave function is merely a
mathematical tool for calculating the
probabilities in a specific experiment

@ National _
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DFT versu

Ann E. Mattsson

Properties of
the system

our problem
from here ...

“Easy” prob

Formally
equivalent

@ electron
<-+» interaction
— external potential

Vepr (1) = V(I‘)+f

(non-interact
- — - effective poten

n(r’)

lr—r’|

All many-body effects are included in the effective potential via the

Exchange-Correlation functional, Exc[n(r)]/
Laboratories



DFT versus Mean Field Theory
Density = p in chemistry

n in physics

Ann E. Mattsson

Will always be
approximate, even with
the ‘divine’ functional.
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Perspective”, the chapter “Some practical considerations
for density functional theory studies of chemistry at metal

surfaces” to be published by Taylor and Francis in 2011.

From “Metallic Systems: A Quantum Chemist’s
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f-electron Physics: Electrons are fermions

Ann E. Mattsson

Electrons are fermions,

o they each need their own quantum state.

f-band: 14 f-electron
states at an ion all have
their own quantum
Narrow f-band number. Even with
interaction between ions,
the f-electrons do not
need to use the kinetic
energy to differentiate
between themselves.
Compared to the broad
free-electron band, the f-
band is a collection of

Broad free-electron-band

Free-electron band: The paradigm system discrete levels.
describing this situation is the uniform electron

gas. No potential energy difference gives that they
need to differentiate by different kinetic energies.




f-electron Physics: Competition between
localization and delocalization

chemical potential
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The f-electrons can be
localized while the

1(1+1)

I/eﬁ (r)=V,(r)+




f-electron Physics: Competition between

localization and delocalization
(€)
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Narrow f-band

Broad free-electron-band

€

The delocalized electrons in the broad free-electron band
and the localized electrons in the narrow f-electron band
are behaving very differently. The interesting physics and
chemistry of f-electron materials are governed by a

competition between these two different pictures.
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f-electron Physics: Density Functional Theory

()

Narrow f-band

Broad free-electron-band

Since the physics of f-electron materials is due to the
competition between these two types of states, a functional
needs to be able to describe the two situations equally well.

Ann E. Mattsson

LDA and other
functionals based on
the uniform electron
gas can be expected
to work on the broad
free-electron band.

The Pauli exclusion
principle embedded in
the exchange energy is
the main source for
describing the fermionic
nature of electrons.
Hybrids and exact
exchange are
considered needed for
discrete levels.

Functionals are applied in real space. How do we take the
discrete level/uniform electron gas picture to real space?. N B2
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Electron localization function (ELF)
A.D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

Interpretation in terms of fermion character: B. Silvi and A. Savin, Nature 371, 683 (1994)
Note: Kohn-Sham particles are fermions! Despite the name, not only valid for electrons.

Ann E. Mattsson

1 D = 0: kinetic energy is equivalent to that in a
ELF = > boson gas with the same density. Fermions do not
1+ (D/Dh) need to adjust their kinetic energy because of
other fermions nearby.

2
11Vnl
D=1t-— D = 1/2: Uniform electron gas by construction.
S n All fermions have same potential energy and need
3 to adjust their kinetic energy to stay different.
Dh _ _(3J_L_2)2/3n5/3 | | |
10 D -> oo: Very high kinetic energy needed for

o , fermions in classically forbidden region.
T: kinetic energy density

n: electron density

ELF = 1: strong localization, discrete levels.
D: kinetic energy excess with - . . .
respect to a boson gas. ELF = 1/2: uniform electron gas like
D,,: kinetic energy of a uniform | ELF = Q: Classically forbidden region. S

electron gas.




Subsystem functionals

Constructing a general purpose functionals
from specialized functionals

Ey. = l”l(l’)Exc (l’ [n)dV

For the subsystem functional scheme we

need:

1) One specialized functional for each
Use specialized functionals
in the different subsystems

Ann E. Mattsson

subsystem we want to describe.

2) Aninterpolation index that can tell us

!)l;/lo!etmtegtr'atlon Over Vb . the character of the system in each
INtO Integrations over sUBsy>1ems point so that we can apply the different
Note: The integration over specialized functionals accordingly.

subsystems is done automatically
by the use of an interpolation
function




A specialized functional: The LDA functional

Ann E. Mattsson

Vet Assume each point in the real
| _ a _ _ system contribute the amount
Real . - of exchange-correlation energy
system T T as would a uniform electron

N~ N gas with the same density.

Model: . :
. Obviously exact for the uniform
Uniform loct
Gas electron gas.
LDA

(exchange and correlation)

Basic concept and first explicit LDA published in
1965 (Kohn and Sham). LPRR0




A general functional from specialized
functionals: AM05, PRB 72, 085108 (2005)

Ann E. Mattsson

Vv :
Interior regions eff | Edge regions
— U /
Real P P L L PR Real
system ; ; system
Model: Model:
Uniform Airy Gas
Gas D
LDA LAG or LAA exchange
(exchange and correlation) v @ LDA correlation

Interpolation
with an index based on the gradient of the density

Two constants (one is y above, one is in interpolation index) >
are determined by fitting to yield correct jellium surface eW
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Subsystem Functional Scheme:

Ann E. Mattsson

XC

E, =] n() e.(Fln)) ¥

Dividing V into sub-regions where :

different subsystem functionals O
apply: Interpolation index.

Specialized functionals <
in different subsystems

ELF=1
ELF =~ 1/2 Interpolation ELF =0
Interior physics: Index: Surface physics:

Uniform electron gas ELF Airy Gas
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Harmonic Oscillator model (HO)
Hao, Armiento and Mattsson Phys, Rev. B 82, 115103 (2010).

Ann E. Mattsson

HO model: Localized electron levels in a

-3 -2 -1 1 2 3

1.1
Energy of subbands ¢, _(]+2 I3

o characterizes how many subbands
have been occupied, and determines
the level of confinement.

/

LABORATORY DIRECTED RESEARCH & DEVELDFVENT

@ Laboratories

Chemical potential p=(a+ 5)1—2




ELF in HO systems versus Exchange Energy

Ann E. Mattsson
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Subsystem Functional Scheme:

Ann E. Mattsson

E. = JVVl(T’) e.(ri[n]) dV Confinement physics:
| Harmonic oscillator gas

Dividing V into sub-regions where
different subsystem functionals

apply
Specialized functionals <
in different subsystems

Interpolation

Interior physics: Index: Surface physics:
Uniform electron gas ELF Airy Gas

Feng Hao, Rickard Armiento, and Ann E. Mattsson
Journal of Chemical Physics 140, 18A536 (2014).
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ELF in a ‘real’ system: CuO, transition metal oxide

Ann E. Mattsson

Cu ELF = 1/2: uniform electron gas like
ELF = 1: strong localization, discrete levels

B c.r>0383
ELF>0.77
Cu
: ini r ined when
Cu0 ) MinOdm;]C StrUCtl,J € obtla ed € Feng Hao, Rickard Armiento, and Ann E. Mattsson
starting from the experimental structure Journal of Chemical Physics 140, 18A536 (2014).

with each dimension scaled by 3%

The high ELF regions are around the oxygen atoms.
We identify these as the regions where hybridization

in solid materials occur. |4.BDRD )

National
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Summary

The interesting properties of f-electron systems comes
from a simultaneous existence of free and discrete
level electrons.

The challenge we have is to describe free electrons
and discrete level electrons equally well in a unified
picture.

The ELF index can be used to find regions in real space
where discrete level physics needs to be taken into
account.

We have identified the HO gas as a model system that
can be used to gain insight about this kind of physics.
We will use the HO gas model system for creating a
functional suitable for these systems via the
subsystem functional scheme.

Ann E. Mattsson
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Heavy Materials: The problematic p,, states

The radial function for the upper components (red) and the lower components (blue) of the 6py;; state,
calculated with the Harmon and Koelling scalar relativistic equation (lighter), the Dirac equation (darker),

and the Schrodinger equation (dashed).
Note the discrepancy at the origin.

Ann E. Mattsson

Radial function (1/apok"%)

= The Dirac p,,, wavefunction is

/A A

I \ - ) )

_~~-~" | atthe origin, while the scalar-relativistic and non-
e relativistic (Schrodinger Equation) ones are.
s i h::::‘::'*'-'-\“. - :
——— VR P --.._, “hﬁ?g(aam)

We need to use a
DFT method based
on the Dirac
Equation.

|IENR) _ Ve (r)| << 2mc?

violated




Confinement physics

Ann E. Mattsson

Ce Pr Nd Pm Sm Eu Gd Tb DY Ho Er Tm Yb Lu
T T T 1 T T T 1

<> LDA/AMO5/PBE work
reasonably well for 5d
transition metals (-2%/0
%/+2 %), but, contrary
to experiments, give the
same parabolic trend

actinides for rare earths and

5-Pu actinides.

rare earths

o
o
I

(Angstroms)

ws

< Dirac treatment not
5d transition metals 1 ||ke|y to cha nge this
— dramatically.

S

La Hf Ta W Re Os Ir Pt Au
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Th Pa U Np Pu Am Cm Bk Cf Es

J M Wills and Olle Eriksson, Phys. Rev. B 45, 13879 (1992)

. | ilibri | Sodia
Experimental equilibrium volumes. National_




Thorium AMOS5 results

3 O T T T T T T | T T T T | T T

O Dirac E,=-53047.878944 Ry
0 SR E,=-53047.524218 Ry
25 A SO  E,=-53047.670192 Ry

20—

15—

E-E, (mRy)

-5
0.8

V, =220.0 bohr’
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Thorium LDA-PW results

Ann E. Mattsson
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Thorium PBE results

E-E, (mRy)
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Summary Thorium

Ann E. Mattsson

TABLE I: Thorium equilibrium volumes in cubic bohrs and bulk moduli in GPa calculated with
scalar relativistic, scalar relativistic with variational spin-orbit, and full Dirac methodologies, using

AMO05'7, PBE2, and PW'® functionals as described in the text. The zero temperature experimental
volume, with zero point motion subtracted| is 220.00 bohr®}3. Reference 13 gives 205.14 for AMO5.

218.02 for PBE, and 200.89 for PW.

V/ad B (GPa)
AMO5 PBE PW | AM05 PBE PW
Scalar Relativistic 204.55 217.36 199.89 | 58.9 54.5 65.5
Scalar Relativistic+Spin Orbit| 189.62 201.21 186.45 74.1 68.6 80.4
- T
Full Dirac (( 205.98 217.98 201.54 ) 624  58.3  68.0
— —

Note: PBE is giving 7% too large volume for gold. Generally underbinding.
“When PBE gets the right equilibrium volume, you should get suspicious”.
Seen like an indication that a hybrid functional or exact exchange is needed.

Confinement physics... / -BPORD .




Confinement error and Harmonic Oscillator

model (HO) Hao, Armiento and Mattsson Phys, Rev. B 82, 115103 (2010).

Ann E. Mattsson

HO model: Localized electron levels in a continuum.

101

Energy of subbands g; =(]+5 1_2
. . 1.1
Chemical potential p=(a +5 1_2

o characterizes how many subbands
have been occupied, and determines
the level of confinement.

z
0.8 . gﬁ
Relative errors of E, of the HOgas | - LAG.
introduced by different functionals. .99 . s PBE
o4 B0 «  PBEsol
Lq*q A
As a decreases, the o2l
confinement errors increase. ,,  oimiiiissesiecaeeieee:. 4 DNORDY
00
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Experimental structure of CuO
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Cu y=1/4
Cu y=3/4
0 y=1/2+u
O y=u
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2 >pO0mOO

Experimental lattice parameters:
a=4.6837A, b =3.4266 A, c=5.1288 A ,p = 99.54°, u=0.4184

Rectangular shape obtained from DFT calculation.

a=4.0396A, c/a=1.23, b/a=1.0, B = 90°, u=0.5

@®
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DFT calculations of CuO structure

Energy [eV]

| n Solid lines: fixed volume, and
TN — LDA, volume fixed
Y fully structure relaxed .
\
-\ calculations. -—- LDA, rectangular shape
AY
\
\\\ —_— AMOS5, volume fixed
\ Dashed lines: structure is
s . ——cmm AMOS5, rectangular shape
. \ restricted to be rectangular
K \\\ with B =90° b/a=1, u=0.5. —— PBE, volume fixed
r \
N \\\\ - PBE, rectangular shape

Ann E. Mattsson

Present functionals give systematic errors leading to
too large equilibrium volume.

096 098 100 102 104 106 108
Scale
Scale =(V/V,)/3

V, is the lattice volume
of the experimental

ona
structure Laboratories




DFT calculations of CuO structure

Ann E. Mattsson

o Solid lines: fixed volume, and ‘
AN fully structure relaxed — LDA, volume fixed
45N calculations. -—- LDA, rectangular shape
L \
\\\ —_— AMOS5, volume fixed
\ Dashed lines: structure is
n . -—-- AMOS, rectangular shape
\ restricted to be rectangular
3F o with B=90° b/a=1, u=0.5. — PBE, volume fixed
= \\\ \\\ - PBE, rectangular shape
] \\ \\
23 \\ \'\\ . . . .
50 \, Present functionals give systematic errors leading to
SN too large equilibrium volume. One can obtain the
experimental monoclinic structure from DFT
A RN ORY calculation but at the wrong volume.
\\\\ a \\\\ \\\ -
g \ \\ \\\\
07 S = g

096 098~ N\ | 100 102 104 106 108
Scale
Scale =(V/V,)/3

Structures with relative dimensions

V, is the lattice volume

close to the experimental structure
are obtained in these points.

of the experimental

structure /




Possible mechanism for correction

N
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4— \\ - -
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F s \
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\ \
\ \ -l -
\ \

Energy [eV]

LDA, volume fixed
LDA, rectangular shape
AMOS5, volume fixed
AMOS, rectangular shape

PBE, volume fixed

PBE, rectangular shape

o |1
(<))
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(@)
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096 098 100 102 104

106 108

The minimum moves to
smaller volumes.

Ann E. Mattsson

Large correction >
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Confinement error correction scheme:
Presented by Feng Hao, a few talks ago

Harmonic Oscillator (HO) model a=0.31

Electron localization function (ELF). | | Harmonic oscillator (HO) model system.

1= Tz 2/3_5/3 4 _54 R
(3/10)(3x")""n™" 1-
' 1 3 05 <
22=—W{18n(—t—sz)2S2J TR
2 5
, 0 >

_,, 3t
a=22(g?—1)2 S

Ann E. Mattsson

correction in exchange energy:
AES = | din(F)e"™ (F)Ae, (F)

V(ELF>ELF,)

1

Relative errors from density functional
approximation (DFA) in the HO model: _

ELF >ELF, Cu  Ww/(x) is the Lambert W function -—=0.1
LDA
X
AMOS5 2
Total confinement error Exact -—0.2

Ry
il

t\|.>
I
—_
N[es)
—_
(NS}

Agx _ [lgjxact(a,Z)] /[lexDFA (OC,Z)] _1 Confinement errors | | , ue NS;?_dia'
- —0s51 00 05 I.ab(?rgtaories



Confinement error correction for CuO

Ann E. Mattsson

'\\ Correction is applied to the rectangular structure with
4f AN restrictions that c¢/a = 1.23, b/a=1, =90°, u=0.5.
\ ELF.=0.77 is used.
. ‘\\ —- LDA
N ™ — LDA, corrected

R “w, - AMO5

= .
L, ~ AN — AMOS corrected
> ™ \\

%n 2 . . - PBE

s: N

83 PBE, corrected

—
-
-

ok === SJecasewsl  _caoeenTTT
0.96 0.I97 O.I98 0.I99 1 I.IOI 1.62 1.03 1.04

Scale

Equilibrium structure has been shifted to have smaller
volume after correcting the confinement errors. AMO5 and

PBE have approximate same line shape after the cow
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ELF Contribution from core electrons

Ann E. Mattsson

———  ELF using PAW with 11 Cu valence electron and
6 O valence electron

ELF using PAW with 17 Cu valence electron and
6 O valence electron

Average displacement
of 1s electron of O

Core electrons will not affect the confinement correction

results using current scheme. &
/ @ Na;]io}?al
Laboratories




Confinement error correction for Si

Lattice constant of Si

Ann E. Mattsson

LDA AMO5 PBE

Experimental

Before correction 538 A 5.43A 547A 5.43A

After correction 543A 548A 552A
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Confinement correction energy

Scale

Color: correction energy for different functionals
Black: LDA, Blue: AMO05, Red: PBE

Symbols: densities obtained from different function
+ : AMOS5,

* 1 LDA,

°:PBE

Lattice constant [A]

als

>
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Self consistency needed for, for example, Si

Relative density difference between PBE and LDA calculation:
(nPBE_nLDA)/n LDA

Ann E. Mattsson

CuO

ELF>0.83

[ S —

0 0
oo 2] R

0.1
0.05
0
-0.05
-0.1

Density difference obtained from different functionals are larger
in Si than in CuO.

B
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The confinement errors have to be treated

self-consistently f(y
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FIG. 1. (Color) Comparison of DFT and VMC e,.’s on the (110) plane of the Si crystal. (a) Difference between the LDA e, and that of
VMC data (Ref. 10). Difference between that of the GGA** model described in the text and the VMC result. Contours in increments of
0.2% 1072 a.u., with thicker contour that for zero difference. Bluer (darker) regions show negative difference and redder (lighter) regions,

positive.
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FIG. 2. (Color) Gradient analysis of the density of crystalline Si. The density # (a), |Vr| (b), and V2 (c) on the (110) plane of the Si
crystal. Atoms and bonds outlined in black. Shading varies from blue (dark gray) (low) to red (light gray) (high) and contours are in

increments of 0.01 (a), 0.01 (b), and 0.05 a.u. (c). In (c) the zero contour is the thicker black line.




