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Quantum Mechanics

Dirac (1929)
“ The general theory of quantum mechanics is now almost 

complete… The underlying physical laws necessary for the 
mathematical theory of a large part of physics and the whole of 
chemistry are thus completely known, and the difficulty is only 
that the exact application of these laws leads to equations much 
too complicated to be soluble. ”

P.A.M. Dirac, Proc. R. Soc. London Ser. A 123, 714 (1929).

Note: For f-electron materials we probably need to solve the Dirac Equation.
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How do we learn from the Quantum Mechanical 
equations?

Exact Hamiltonian with exact solution.

Exact Hamiltonian with approximate solution.

Approximate Hamiltonians with exact solutions.

Approximate Hamiltonians with approximate solutions.

Ideally we would like to solve for example the non-relativistic limit of the Dirac 
Equation, the Schrödinger Equation, exactly. Only feasible for one-electron 
systems such as the Hydrogen atom. Already for the two-electron system of the 
He atom we need to start doing (at least numerical) approximations. For 
Condensed Matter systems we cannot expect to solve the Dirac or SE directly, 
even with the largest and fastest computers in the world.
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Hohenberg-Kohn theorem:
Phys. Rev. 136, B864 (1964).
The electron density contains all 
information needed to determine 
ground state properties of a system. 

Kohn-Sham equations:
Phys. Rev. 140, 1133 (1965).
Practical scheme for solving the 
quantum mechanical problem based 
on the HK theorem.

Walter Kohn awarded the 
Nobel Prize in Chemistry 1998 for
Density Functional Theory
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DFT versus the Schrödinger Equation

Formally
equivalent

electron
interaction
external potential

Schrödinger view DFT view

Kohn-Sham particle

effective potential
(non-interacting)

Hard problem to solve “Easy” problem to solve

Properties of
the system

All many-body effects are included in the effective potential via the 
Exchange-Correlation functional, Exc[n(r)].
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Kohn-Sham equations:

If we had the divine exchange-correlation functional, self-consistently 
solving these equations would give exactly the same density as the 
Schrödinger Equation, and thus via the HK theorem, we should be able to 
extract all information about the system. 

We do not need the many-body wave functions.
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Approximations for the exchange-
correlation functional

The form of the divine exchange-correlation functional is unknown.
We need to find good approximations.
There is nothing like a free lunch.

AM05, LDA, 
GGA, Meta-
GGA, Hybrids
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DFT versus Mean Field Theory

G[ ] 

Exc 

electron
interaction
external potential

Schrödinger view

F[ ]

Properties of the system

[ ] 

SE MF KS 

DFT view

Kohn-Sham particle

effective potential
(non-interacting)

Mean Field view

[ ]

Will always be 
approximate, even with
the ‘divine’ functional. 

AM05, LDA, GGA, 
Meta-GGA, Hybrids F
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Copenhagen interpretation of Quantum 
Mechanics (quotes from Wikipedia)

Carl Friedrich von Weizsäcker suggested 
instead that the Copenhagen interpretation 

follows the principle "What is observed 
certainly exists; about what is not observed 

we are still free to make suitable 
assumptions

… the wave function is merely a 
mathematical tool for calculating the 
probabilities in a specific experiment

theoretical concept

The Copenhagen 
Interpretation denies 

that the wave 
function is anything 

more than a 
theoretical concept

Bohr emphasized that Bohr emphasized that 
science is concerned 

with predictions of the 
outcomes of 

experiments, and that 
any additional 

propositions offered are 
not scientific but meta-

physical
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DFT versus the Schrödinger Equation

Formally
equivalent

electron
interaction
external potential

Schrödinger view DFT view

Kohn-Sham particle

effective potential
(non-interacting)

Hard problem to solve “Easy” problem to solve

Properties of
the system

All many-body effects are included in the effective potential via the 
Exchange-Correlation functional, Exc[n(r)].

We have moved 
our problem 
from here ...

... to here
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DFT versus Mean Field Theory

G[ ] 

Exc 

electron
interaction
external potential

Schrödinger view

F[ ]

Properties of the system

[ ] 

SE MF KS 

DFT view

Kohn-Sham particle

effective potential
(non-interacting)

Mean Field view

[ ]

Will always be 
approximate, even with
the ‘divine’ functional. 

AM05, LDA, GGA, 
Meta-GGA, Hybrids F
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f-electron Physics: Electrons are fermions

Narrow f-band

Broad free-electron-band

Free-electron band: The paradigm system 
describing this situation is the uniform electron 
gas. No potential energy difference gives that they 
need to differentiate by different kinetic energies.

f-band: 14 f-electron 
states at an ion all have 
their own quantum 
number. Even with 
interaction between ions, 
the f-electrons do not 
need to use the kinetic 
energy to differentiate 
between themselves. 
Compared to the broad 
free-electron band, the f-
band is a collection of 
discrete levels.

Electrons are fermions, 
they each need their own quantum state. 
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f-electron Physics: Competition between 
localization and delocalization

s� electron
potential

f� electron potential

chemical potential

The f-electrons can be 
localized while the 
s-electrons are delocalized.

Veff (r) Vext (r)
l(l 1)

r2
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f-electron Physics: Competition between 
localization and delocalization

The delocalized electrons in the broad free-electron band 
and the localized electrons in the narrow f-electron band 
are behaving very differently. The interesting  physics and 
chemistry of f-electron materials are governed by a 
competition between these two different pictures. 

Narrow f-band

Broad free-electron-band
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f-electron Physics: Density Functional Theory

LDA and other 
functionals based on 
the uniform electron 
gas can be expected 
to work on the broad 
free-electron band.

The Pauli exclusion 
principle embedded in 
the exchange energy is 
the main source for 
describing the fermionic
nature of electrons. 
Hybrids and exact 
exchange are 
considered needed for 
discrete levels.

Narrow f-band

Broad free-electron-band

Since the physics of f-electron materials is due to the 
competition between these two types of states, a functional 
needs to be able to describe the two situations equally well.

Functionals are applied in real space. How do we take the 
discrete level/uniform electron gas picture to real space?.
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Electron localization function (ELF)

τ: kinetic energy density
n: electron density

D: kinetic energy excess with 
respect to a boson gas.
Dh: kinetic energy of a uniform 
electron gas.

A.D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

ELF ≈ 1: strong localization, discrete levels. 
ELF ≈ 1/2: uniform electron gas like
ELF ≈ 0: Classically forbidden region.

Interpretation in terms of fermion character: B. Silvi and A. Savin,  Nature 371, 683 (1994)
Note: Kohn-Sham particles are fermions! Despite the name, not only valid for electrons.

D = 0: kinetic energy is equivalent to that in a 
boson gas with the same density. Fermions do not 
need to adjust their kinetic energy because of 
other fermions nearby.

D = 1/2: Uniform electron gas by construction.
All fermions have same potential energy and need 
to adjust their kinetic energy to stay different.

D -> ∞: Very high kine�c energy needed for 
fermions in classically forbidden region.
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Subsystem functionals

Divide integration over V 
into integrations over subsystems

Use specialized functionals
in the different subsystems

Note: The integration over 
subsystems is done automatically 
by the use of an interpolation 
function

For the subsystem functional scheme we 
need:

1) One specialized functional for each 
subsystem we want to describe.

2) An interpolation index that can tell us 
the character of the system in each 
point so that we can apply the different 
specialized functionals accordingly.

Constructing a general purpose functionals
from specialized functionals
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Real 
system

Model: 
Uniform 
Gas

veff



LDA 
(exchange and correlation)

Assume each point in the real 
system contribute the amount 
of exchange-correlation energy 
as would a uniform electron 
gas with the same density.

Obviously exact for the uniform 
electron gas.

Basic concept and first explicit LDA published in 
1965 (Kohn and Sham).

A specialized functional: The LDA functional
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Real 
system

Model: 
Uniform 
Gas

Edge regionsInterior regions

Model: 
Airy Gas

Real 
system

veff



LDA 
(exchange and correlation)

LAG or LAA exchange 
• LDA correlation

Interpolation
with an index based on the gradient of the density 

Two constants (one is  above, one is in interpolation index) 
are determined by fitting to yield correct jellium surface energies.

A general functional from specialized 

functionals: AM05, PRB 72, 085108 (2005)
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Subsystem Functional Scheme:

Surface physics: 
Airy Gas

Interior physics:
Uniform electron gas

Interpolation
Index: 

ELF


E xc  n(


r )

V
 xc (


r ;[n]) dV

Dividing V into sub-regions where 
different subsystem functionals
apply: Interpolation index.

Specialized functionals 
in different subsystems

ELF ≈ 1/2 ELF ≈ 0

ELF ≈ 1
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z 

veff

 (  2.38)

j  0

j 1

j  2

  ( 
1

2
)

1

l2

 j  ( j 
1

2
)

1

l2Energy of subbands

Chemical potential

characterizes how many subbands
have been occupied, and determines 
the level of confinement.



Harmonic Oscillator model (HO)
Hao, Armiento and Mattsson Phys, Rev. B 82, 115103 (2010).

HO model: Localized electron levels in a continuum.
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ELF in HO systems versus Exchange Energy

α=0.06 α=0.23

α=0.95 α=5.40

ELF
εx

exact

εx
LDA

εx
AM05
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Subsystem Functional Scheme:

Surface physics: 
Airy Gas

Interior physics:
Uniform electron gas

Interpolation
Index: 

ELF


E xc  n(


r )

V
 xc (


r ;[n]) dV

Dividing V into sub-regions where 
different subsystem functionals 
apply

Specialized functionals 
in different subsystems

Confinement physics:
Harmonic oscillator gas

Feng Hao, Rickard Armiento, and Ann E. Mattsson
Journal of Chemical Physics 140, 18A536 (2014).
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ELF in a ‘real’ system: CuO, transition metal oxide

ELF ≈ 1/2: uniform electron gas like
ELF ≈ 1: strong localization, discrete levels 

CuO: Monoclinic structure obtained when 
starting from the experimental structure  
with each dimension scaled by 3%

O

Cu

Cu

Cu

Cu

ELF > 0.83

ELF > 0.77

The high ELF regions are around the oxygen atoms. 
We identify these as the regions where hybridization
in solid materials occur.

Feng Hao, Rickard Armiento, and Ann E. Mattsson
Journal of Chemical Physics 140, 18A536 (2014).
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Summary

• The interesting properties of f-electron systems comes 
from a simultaneous existence of free and discrete 
level electrons.

• The challenge we have is to describe free electrons 
and discrete level electrons equally well in a unified 
picture.

• The ELF index can be used to find regions in real space 
where discrete level physics needs to be taken into 
account.

• We have identified the HO gas as a model system that 
can be used to gain insight about this kind of physics.

• We will use the HO gas model system for creating a 
functional suitable for these systems via the 
subsystem functional scheme.
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Heavy Materials: The problematic p1/2 states

violated

The Dirac p1/2 wavefunction is 

at the origin, while the scalar-relativistic and non-
relativistic (Schrödinger Equation) ones are.

We need to use a 
DFT method based 
on the Dirac 
Equation.
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Confinement physics

Th Pa U Np Pu Am Cm Bk Cf Es

1.5

2.0

S
w

s
(A

n
g
st

ro
m

s)

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

-Pu

J M Wills and Olle Eriksson, Phys. Rev. B 45, 13879 (1992)

5d transition metals

La    Hf   Ta   W   Re   Os    Ir   Pt   Au

actinides

rare earths

Experimental equilibrium volumes.

 LDA/AM05/PBE work 
reasonably well for 5d 
transition metals (-2%/0 
%/+2 %), but, contrary 
to experiments, give the 
same parabolic trend 
for rare earths and 
actinides.

 Dirac treatment not 
likely to change this 
dramatically.
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Thorium AM05 results

0.8 0.9 1 1.1

V/V
0

-5

0

5

10

15

20

25

30

E
-E

0
(m

R
y

)

Dirac  E
0
 = -53047.878944 Ry

SR      E
0
 = -53047.524218 Ry

SO      E
0
 = -53047.670192 Ry

V
0
 = 220.0 bohr

3

LDA
AM05

PBE
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Thorium LDA-PW results

0.8 0.9 1 1.1

V/V
0

0

10

20

30

E
-E

0
(m

R
y)

Dirac E
0
 = -53046.678559

SR     E
0
 = -53046.322845

SO     E
0
 = -53046.469070

V
0
 = 220.0 bohr

3
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Thorium PBE results

0.8 0.9 1 1.1

V/V
0

-10

0

10

20

30

E
-E

0
(m

R
y)

Scalar Relativistic
Fixed Radius
Fixed Volume Fraction
Variational Spin Orbit

Dirac

E
0
(SR) = -53073.24843 Ry

E
0
(SO) = -53073.39269 Ry

V
0
 = 219.997 bohr

3

E
0
(Dirac) = -53073.57972
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Summary Thorium

Note: PBE is giving 7% too large volume for gold. Generally underbinding.
“When PBE gets the right equilibrium volume, you should get suspicious”.
Seen like an indication that a hybrid functional or exact exchange is needed. 
Confinement physics…
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characterizes how many subbands
have been occupied, and determines 
the level of confinement.

  ( 
1

2
)

1

l2

 j  ( j 
1

2
)

1

l2

z 

veff

 (  2.38)

j  0

j 1

j  2

Energy of subbands

Chemical potential



Confinement error and Harmonic Oscillator 
model (HO)

Relative errors of Ex of the HO gas 
introduced by different functionals.

Hao, Armiento and Mattsson Phys, Rev. B 82, 115103 (2010).

HO model: Localized electron levels in a continuum.
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Experimental structure of CuO

O Cu

Experimental lattice parameters:
a = 4.6837Å, b = 3.4266 Å, c=5.1288 Å ,β = 99.54°, u=0.4184

Rectangular shape obtained from DFT calculation.
a = 4.0396Å, c/a=1.23, b/a=1.0, β = 90°, u=0.5 
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DFT calculations of CuO structure

Solid lines: fixed volume, and 
fully structure relaxed 
calculations.

Dashed lines: structure is 
restricted to be rectangular 
with  β = 90°, b/a = 1,  u=0.5.

Present functionals give systematic errors leading to 
too large equilibrium volume.  

Scale =(V/V0)1/3 

V0 is the lattice volume 
of the experimental 
structure
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DFT calculations of CuO structure

Solid lines: fixed volume, and 
fully structure relaxed 
calculations.

Dashed lines: structure is 
restricted to be rectangular 
with  β = 90°, b/a = 1,  u=0.5.

Present functionals give systematic errors leading to 
too large equilibrium volume.  One can obtain the 
experimental monoclinic structure from DFT 
calculation but at the wrong volume. 

Scale =(V/V0)1/3 

V0 is the lattice volume 
of the experimental 
structure

Structures with relative dimensions 
close to the experimental structure 
are obtained in these points.
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Possible mechanism for correction 

La
rg

e 
co

rr
ec

ti
o

n

Sm
al

l c
o

rr
e

ct
io

n

The minimum moves to 
smaller volumes.
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Confinement error correction scheme: 
Presented by Feng Hao, a few talks ago

2 1 0 1 2

0

0.5

1

0.3

0.2

0.1

0

z

LDA

AM05

PBE

Exact

E
L
F

lε
x

Harmonic Oscillator (HO) model α=0.31

O

Cu

Cu

Cu

Cu

ELF >ELFc W(x) is the Lambert W function

0.5 0.0 0.5
z

lε
x

Confinement errors

Relative errors from density functional 
approximation (DFA) in the HO model:

Total confinement error 
correction in exchange energy:

z 2 
1

2
W 18 (

3

5
t  s2)2 s2






  z 2(
3

5

t

s2
1)2

V 
1

2
z 2

Electron localization function (ELF). Harmonic oscillator (HO) model system.



A
n

n
 E

. 
M

a
tt

s
s

o
n

Confinement error correction for CuO

Equilibrium structure has been shifted to have smaller 
volume after correcting the confinement errors.  AM05 and 
PBE have approximate same line shape after the correction.

Correction is applied to the rectangular structure with 
restrictions that c/a = 1.23, b/a=1, β=90°, u=0.5. 
ELFc=0.77 is used.
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ELF Contribution from core electrons

ELF using PAW with 11 Cu valence electron and 
6 O valence electron 

O Cu O O
0.0

0.2

0.4

0.6

0.8

1.0

E
L

F

ELF using PAW with 17 Cu valence electron and 
6 O valence electron 

Average displacement 
of 1s electron of O 

Core electrons will not affect the confinement correction 
results using current scheme.
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Confinement error correction for Si

CuO

LDA AM05 PBE Experimental

Before correction 5.38 Å 5.43 Å 5.47 Å 5.43 Å

After correction 5.43 Å 5.48 Å 5.52 Å

Lattice constant of Si

Confinement correction energy

Si

Color: correction energy for different functionals
Black: LDA,   Blue: AM05, Red: PBE
Symbols: densities obtained from different functionals
* : LDA,     + : AM05,    ° : PBE   
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Self consistency needed for, for example, Si

Relative density difference between PBE and LDA calculation: 
(nPBE-nLDA)/nLDA

ELF>0.83

ELF>0.83

Density difference obtained from different functionals are larger 
in Si than in CuO. 

The confinement errors have to be treated 
self-consistently for Si.

O O

Si Si

Si

CuO Si
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Si from QMC
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Si from QMC


