
Exploring MPI Application Performance Under
Power Capping on the Cray XC40 Platform

Kevin Pedretti, Stephen L. Olivier,
Kurt B. Ferreira

Sandia National Laboratories
Albuquerque, NM, USA

{ktpedre, slolivi, kbferre}@sandia.gov

Galen Shipman
Los Alamos National Laboratory

Los Alamos, NM, USA
gshipman@lanl.gov

Wei Shu
University of New Mexico
Albuquerque, NM, USA

wshu@unm.edu

ABSTRACT
The power consumption of supercomputers has become one
of the key bottlenecks limiting performance. Yet current
practice in operating these systems does not leverage power
management opportunities, instead running at “maximum
power” due to the potential impact to application perfor-
mance and scalability. Many suspect that this will not be
sustainable, and that on future systems power will need to be
managed as a critical resource and directed to where it has
most benefit. Power capping is one promising mechanism
for managing power budgets, however its behavior is not
well understood for HPC workloads. This paper presents an
empirical evaluation of several MPI benchmarks and a full
application running under power caps on a Cray XC40 sys-
tem, one of the first HPC platforms with vendor-supported
power capping capabilities. We show that achieving maxi-
mum performance under a power cap often requires operat-
ing at a lower than default CPU frequency (P-state), and
present analysis showing that this is due to cascading slow-
downs due to unsynchronized performance variability across
nodes made by the underlying power capping mechanism.
When operating under a power cap, we observe a perfor-
mance difference of up to 22.7% between the default and
ideal P-state configurations. Our work provides critical anal-
ysis and comparison of HPC application performance under
a power cap and enables users and system administrators to
understand how to best optimize application performance in
these systems.

Keywords
Power Capping, Power Management, HPC

1. INTRODUCTION
Power consumption on capability-class supercomputers has

become one of the key bottlenecks limiting overall system
performance. This is motivated by the observation that the
power used by each processor is no longer scaling down-
ward with length scale due to thermal leakage, sometimes
referred to as the end of Dennard (or MOSFET) scaling [7].
Projections indicate that if current power scaling trends are
maintained, reaching the next milestone of a supercomputer
with exaflop/s performance (1018 floating point operations
per second) will require a power budget of several hundred
megawatts [8]. This is not practical from a physical or eco-
nomic standpoint, hence the HPC community’s heightened
interest in research aimed at mitigating the so called “power

wall”. Put differently, the community is expecting power
usage to become an important limiting factor to achieving
performance on capability-class systems.

One promising technique to limit power consumption is
power capping. Power capping is a technique to control the
peak power consumption of a system by monitoring cur-
rent power draw and periodically selecting the highest per-
formance hardware state while keeping the system within
a fixed power constraint [16]. Power capping mechanisms
are generally used with the goal of shifting the available
power budget to where it is thought to be most beneficial
to application performance. An underlying assumption of
power capping is that due to power densities, powering on
all hardware subsystems at full speed simultaneously will not
be possible. Therefore, careful consideration must be made
throughout the execution of an application as to which sub-
systems to turn on and which to let go “dark” (i.e., turn off),
and similarly what proportion of the overall power budget
should be given to each subsystem.

While power capping mechanisms have been available on
individual hardware components for some time, for example
RAPL [6] on Intel processors, the performance implications
of this technique for HPC workloads running on capability-
class HPC systems is not yet well understood. Therefore, in
this work we investigate the performance of power capping
on a number of key HPC workloads. Utilizing the power
capping facilities of a next-generation capability-class sys-
tem, this work demonstrates the following contributions:

• We present our early experiences using the Cray XC40’s
per-node power capping mechanism on a number of
MPI benchmarks and a real-world application.

• We demonstrate that the independent, per-node power
capping mechanism used on this platform can lead to
poor scalability for certain MPI workloads, providing
analysis of why this is the case – unsynchronized per-
formance variability across nodes.

• We demonstrate that a simple technique – manually
selecting a lower P-state setting on all nodes – can
eliminate the poor scalability and improve application
performance under a power cap by up to 22.7% in our
experiments.

• Based on our experience, we suggest additional plat-
form capabilities, such as the ability to dynamically
change P-states during application execution and to

SAND2015-3824C

set CPU frequencies within groups rather than inde-
pendently, that would be beneficial for enabling appli-
cations to stay within a power cap.

To the best of our knowledge, this is the first study to
explore power capping in the context of a large-scale HPC
architecture. While only one platform is examined, we ex-
pect the lessons learned in this study will also be applicable
to other large-scale platforms incorporating similar power
capping facilities.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the power management capabilities of the
Cray XC40 architecture. We then describe our approach for
evaluating the XC40’s power capping capability in Section 3.
Experimental results are presented in Section 4, along with a
deeper analysis of the poor scalability that was observed for
some cases. The implications of our results and our advice
based on lessons learned are discussed in Section 5. Related
work is discussed in Section 6, followed by conclusions in
Section 7.

2. CRAY XC40 POWER MANAGEMENT
Our power capping experiments are performed on a 100

node Cray XC40 system at Sandia National Laboratories
called Mutrino. Mutrino is an Application Readiness Testbed
(ART) for the upcoming Trinity platform, which will consist
of over 19,000 compute nodes. Mutrino is in effect a mini-
Trinity that has all of the functional components of Trinity –
I/O nodes, compute nodes, burst buffer nodes, water cooling
infrastructure, etc. – but at a smaller scale. Both Trinity
and Mutrino use identical “Haswell” compute nodes with the
configuration shown in Figure 1b.

Figure 1 provides a high-level overview of the Cray XC40
power management architecture on Mutrino [5]. There is
one system management workstation (SMW), shown in the
upper left of Figure 1a, that system administrators use to
boot and manage the system during operation. Users are
not allowed access to the SMW. Users login to a set of front-
end service nodes, shown at the bottom of Figure 1a, where
they can compile their applications and launch applications
onto the compute nodes. Users allocate compute nodes for
their applications by making job allocation requests to the
workload manager, shown in the upper right of Figure 1a.
The workload manager allocates an exclusive set of compute
nodes to each job request. If resources are not immediately
available, the request is queued and satisfied once resources
become available, subject to a scheduling policy.

The SMW is connected to all compute nodes via an Ether-
net-based service network that is used for system monitor-
ing and control. This network can be thought of as the
“out-of-band” system control network, and is separate from
the “in-band” high-performance Aries network that links all
compute nodes together. Each XC40 compute node is in-
strumented with a power sensor that samples the node’s
power usage at 10 Hz. There is one “out-of-band” service
processor (i.e., similar to a Baseboard Management Con-
troller in commodity servers) for every four compute nodes
that collects the 10 Hz power samples and once per second
relays power usage information to an SQL database run-
ning on the SMW. This database can be queried by system
administrators or the workload manager to get information
about how power is being used in the system. Users are
currently not allowed access to the SMW power database.

User applications can, however, get “in-band” power and en-
ergy information by reading local files on each compute node
(e.g., /sys/cray/pm_counters/energy contains the current
energy counter, which accumulates the total Joules used by
the node since boot).

The arrows in Figure 1a represent commands correspond-
ing to the two primary power management capabilities of the
Cray XC40 platform, 1) node-level power capping (in red),
which is only available to system administrators, and 2) job-
level static P-state control, which can be set by users at
application launch time but cannot be changed afterwards.
These two capabilities are described in more detail in the
following sections.

2.1 Node-level Power Capping
The Cray XC40 system provides a power capping mecha-

nism that allows a power budget to be set for each compute
node in the system. Firmware running on each compute
node attempts to keep the node’s power usage at or below
this level for an unspecified sliding time window. If a node’s
power usage begins to exceed its power cap, the node is
throttled to a lower performance level – e.g., by running at
a lower P-state or performing clock gating – until the node’s
power usage falls below the power cap for an unspecified
period of time. Node-level power capping in Mutrino is im-
plemented using the Intel Node Manager firmware. Each
Node Manager instance operates autonomously and inde-
pendently with no cross-node coordination.

Activating a power cap is a privileged operation that re-
quires access to the SMW. Cray provides a set of command
line utilities on the SMW that allow system administrators
to set up and activate power cap profiles on sets of compute
nodes. Additionally, Cray developed a RESTful web API
called CAPMC [19] that enables privileged system services,
such as the workload manager, to perform power capping
from remote (off-SMW) locations, as shown in the upper
right of Figure 1b. Workload managers can use the CAPMC
interface to get power usage information (e.g., how often the
nodes in a job are being throttled) and then dynamically
adapt power cap levels. Whether power capping function-
ality is accessed directly from the SMW or via CAPMC,
activating and modifying power caps is a relatively expen-
sive operation that requires several seconds to complete.

Internally the SMW power cap utilities send “Set Power-
Cap” commands to each of the targeted compute nodes via
the Ethernet monitoring and control network. As shown
in Figure 1b, a power cap command will first arrive at the
blade controller that manages the target node. Software
running on the blade controller then relays the command
to the target node’s Platform Controller Hub (PCH). The
PCH runs Intel’s Node Manager firmware, which imple-
ments the power capping policy. Node manager continu-
ously monitors the power usage of each Haswell processor
and makes dynamic power management control decisions –
such as changing CPU P-states – to maintain the desired
power cap level. The exact details of how the node manager
implements power capping are not disclosed by Intel but our
empirical results presented in Section 4 provide some clues
as to its operations.

Table 1 provides some example power cap profile configu-
rations for compute node shown in Figure 1b. Cray names
its power cap levels in terms of percentages, which represent
the percentage within the range of a node’s minimum and

Compute Nodes

System
Management
Workstation

(SMW)

Set Node Power-Cap
Commands

Workload
Manager / Job

Scheduler

CAPMC
Power-Cap
Commands

User Front-End
Nodes

Launch Application at
Static P-state Commands

Job Allocation
Requests

(a) System-Level

64 GB Memory
DDR4 2133, 4 Ch.

68 GB/s

64 GB Memory
DDR4 2133, 4 Ch.

68 GB/s

Haswell
Xeon E5-2698V3

16 Cores, 2.3 GHz
588 GFLOPS

QPI x2,
9.6 GT/s

Platform Controller Hub,
Runs Intel Node

Manager Firmware

Haswell
Xeon E5-2698V3

16 Cores, 2.3 GHz
588 GFLOPS

DMI2

Compute Node

Blade Controller,
Runs Embedded Linux,

Controls 4 Nodes

SMBus / I2C
System

Management
Workstation

(SMW)

Cray Aries
NIC / Router

GigE

PCIe3
x16

(b) Node-Level

Figure 1: Power Management Architecture of the Cray XC40 Platform

maximum power usage. For this example compute node,
the minimum power required to operate the node is 230 W
and the maximum power is 415 W. Thus, a 50% power cap
level represents a 322 W power cap in absolute terms. Cray
chooses to represent power caps as percentages since they
are somewhat easier to reason about than absolute wattages,
particularly for systems with heterogeneous node types. Set-
ting the power cap percentage level is the only configuration
option that Cray exposes. In particular, it is not possible
to change Intel Node Manager power capping configuration
parameters such as the unspecified time duration used to
calculate average power. This is a potential area for future
investigation.

Table 1: Example Power-Caps for node shown in Figure 1b

Cray Power-Cap Savings Savings
Power-Cap Per-Node Potential Potential

Setting (Watts) (Watts) (Percentage)

No Cap ∼ 415 W N/A N/A
100% 415 W ∼ 0 W ∼ 0%
75% 369 W 46 W 11%
50% 322 W 93 W 22%
25% 276 W 139 W 33%
0% 230 W 185 W 45%

2.2 Job-level P-state Selection
Cray has chosen to expose static P-state selection to users

at application launch time and to name their P-states di-
rectly with clock frequencies. If a user knows that their
particular application will not benefit from running at the
default “maximum performance” P-state setting, they can
choose to manually select a lower P-state when they launch
their application onto the compute nodes. The P-state se-
lected is set for all cores within each node and this setting
cannot be dynamically changed while the application is run-
ning.

Table 2 lists several of the available P-states for the com-
pute node shown in Figure 1b, along with the percentage of
peak performance delivered. The particular Intel processors
used in this node operate at a maximum base frequency of

2.3 GHz and a minimum clock frequency of 1.2 GHz. At all
P-states except for 2301000, the processors operate at the
fixed frequency shown in the table. The 2301000 P-state
enables Intel’s “Turbo Boost” feature, which allows the pro-
cessor’s clock frequency to scale up from the 2.3 GHz base
up to a maximum of 3.6 GHz, depending on factors such
as the number of cores active and the currently available
thermal headroom. An additional complication of the Intel
Haswell processor is that heavy usage of AVX2 instructions
causes the base frequency to be reduced somewhat [13], but
this complication can be mostly ignored for the purposes of
this paper.

Table 2: Example P-states for node shown in Figure 1b

Cray P-state Clock Frequency Percent
Name (GHz) of Peak

2301000 2.3–3.6 (Turbo On) > 100%
2300000 2.3 100%
2000000 2.0 87%
1900000 1.9 83%
1800000 1.8 78%
1600000 1.6 70%
1400000 1.4 61%
1200000 1.2 52%

3. APPROACH
This section describes the MPI workloads and testing pro-

cedure used to perform power capping experiments.

3.1 MPI Workloads
We evaluated two MPI benchmarks, High Performance

Linpack (HPL) [1] and High Performance Conjugate Gra-
dient (HPCG) [14], and one real MPI application, the S3D
combustion code [4]. HPL and HPCG are from the Top500 [2]
suite and represent different extremes in the spectrum of
application behavior. HPL is highly compute bound, con-
sisting of a dense LU factorization with O(n3) compute op-
erations for O(n2) data movement. HPCG is highly mem-
ory bound, consisting primarily of low computational in-
tensity operations like sparse matrix-vector products. The

S3D application performs numerical simulation of turbulent
combustion using an explicit Runge-Kutta method. S3D is
primarily network bound, with the dominant communica-
tion pattern being 3-D nearest-neighbor exchanges of ghost
zones.

Test problems were configured for weak scaling from 1
to 96 nodes, with 32 MPI processes per node. Configura-
tions for 1, 8, 32, 64, and 96 nodes were tested (32, 256,
1024, 2048, and 3072 MPI processes). The problem size for
HPL was chosen to use about 24 GB of memory per node,
scaled from N=56,000 for 1 node to N=549,000 for 96 nodes.
HPCG was configured with the default 104x104x104 prob-
lem, using about 950 MB per MPI process (30 GB per node).
To ensure that the same amount of work was done for all
test configurations, HPCG was modified slightly to run for
a fixed number of iterations rather than a fixed time period.
S3D was configured for 483 gridpoints per node using an n-
heptane/air chemical model with 52 transported species, 16
quasi-steady state species, and 283 chemical reactions. This
configuration was chosen to be representative of the types of
problems used in production S3D calculations. MPI topol-
ogy mapping was performed to place a compact mini-box
of the overall problem on each node, minimizing off-node
communication.

HPL and HPCG were built using Cray compilers (PrgEnv-
cray/5.2.56), since they were found to produce the best
performance. S3D was built with GNU compilers (PrgEnv-
gnu/5.2.56), as required. Optimization level -O3 was used
in all cases.

3.2 Testing Procedure
Power capping experiments were performed while Mutrino

was undergoing acceptance testing. Few users were allowed
on the system so tests were done with no other jobs running.
For each test window, a power cap setting was selected from
Table 1 and installed on every compute node. Installing a
power cap requires access to the SMW and root-level priv-
ilege. Once the power cap was active, typically within 10
seconds, each benchmark was executed at each of the p-
state settings in Table 2 for each of the node counts tested,
from 1 to 96 nodes. Tests with each of the power cap settings
listed in Table 1 were performed, but results for the 75% set-
ting are not presented because this configuration resulted in
minimal performance impact.

For the HPL and HPCG tests, only one trial is plotted
for each data point (power cap, p-state, and node count).
Additional trials were run at the larger node counts but not
shown as the variance is not visible in the figures. For S3D,
five trials are plotted for each configuration, with error bars
representing the minimum and maximum values displayed.
The per-run problem wallclock time for HPL and HPCG
varies from 5 to 30 minutes, dependent on node count, with
the S3D times coming in a bit shorter at around a minute
to 3 minutes per run.

All tests were performed with a 1-to-1 pinning of the 32
MPI processes per node to the 32 physical cores per node.
Lastly, large pages were used for all tests via Cray’s craype-
hugepages2M module.

4. RESULTS
We first present the results of our scaling study for the Top

500 benchmarks, HPL and HPCG, followed by the scaling
study for the full MPI application, S3D. Finally, we show

MPI microbenchmarks and a view of the load imbalance in-
duced by power capping. In all multi-part figures presented,
one key is provided that is common between all of the sub-
figures within the figure.

4.1 Top500 Benchmarks
Figures 2 and 3 show the performance of HPL and HPCG,

respectively, under different combinations of p-state and power
cap configurations. Each of the subfigures within each figure
shows results for a range of p-states from turbo mode down
to 1.2 GHz under the same power cap. The number of nodes
is scaled from a single node up to 96 nodes.

First consider the behavior of HPL. With no power cap
imposed (Figure 2a), performance is similar for p-states at
and above 1.9 GHz, likely due to the Haswell’s automatic
throttling of AVX2- heavy execution mixes, as mentioned in
Section 2.2. Performance degrades at lower p-state settings,
and varies little as node count increases. Imposing a cap at
50% of the allowed capping range (Figure 2b), reduces the
performance at high p-states for all node scales, while per-
formance at low p-states is not affected – their power usage
never reaches the 322 W cap. In between the effect is pro-
nounced: at a 1.8 GHz p-state, performance drops markedly
as node count increases, dipping close to the 1.6 GHz p-state
performance at 96 nodes. At a 25% / 276 W power cap (Fig-
ure 2c), the 1.6 GHz p-state results show a similar trajectory,
underperforming even the 1.2 GHz p-state performance at
96 nodes. At the lowest allowed cap of 230 W (Figure 2d),
the 1.4 GHz p-state results show a further decline.

Turning to the results for HPCG, we observe that perfor-
mance is relatively stable across p-states and node counts
under no cap (Figure 3a) and a 50% / 322 W cap (Fig-
ure 3b). The similarity of the two graphs shows that re-
gardless of p-state, HPCG’s memory-intensive operations
do not draw enough CPU power to reach a 322 W cap,
unlike the more compute-intensive HPL. With a more re-
strictive 276 W / 25% cap (Figure 3c), HPCG performance
does see an impact. In this case, performance is worst at
1.8 - 2.0 GHz p-states, only somewhat diminished at turbo
mode and 2.3 GHz, and unimpacted by the 276 W cap at 1.2
- 1.6 GHz. At the most restrictive cap, 230 W (Figure 3d),
the p-states of 1.2 - 1.6 GHz are now the worst performers.
Moreover, the performance of these p-states falls off sharply
with increased node count under this cap.

4.2 S3D Combustion Application
Section 4.1 showed that benchmark performance under

a power cap varies depending on the combination of the
wattage of the imposed power cap, the p-state frequency
setting, and the benchmark characteristics. To investigate
whether this behavior extends to a full real-world MPI ap-
plication, we evaluate the performance of S3D under the
same set of power cap and p-state configurations. The re-
sults are given in Figure 4, and as before, each subfigure
shows performance under a different power cap. In the ab-
sence of a power cap (Figure 4a), turbo mode gives the best
performance, with the other p-state settings showing steady
performance decreases according to their relative frequen-
cies. In all cases, there is a performance drop from 1 to 8
nodes as communication costs are introduced, and a con-
tinued, more gradual drop as node count increases further.
With a 50% / 322 W cap (Figure 4b, running in turbo mode
reaches the cap and the resulting application performance

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o
d
e

Scale (# Nodes)

(a) HPL: No Cap (415 W)

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o
d
e

Scale (# Nodes)

(b) HPL: 50% Cap (322 W)

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o

d
e

Scale (# Nodes)

(c) HPL: 25% Cap (276 W)

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o

d
e

Scale (# Nodes)

Turbo On
2.3 GHz
2.0 GHz
1.9 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

(d) HPL: 0% Cap (230 W)

Figure 2: HPL Performance Scaling Under Power Capping

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o
d
e

Scale (# Nodes)

(a) HPCG: No Cap (415 W)

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o
d
e

Scale (# Nodes)

(b) HPCG: 50% Cap (322 W)

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o
d
e

Scale (# Nodes)

(c) HPCG: 25% Cap (276 W)

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 P
e
r

N
o
d
e

Scale (# Nodes)

Turbo On
2.3 GHz
2.0 GHz
1.9 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

(d) HPCG: 0% Cap (230 W)

Figure 3: HPCG Performance Scaling Under Power Capping

decreases to the same level as the 2.3 GHz p-state on the sin-
gle node execution. Performance degradation worsens with
node count – on 96 nodes, turbo underperforms the 1.8 GHz
p-state. When the cap is tightened to 25% / 276 W (Fig-
ure 4c), turbo performance falls still lower and performance
at the 2.3 GHz p-state drops below that of the 1.8 GHz p-
state. Finally, under a 230 W cap (Figure 4d), performance
of turbo, 2.3, and 2.0 GHz p-states degrades below 1.6 GHz
performance, performance at the 1.9 Ghz p-state begins to
drop, and the 1.2 - 1.6 GHz p-states maintain their same
performance.

4.3 Measured Power Usage
Figure 5 shows the average power usage per node for the

96 node runs of each MPI workload. Average power is cal-
culated for each run by dividing the total energy used, as
reported by Cray’s node-level energy counters, by wall clock
runtime. For a given p-state, points below the “No Cap”
value indicate that power capping is being activated to re-
duce power usage. Power capping may be occurring in other
cases as well, for example if the application has bursty power
usage behavior that isn’t captured by the average power
metric.

The results in Figure 5 can be correlated with Figures 2,
3, and 4 to see that when power capping is activated, per-
formance is also usually reduced. For example, HPL uses
approximately 355 W for the “No Cap” turbo case, as shown
in Figure 5a. With a 50% (322 W) cap, HPL’s power us-
age with turbo drops by 11% to 315 W while performance
decreases by 14%. S3D’s power usage with turbo begins
to be curtailed at the 50% power cap setting, as shown in
Figure 5c. With 50% cap and turbo p-state, S3D’s power
usage decreases by 10% while performance decreases 34%
compared to “No Cap” turbo. This indicates that S3D is
being more heavily impacted by power capping than HPL,
and the general trend shown in Figure 4b is increasing im-
pact with scale. HPCG’s power usage, shown in Figure 5b,
begins to be curtailed by power capping at the 50% level
for turbo and at the 25% level for all other p-states. HPCG
performance impact compared to “No Cap”, shown in Fig-
ure 3, ranges from almost nothing with a 50% cap and turbo
up to a 35% decrease with a 0% cap and 1.2 GHz p-state.

4.4 Analyzing Application Impact
In this section, we investigate characteristics of our tested

workloads in order to better understand the performance im-
pact of power capping displayed in the previous section. In
this analysis we utilize MPI microbenchmarks and the CPU
frequency values sampled during application execution. The
former focuses attention on the interaction of MPI opera-
tions and power capping, demonstrating where manifest in
application execution, in this case in collective operations.
The latter gives a close-up view of the underlying system
behavior that manifests in application load imbalance.

MPI Microbenchmark Performance.
In previous work [11, 10], we explored the break-down

in performance for our example workloads – demonstrat-
ing how HPL’s and HPCG’s performance is sensitive to the
performance of MPI_Allreduce(). S3D, on the other hand,
performs very few Allreduce operations, or MPI collectives
in general, and displays sensitivity to point-to-point perfor-
mance. Therefore, we look to MPI latency, bandwidth, and

MPI_Allreduce() microbenchmark performance to help ex-
plain the observed performance impacts.

Figure 6 shows the performance of MPI point-to-point
messaging for ping-pong one-way latency and bandwidth
with no power cap set. Ping-pong performance with 0%,
25%, 50%, and 75% power caps active was virtually identical
the no cap results, so plots are omitted due to space. Small
message latency, shown in Figure 6a varies from 1.4 µs with
turbo to 2.4 µs using lowest available p-state, 1.2 GHz. Most
p-states show low latency variability except for 2.3 GHz,
which has noticeable variation for all message sizes. Fig-
ure 6b shows that the bandwidth difference between turbo
and 1.2 GHz p-states varies from 41% for small messages to
0% for large messages, where all cases reach the asymptotic
bandwidth.

Figure 7 shows the performance for 8-byte MPI Allreduce
(The most common size Allreduce operation found in HPCG
and HPL). With no power cap active (Figure 7a), perfor-
mance scales regularly and there is little variability. Unlike
with ping-pong, allreduce performance is impacted by power
capping. With a 50% power cap active (Figure 7b), allreduce
performance with turbo is increasingly impacted with scale,
becoming up to 59% worse than when using the 2.0 GHz
p-state at 96 nodes (10% worse on average). This trend is
amplified with 25% and 0% power caps (Figures 7c and 7d),
where the performance of the turbo and 2.3 GHz p-states
becomes extremely noisy. The performance of the lower p-
states, 2.0, 1.6, and 1.2 GHz are not significantly impacted,
presumably because they result in a power level that does
not trigger the power capping mechanism.

The Allreduce results do help explain the performance im-
pacts we see with HPL and HPCG. As power cap decreases,
Allreduce performance variability increases, leading to ap-
plication slowdowns. The bandwidth and latency numbers,
however, do not explain the performance of S3D. To better
explain its results, we took a closer look at the underlying
system behavior, specifically the CPU per-node frequency
data.

Per-node Frequency Settings.
The communication pattern in S3D is nearest-neighbor.

Like Allreduce, this pattern requires all nodes to finish their
communication before the application can proceed (i.e., to
the next time step in the simulation). In fact, previous
work [11] has demonstrated that these nearest neighbor ex-
changes can have significant global slowdown even when a
small subset of nodes experience performance slow-downs.

To dive deeper into the effects of power capping on S3D,
we sampled the CPU frequency on each node of the machine
at 10 Hz intervals. Figure 8 shows sampled data from two
executions of S3D on 96 nodes under a 230 W power cap. In
each graph, samples from ten of the nodes are shown, one
row per node. Time proceeds from left to right across the
x-axis. Each point is colored based on is observed operating
frequency in Hz, as shown in the legend at right. Figure 8a
shows that at p-state 1.8 GHz, a consistent CPU operating
frequency of 1.8 GHz is maintained throughout the execu-
tion, as the power usage remains below the imposed power
cap.

Figure 8b demonstrates the very different behavior result-
ing from execution in turbo mode. Execution begins with
nodes running at high frequency. As power usage reaches the
cap, the CPU frequency is throttled. Throughout execution,

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 4 8 16 32 64 128

G
ri
d
p

o
in

ts
/S

e
c
o

n
d
 P

e
r

N
o

d
e

Scale (# Nodes)

(a) S3D: No Cap (415 W)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 4 8 16 32 64 128

G
ri
d
p

o
in

ts
/S

e
c
o

n
d
 P

e
r

N
o

d
e

Scale (# Nodes)

(b) S3D: 50% Cap (322 W)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 4 8 16 32 64 128

G
ri
d

p
o

in
ts

/S
e
c
o
n

d
 P

e
r

N
o
d

e

Scale (# Nodes)

(c) S3D: 25% Cap (276 W)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 4 8 16 32 64 128
G

ri
d

p
o

in
ts

/S
e
c
o
n

d
 P

e
r

N
o
d

e

Scale (# Nodes)

Turbo-On
2.3 GHz
2.0 GHz
1.9 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

(d) S3D: 0% Cap (230 W)

Figure 4: S3D Performance Scaling Under Power Capping, 483 Problem

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

0% 25% 50% 75% No Cap

A
v
e
ra

g
e
 P

o
w

e
r

P
e
r

N
o
d
e

Power Cap Setting

(a) HPL

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

0% 25% 50% 75% No Cap

A
v
e
ra

g
e
 P

o
w

e
r

P
e
r

N
o
d
e

Power Cap Setting

(b) HPCG

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

0% 25% 50% 75% No Cap

A
v
e
ra

g
e
 P

o
w

e
r

P
e
r

N
o
d
e

Power Cap Setting

Turbo On
2.3 GHz
2.0 GHz
1.9 GHz
1.8 GHz
1.6 GHz
1.4 GHz
1.2 GHz

(c) S3D

Figure 5: Average Power Usage Per Node Under Power Capping for 96 Node Runs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 4 16 64 256 1K 4K

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

Message Size (Bytes)

Turbo-On
2.3 GHz
2.0 GHz
1.6 GHz
1.2 GHz

(a) Small Message Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 4 16 64 256 1K 4K 16K 64K256K 1M 4M
 0

 20

 40

 60

 80

 100

M
B

y
te

s
 P

e
r

S
e
c
o
n
d

%
 D

if
fe

re
n
c
e
 B

e
s
t
to

 W
o
rs

t

Message Size (Bytes)

Turbo-On
2.3 GHz
2.0 GHz
1.6 GHz
1.2 GHz

% Diff (right axis)

(b) Bandwidth

Figure 6: MPI PingPong Performance for No Cap (415 W) at Different P-states

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 96

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
o

n
d

s
)

Scale (# Nodes)

Turbo-On
2.3 GHz
2.0 GHz
1.6 GHz
1.2 GHz

(a) Allreduce: No Cap (415 W)

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 96

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
o

n
d

s
)

Scale (# Nodes)

(b) Allreduce: 50% Cap (322 W)

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 96

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
o

n
d

s
)

Scale (# Nodes)

(c) Allreduce: 25% Cap (276 W)

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 96
L

a
te

n
c
y
 (

m
ic

ro
s
e
c
o

n
d

s
)

Scale (# Nodes)

(d) Allreduce: 0% Cap (230 W)

Figure 7: MPI 8-byte Allreduce Scaling Under Power Capping

the frequencies vary quite widely, even down to 1.6 GHz. At
a particular point in time, some nodes are operating at a
high frequency while others are operating at lower frequen-
cies. The result for a tightly-coupled MPI application like
S3D is load imbalance, in which slower nodes hold back the
progress of faster nodes. As with load imbalance due to OS
noise demonstrated in previous work [11], this particularly
inhibits performance at scale.

5. DISCUSSION
In this section we discuss the implications of the results

presented in the previous section. First, we summarize the
performance of our workloads under a power cap. We then
outline the importance of avoiding the gap. Finally, we con-
clude the section with advice on mitigating performance im-
pacts. In the former two cases, we describe what this means
for applications designers, OS/runtime developers, and HPC
vendors and system integrators.

Summary of Results.
Based on the data presented in Section 4, Table 3 shows

the optimal p-state under each power cap setting for HPL,
HPCG, and S3D. While HPL performance does degrade un-
der a power cap depending on both the power cap and the
p-state, turbo mode consistently out-performs the other p-
state settings. For HPCG, turbo mode is best in all but one
case. Unlike either of the benchmarks, the S3D application
requires lowering the p-state as the power cap becomes more
restrictive in order to achieve the best performance possible
under that cap. As shown in Section 4.4, power capping in-
duces slow-downs on different nodes at different times, so for
a tightly-coupled MPI application, running at a p-state that

avoids reaching the cap is a profitable strategy to maximize
performance.

Advice to Users and Implementers: Avoid the Cap.
Overall, our work demonstrates the importance of avoid-

ing hitting the power cap. With the rise of power capping
on emerging HPC systems, application developers face the
reality that their application performance will be severely
curtailed if they are unable to ensure that their power draw
does not exceed the cap. We have observed that adjusting
the p-state is an effective mechanism to do this. Unfortu-
nately, Cray XC40 power management only exposes a static
p-state control. Since application power characteristics un-
der a particular power cap are difficult to predict a priori,
and the level of the imposed power cap may change during
execution, system implementers should expose dynamic p-
state control so that adjustments can be made to avoid the
cap. To relieve the burden to the end user, given such a
capability, the MPI run time, operating system, or another
system software component could be enhanced to adaptively
adjust the p-state during execution to remain just below the
power cap.

Mitigating Impacts: Coordinated CPU Throttling.
For scenarios where avoiding the cap is not possible, miti-

gating the impacts of the cap may make sense. One possible
source of inspiration for mitigation methods is from an anal-
ogy with OS noise [21, 10, 15]. Though studied for over 20
years, recent work has shown that increasing the synchro-
nization of the source of the noise can lead to benefits in
performance [11]. It is important to note that total synchro-
nization is not necessary needed. Typically what is needed is

(a) P-state at 1.8 Ghz

(b) Turbo

Figure 8: Observed CPU Frequency over Time: S3D Under 230 W Power Cap, 483 Problem

loose synchronization with processing elements that commu-
nicate frequency. In the context of power caps, this means
adjusting CPU frequencies with nodes that communicate
frequently, rather than the current independent approach.
This functionality requires both support at a hardware-level
to specify power caps with groups of nodes and a runtime
capable of determining the optimal groups.

Table 3: Best P-state/P-cap Setting for 96 Node Runs

Power-Cap HPL HPCG S3D
Setting

No Cap Turbo Turbo Turbo
75% Turbo Turbo Turbo
50% Turbo Turbo 2.3 (18.1%)
25% Turbo 1.4 (6%) 2.0 (19.2%)
0% Turbo Turbo 1.8 (22.7%)

6. RELATED WORK
Power capping has long been a topic of considerable inter-

est in the commercial data center and server space. Fan et
al. examine theoretical potential of power capping and pro-
visioning for average power usage in large-scale datacenters,
e.g. at Google [9]. Lefurgy et al. implement power capping
in a blade server based on control theory methods.[16]. Lo
et al. implement a system to limit power to the minimum
amount required to maintain search response times within
service level agreement terms [17].

Studies on power management for high-performance sci-
entific computing have recently been accelerated both by
the recognition that power will be a key constraint in future

HPC systems and by the availability of the Running Av-
erage Power Limit (RAPL) [6] feature for CPU-level power
limits in Intel SandyBridge processors. Rountree et al. show
that part-to-part variability in power efficienty characteris-
tics result in performance variability under a RAPL power
cap [23]. Patki et al. propose overprovisioning systems with
respect to power and allocating it based on application char-
acteristics rather than worst-case assumptions [20]. Sarood
et al. demonstrate that adding additional low power nodes
to an execution may be improve performance compared to
running fewer high power nodes [24]. Porterfield et al. boost
power on processors that fall behind due to hardware per-
formance variability under power cap. [22]. Several power-
aware schedulers for HPC have been proposed [3, 26, 18].
Related efforts to understand application and MPI imple-
mentation power characteristics include a single-node power
capping experiment of a magnetohydrodynamics applica-
tion [12] and a study of energy usage of MPI primitives on
four nodes [25].

The studies listed above have used either simulation or
1-64 nodes of SandyBridge or earlier processors, implement-
ing power capping through direct manipulation of RAPL.
In contrast, our study uses Intel’s newer Haswell processors,
designed for more advanced power management, with power
capping applied through Cray’s production XC40 power man-
agement infrastructure to show MPI application impact at
up to 96-node scale for a wide range of p-state and power
cap combinations.

7. CONCLUSION
Our early evaluation of XC40 system power capping im-

pact on MPI application performance is a key component

of our preparations for power management on our upcom-
ing 30 petaflop Trinity supercomputer. The comprehensive
testing of power cap and p-state combinations for several
workloads shows considerable performance degradation due
to load imbalance when nodes are throttled by the system as
they reach the power cap. To optimize performance in the
presence of power capping, we observe that an application
should avoid reaching the power cap. Adjusting the p-state
is a mechanism to achieve this avoidance, and thus we rec-
ommend that vendors expose dynamic p-state controls for
use by end users or system software.

8. ACKNOWLEDGMENTS
Sandia National Laboratories is a multi-program labora-

tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

References
[1] HPL. http://www.netlib.org/benchmark/hpl/.

[2] List of TOP500 supercomputer sites. http://www.

top500.org/.

[3] D. Bodas, J. Song, M. Rajappa, and A. Hoffman. Sim-
ple power-aware scheduler to limit power consumption
by HPC system within a budget. In Proc. 2nd Interna-
tional Workshop on Energy Efficient Supercomputing,
E2SC ’14, pages 21–30, 2014.

[4] J. H. Chen, A. Choudhary, B. d. Supinski, M. De-
Vries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L.
Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran,
S. Shende, and C. S. Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D. Com-
putational Science & Discovery, 2, 2009.

[5] Cray Inc. Monitoring and Managing Power Con-
sumption on the Cray XC System, April 2015.
http://docs.cray.com/books/S-0043-7203/S-0043-
7203.pdf.

[6] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le. RAPL: Memory power estimation and cap-
ping. In Proc. International Symposium on Low-Power
Electronics and Design (ISLPED), Aug 2010.

[7] R. H. Dennard, F. H. Gaensslen, H. nien Yu, V. L.
Rideout, E. Bassous, Andre, and R. Leblanc. Design
of ion-implanted MOSFETs with very small physical
dimensions. IEEE J. Solid-State Circuits, page 256,
1974.

[8] R. L. et al. Top ten exascale research challenges.
Technical report, U.S. Deparment of Energy, Office of
Science, Office of Advanced Scientific Computing Re-
search, Washingtin D.C., 2014.

[9] X. Fan, W.-D. Weber, and L. A. Barroso. Power provi-
sioning for a warehouse-sized computer. In Proc. 34th
Annual International Symposium on Computer Archi-
tecture, ISCA ’07, pages 13–23, 2007.

[10] K. B. Ferreira, P. Bridges, and R. Brightwell. Charac-
terizing application sensitivity to OS interference using
kernel-level noise injection. In Proc. 21st International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’08, 2008.

[11] K. B. Ferreira, P. Widener, S. Levy, D. Arnold, and
T. Hoefler. Understanding the effects of communica-
tion and coordination on checkpointing at scale. In
Proc. 27th International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’14, pages 883–894, Nov. 2014.

[12] K. Fukazawa, M. Ueda, M. Aoyagi, T. Tsuhata,
K. Yoshida, A. Uehara, M. Kuze, Y. Inadomi, and
K. Inoue. Power consumption evaluation of an MHD
simulation with CPU power capping. In Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 612–617, May 2014.

[13] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer. An energy efficiency fea-
ture survey of the Intel Haswell processor. In Parallel
and Distributed Processing Symposium Workshops PhD
Forum (IPDPSW), 2013 IEEE 27th International, May
2015.

[14] M. A. Heroux and J. Dongarra. Toward a new metric
for ranking high performance computing systems. Tech-
nical Report SAND2013-4744, Sandia National Labora-
tories, Albuquerque, NM, 2013.

[15] T. Hoefler, T. Schneider, and A. Lumsdaine. Char-
acterizing the influence of system noise on large-scale
applications by simulation. In Proc. 23rd International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’10, 2010.

[16] C. Lefurgy, X. Wang, and M. Ware. Power cap-
ping: a prelude to power shifting. Cluster Computing,
11(2):183–195, 2008.

[17] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for large-
scale latency-critical workloads. In Proc. 41st Annual
International Symposium on Computer Architecuture,
ISCA ’14, pages 301–312, 2014.

[18] A. Marathe, P. E. Bailey, D. K. Lowenthal,
B. Roundtree, M. Schulz, and B. R. de Supinski. A
run-time system for power-constrained HPC applica-
tions. In Proc. ISC High Performance Conference, ISC
’15, July 2015. To appear.

[19] S. J. Martin, D. Rush, and M. Kappel. Cray advanced
platform monitoring and control (CAPMC). In Proc.
Cray Users’ Group Technical Conference (CUG), 2015.

[20] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski. Exploring hardware overprovision-
ing in power-constrained, high performance computing.
In Proc. 27th ACM International Conference on Super-
computing, ICS ’13, pages 173–182, June 2013.

[21] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of
the missing supercomputer performance: Achieving op-
timal performance on the 8,192 processors of ASCI Q.

http://www.netlib.org/benchmark/hpl/
http://www.top500.org/
http://www.top500.org/

In Proc. 16th International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’03, 2003.

[22] A. Porterfield, R. Fowler, S. Bhalachandra, B. Roun-
tree, D. Deb, R. Lewis, and B. Blanton. Application
runtime variability and power optimization for exascale
computers. In International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS ’15, June
2015. To appear.

[23] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K.
Lowenthal, and M. Schulz. Beyond DVFS: A first
look at performance under a hardware-enforced power
bound. In IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum
(IPDPSW), May 2012.

[24] O. Sarood, A. Langer, L. Kale, B. Rountree, and B. R.
de Supinski. Optimizing power allocation to CPU
and memory subsystems in overprovisioned HPC sys-
tems. In 2013 IEEE International Conference on Clus-
ter Computing, Cluster ’13, Sept 2013.

[25] A. Venkatesh, K. Kandalla, and D. Panda. Evaluation
of energy characteristics of MPI communication primi-
tives with RAPL. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013
IEEE 27th International, pages 938–945, May 2013.

[26] Z. Zhang, M. Lang, S. Pakin, and S. Fu. Trapped
capacity: Scheduling under a power cap to maximize
machine-room throughput. In Energy Efficient Super-
computing Workshop (E2SC), 2014, pages 41–50, Nov
2014.

	Introduction
	Cray XC40 Power Management
	Node-level Power Capping
	Job-level P-state Selection

	Approach
	MPI Workloads
	Testing Procedure

	Results
	Top500 Benchmarks
	S3D Combustion Application
	Measured Power Usage
	Analyzing Application Impact

	Discussion
	Related Work
	Conclusion
	Acknowledgments

