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Motivation
• Squeezed light can help to increase the secure communication distance and/or key rate

for continuous-variable quantum key distribution (CV-QKD).

• High-rate CV-QKD requires high-bandwidth squeezing spectrum (i.e., strong squeezing
at frequencies of ∼ 100 MHz or even ∼ 1 GHz).

• Squeezed light is also a fundamental pre-requisite for generation of entanglement in CV
quantum repeaters and CV cluster-state (measurement-based) quantum computation.

Scope of the work
• The fundamental optical system for generation of single-mode/two-mode squeezed light

is degenerate/non-degenerate optical parametric oscillator (OPO).

•More generally, we consider a network of coupled linear and bilinear optical elements
such as mirrors, beam-splitters, phase-shifters, lasers, and OPOs.

• The idea is to use such a coherent quantum feedback network (CQFN) to generate the
output light field with a favorable squeezing spectrum.

• The objective is to maximize the degree of squeezing at a chosen frequency (or a range
of frequencies) by searching over the space of model parameters with experimentally
motivated bounds.

The (S,L, H) model of an optical CQFN
• Let n be the number of the network’s input/output ports and m be the number of

cavities (assuming one internal field mode per cavity).

• Let a, ain, and aout denote, respectively, vectors of boson annihilation operators for the
cavity modes, input fields, and output fields:

a = [a1, . . . , am]T, ain = [ain,1, . . . , ain,n]T, aout = [aout,1, . . . , aout,n]T. (1)

• The CQFN is fully described by the (S,L, H) model, which includes:
S is an n× n matrix that describes the scattering of external fields;
L is an n× 1 matrix that describes the coupling of cavity modes and external fields;
H is the Hamiltonian that describes the intracavity dynamics.

• The quantum Langevin equations for the cavity mode operators {a`(t)} are (~ = 1)

da`
dt

= −i[a`, H ] + LL[a`] + Γl, ` = 1, . . . ,m, (2)

where LL is the Lindblad superoperator and Γl is the noise operator.

• The generalized boundary condition for the network is

aout = Sain + L. (3)

• The elements of L are linear in annihilation operators of the cavity modes:

L = Ka, (4)

and the Hamiltonian has the bilinear form:

H = a†Ωa + i
2a
†Wa‡ − i

2a
TW†a, (5)

where a† = [a†1, . . . , a
†
m] and a‡ = a†T.

•With such L and H, the quantum Langevin equations (2) take the matrix form:

da

dt
= Va + Wa‡ + Yain, (6)

where V = −1
2K
†K− iΩ and Y = −K†S.

The model of CQFN in the frequency domain
• Boson operators in the frequency domain:

b(t) =
1√
2π

∫ ∞
−∞

dω b(ω)e−iωt, b†(t) =
1√
2π

∫ ∞
−∞

dω b†(−ω)e−iωt, (7)

where b(t) stands for any element of a(t), ain(t), and aout(t).

• The double-length column vectors notation:

b̆(ω) =

[
b(ω)

b‡(−ω)

]
, (8)

where b(ω) stands for either of a(ω), ain(ω), and aout(ω).

• The quantum input-output relations in the matrix form:

ăout(ω) = Z̆(ω)ăin(ω), (9)

where Z̆(ω) is the network’s transfer-matrix function:

Z̆(ω) =

[
Z−(ω) Z+(ω)

Z+(−ω)∗ Z−(−ω)
∗

]
=
[
I2n + K̆(Ă + iωI2m)−1K̆†

]
S̆. (10)

Here, Ă = ∆(V,W), K̆ = ∆(K,0), S̆ = ∆(S,0), and we use the notation:

∆(A,B) =

[
A B
B∗ A∗

]
.

The squeezing spectrum
• The power spectrum density of the quadrature’s quantum noise (squeezing spectrum):

Pi(ω, θ) = 1 +

∫ ∞
−∞

dω′〈:Xi(ω, θ), Xi(ω
′, θ) :〉, (11)

where Xi(ω, θ) = aout,i(ω)e−iθ + a†out,i(−ω)eiθ is the quadrature of the ith output field
in the frequency domain, θ is the homodyne phase, : : denotes the normal ordering of
boson operators, and 〈x, y〉 = 〈xy〉 − 〈x〉〈y〉.
• Using the (S,L, H) model of the CQFN, we obtain:

Pi(ω, θ) = 1 +Ni(ω) +Ni(−ω) +Mi(ω)e−2iθ +Mi(ω)∗e2iθ, (12)

Ni(ω) =

∫ ∞
−∞

dω′〈a†out,i(−ω
′)aout,i(ω)〉 =

n∑
j=1

∣∣Z+
ij (ω)

∣∣2 , (13)

Mi(ω) =

∫ ∞
−∞

dω′〈aout,i(ω)aout,i(ω
′)〉 =

n∑
j=1

Z−ij (ω)Z+
ij (−ω). (14)

•We are only interested in the squeezing spectrum of the field at one of the output ports
(designated as i = 1): P(ω, θ) = P1(ω, θ).

• The squeezing figure of merit measured in decibels is

Q(ω, θ) = 10 log10P(ω, θ). (15)

• The maximum and minimum of P(ω, θ) as a function of θ, P+(ω) = maxθP(ω, θ)
and P−(ω) = minθP(ω, θ), are spectra of the quantum noise in anti-squeezed and
squeezed quadrature, respectively. The corresponding logarithmic spectral measures of
anti-squeezing and squeezing: Q±(ω) = 10 log10P±(ω).

• Using Eq. (12), we find:

P±(ω) = 1 +N (ω) +N (−ω)± 2|M(ω)|. (16)

The model of a network of two coupled OPOs
• A schematic depiction of the CQFN of two coupled OPOs:
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• Parameters of the CQFN of two coupled OPOs:

Parameter Type Description
κp1 Positive Leakage rate for the left mirror of the plant OPO cavity
κp2 Positive Leakage rate for the right mirror of the plant OPO cavity
κp3 Positive Leakage rate for losses in the plant OPO cavity
ωp Real Frequency detuning of the plant OPO cavity
ξp Complex Pump amplitude of the plant OPO
κc1 Positive Leakage rate for the left mirror of the controller OPO cavity
κc2 Positive Leakage rate for the right mirror of the controller OPO cavity
κc3 Positive Leakage rate for losses in the controller OPO cavity
ωc Real Frequency detuning of the controller OPO cavity
ξc Complex Pump amplitude of the controller OPO
φ1 Real Phase shift of the first phase shifter
φ2 Real Phase shift of the second phase shifter
θ1 Real Rotation angle of the first beamsplitter
θ2 Real Rotation angle of the second beamsplitter
θ3 Real Rotation angle of the third beamsplitter

The physical description of the CQFN of two coupled OPOs
• Pump fields for both OPOs are assumed to be classical and not shown in the scheme.

• From the control theory perspective, OPO1 is considered to be the plant and OPO2 the
(quantum) controller.

• Each OPO cavity has a fictitious third mirror to model intracavity losses.

• Beamsplitters B1 and B2 represent the light diverted to lock the cavities as well as
losses in optical transmission lines between the OPOs. Beamsplitter B3 represents
losses in the output transmission line and detection inefficiencies.

• Phase shifters P1 and P2 are inserted into transmission lines between the OPOs to
manipulate the interference underlying the CQF control.

• Taking into account the feedback loop between the plant and controller, the CQFN has
seven input ports, seven output ports, and two cavity modes (n = 7, m = 2).

•With ξp = |ξp|eiθp and ξc = |ξc|eiθc, there is a total of 17 real parameters.

• The relationship between leakage rate and power transmittance of a mirror:

κi = cTi/(2leff), i = 1, 2, 3, (17)

where Ti is the power transmittance of the ith mirror (Ri = 1− Ti is the power
reflectance), c is the speed of light, and leff is the effective cavity length.

• The total leakage rate (including losses) from the plant and controller cavities:
γp = κp1 + κp2 + κp2 and γc = κc1 + κc2 + κc2.

• The scaled pump amplitude for the plant and controller OPOs:

xp = 2|ξp|/γp =
√
Pp/Pp,th, xc = 2|ξc|/γc =

√
Pc/Pc,th, (18)

where P is the OPO pump power and Pth is its threshold value.

• The QNET package (developed by Hideo Mabuchi’s group at Stanford University) is
used to derive the (S,L, H) model of the CQFN.

Numerical optimization results for the squeezing spectrum
• Optimized squeezing spectra for different values of intracavity loss:

• Optimized squeezing spectra for different values of OPO pump power:

Conclusions and future directions
• The (S,L, H) model makes it possible to evaluate the squeezing spectrum of the

output field from the CQFN of two OPOs for various values of experimental parameters.

•We use Sequential Least Squares Programming (SLSQP) to maximize squeezing at a
chosen frequency by searching over the space of model parameters.

• Since SLSQP is a local (deterministic) algorithm, it can be trapped at a local maximum.

•We are working on using global (stochastic) algorithms such as Differential Evolution,
to identify globally optimal parameter sets.
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