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ABSTRACT

Lightweight kernels (LWK) have been in use on the com-
pute nodes of supercomputers for decades. Although many
high-end systems now run Linux, interest in options and al-
ternatives has increased in the last couple of years. Future
extreme-scale systems require rethinking of the operating
system, and modern LWKs may well play a role in the final
solution.

In the course of our research, it has become clear that no
single definition for a lightweight kernel exists. This paper
describes what we mean by the term and what makes LWKs
different from other operating system kernels.

Categories and Subject Descriptors
D.4 [Operating Systems]: Organization and Design
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1. INTRODUCTION

Light Weight Kernels (LWKs) have been in use in su-
percomputers since at least the early 1990s. Today, most
systems on the Top500 list [18] run Linux®, a Full-Weight
Kernel (FWK). Figure 1 illustrates this dramatically. The
graphs show what percentage of the top 500 systems run a
given OS. Twenty years ago, in 1994, there was a rich di-
versity of OSes in use. Most vendors had their own OS to
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differentiate themselves from others, but also to fully sup-
port their hardware, which was not standardized at all.

Although the 2014 graph in Figure 1b is broken down into
categories, almost all of them rely on the Linux kernel. The
different categories represent different versions of the same
Operating System (OS) and additions by various vendors.
This means that users of these systems are familiar with
Linux and expect similar behaviors and features even on
non-Linux systems.

In the last couple of years interest in LWKs, and OS re-
search in general for the very top-end of High Performance
Computing (HPC), has increased again. This is due to an-
ticipated architectural changes in future extreme-scale sys-
tems, as well as new directions in use and programming of
these systems. Other reasons for the renewed interest are
that FWK are slow to adapt to the increasing demands of
top-end HPC, and concerns about scalability and fault tol-
erance at the very high end.

OS changes will be necessary. Maybe these changes will
come in the form of enhancements to existing OSes or be
more radical. Maybe bringing back LWKs from the past,
updating them, and making them coexist with Linux, will
be a successful path to an OS for the extreme-scale future.

mOS [29] is a path finding project at Intel' where we re-
search options for such an OS. In the course of our work we
realized that the term is not well defined. The purpose of
this document is to explain what we mean by Light Weight
Kernel (LWK), work with the community to refine the def-
inition of the term LWK, and differentiate the principles of
LWKs from similar technologies such as microkernels [16]
and library operating systems such as Libra [6].

2. LWK CHARACTERISTICS

In this section we list the components of a traditional
LWK, and then look at specific characteristics and attributes
of LWKs. We close this section with a short discussion of
microkernels.

2.1 Components of a traditional LWK

Tntel and the Intel logo are trademarks of Intel Corporation
in the U.S. and/or other countries.
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Figure 1: OS usage change in Top500 systems over the last twenty years. OS names as provided by top500.org

Figure 2 shows the typical components found in a tradi-
tional LWK. IBM’s® Compute Node Kernel (CNK) [11] is
an example of such a kernel. Most of the blocks in that fig-
ure describe familiar OS components. Note that a virtual
file system and local I/O are not strictly necessary. Some
LWKs, such as SUNMOS [12, 17] and Puma [27, 25], had
no notion of a file.

2.1.1 Traps, exceptions, interrupts, and the system
call interface

In modern CPUs there are several ways of transitioning
from user space into the kernel. Transitions are triggered
by software, the processor, or by other hardware; and may
be synchronous or asynchronous. Examples include syn-
chronous memory exceptions, count-down timers, and in-
terrupts from external devices.

We lump all of them together and respond to them in
the box labeled “interrupt handling”. Interrupt is meant in
the generic sense: software or hardware interrupts, traps, or
exceptions. We separate out those transitions that invoke
system calls in the figure because they play such an impor-
tant role in an OS kernel. The system call interface block is
responsible for these.

2.1.2  Process and memory management

Process and memory management really define the behav-
ior of an LWK. Most of the other components of an LWK
are similar to the corresponding components in an FWK or
are omitted. Process and memory management stand out
because they are often much simpler and specialized in an
LWK. They avoid buffering in the kernel and specialize us-
ing larger page sizes which are well-suited for extreme-scale
applications. Low overhead and fast performance are im-

portant, but deterministic behavior and scalability are given
equal weight.

2.1.3  Signal handling

Signal handling is also similar to an FWK, although some
LWK do not handle the full set of signals available in a
Linux system. Control and handling of those signals may
also differ. Especially in earlier LWKSs, many signals simply
cause the application to abort or are ignored.

2.1.4 Machine check handling

The machine check handling block deals with faults the
system encounters. A typical example is the handling of an
uncorrectable error in data read from memory. In an FWK
these kinds of errors usually result in an application abort
or even a system reset.

Some applications might be able to survive such faults,
if they are informed at which memory location the fault
occurred and are allowed to continue running. An LWK is
not strictly necessary for this. Since version 2.6.32, Linux
can generate a SIGBUS signal for many of those cases and
allows an application to install a handler for that signal.

However, an LWK may make it easier to experiment with
new ideas like that. Since the overall structure of an LWK
is less complex, it is also easier and quicker to experiment
and do research with them [7, 8, 9, 26].

2.1.5 The hardware abstraction layer

Most LWKs do not have a full Hardware Abstraction
Layer (HAL). Nevertheless, even an LWK needs some func-
tions to deal with the specific hardware it is running on.
Examples include memory barriers, atomic operations, use
of privileged instructions, and access to control registers.
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Figure 2: Components of a traditional LWK

These are encapsulated for ease of coding, not to make
porting the LWK to other hardware easier. LWKs may be
portable due to their small size and low complexity, but do
not have a HAL to make them more portable than they
already are. Direct access to new and unique hardware fea-
tures is more important than portability

2.1.6  Linux/POSIX emulation and virtual file system

Because most LWKs attempt to be at least somewhat
Linux and Portable Operating System Interface (POSIX)
compatible, there must be functionality in the LWK for
that. Some examples handled by that component are an Ex-
ecutable and Linkable Format (ELF) interpreter and loader
to read and decode the image of an executable, and support
for pseudo file systems; i.e., providing the contents of files
such as /proc/meminfo. There is also a virtual file system
layer for local I/O functions; e.g., mmap(), access to /proc
and /sys, and maybe a RAM disk. This includes functions
to open and read /proc files, if they are provided.

Of course, this is not the only POSIX compliant block in
our diagram. We gave process and memory management, as
well as signal handling, their own boxes.

2.1.7 Device drivers

There is usually a single device driver in an LWK: the one
needed to enable and access the Host Fabric Interface (HFI).
Occasionally there is code for a diagnostic device such as a
serial line or a JTAG interface. But, there is no support for
the hundreds of devices a Linux kernel can operate. Most
of these devices do not exist or are not used in the systems
that use an LWK. In a 10,000-node system, not every node
has a mouse or speakers attached to it.

With more exotic and complex memory coming in the
future, the LWK may need to provide a driver to take ad-
vantage of it. That doubles the number of devices an LWK
has to deal with, but still leaves only a handful of devices
for the LWK to manage.

On a compute node with less than a handful of devices,
even an FWK would only have the few drivers built-in and
activated which are needed. The difference to an LWK is
that the LWK could not operate in an environment where
more drivers would be needed.

On the other hand, the notion of a device may disappear
entirely from an LWK. Similar to some LWKs that have no
notion of a file. This greatly simplifies the LWK. No amount

of configuration and specialization can achieve this kind of
simplification with an FWK.

2.1.8 Boot and hardware initialization

Finally, just like any FWK, an LWK needs code to boot
and initialize the hardware. Again, in some cases that may
be simplified code because the LWK may not enable all hard-
ware features present. For cost reasons it may be cheaper to
use commercial, off-the-shelf motherboards to build a large-
scale machine, even though some of the functionality pro-
vided by these boards will never be used.

There are a few things which are not shown as individual
components in Figure 2. They include timer support and a
diagnostic infrastructure which are commonly found in both
LWKs and FWKs.

Also missing is an indication of a certain lack of function-
ality when it comes to hardware. For example, an LWK
does not virtualize hardware (in the traditional sense), but
it provides more direct access to the hardware. It is designed
for OS bypass, while zero-copy/OS bypass devices are gen-
erally a special case in an FWK. LWKs also do not have
page caches or buffering.

2.2 LWK attributes

There is no defining architecture of a “typical” LWK. The
ones in existences differ significantly from each other, and
several other types of OS kernels are also lightweight: nano,
exo, micro, and embedded kernels come to mind. What
we mean by an LWK is a kernel specifically designed and
streamlined for the very high end of HPC; computers that
deserve the name supercomputer, and a subset of applica-
tions and data sets that require machines like that. These
systems have extreme scales and levels of parallelism.

In [23] we find this description:

“ .. lightweight kernels (LWK), which focus
on providing exactly and only those services needed
by specific hardware and a small set of mission-
critical applications.”

This is in contrast to other small kernels, often called mi-
crokernels, that provide building blocks to create the desired
services in user space. Supporting a limited application set
makes the problem space smaller and allows for customized
solutions. This does not mean LWKs cannot be composable



and adapt to different usage needs. It just means that this
is a secondary goal; if it exists at all.

An LWKSs main purpose is to make hardware resources
available to scalable, parallel applications that can take ad-
vantage of it. The LWK maintains protection of the system
and between users, if it supports multitasking or if the cores
of a compute node are distributed among multiple users. It
uses very few resources for itself and gets out of the way,
so applications can use more CPU cycles and memory than
what an FWK can provide. Furthermore, an LWK condi-
tions the system for optimal use. For example, it reduces OS
noise and provides large pages by default to minimize Trans-
lation Look-aside Buffer (TLB) misses. FWK attempt to do
that too, of course, but they have to fight their own inherent
complexity to do so. LWKs have a simplified virtual mem-
ory system and lack background activity, while tasklets and
other myriad sources of soft interrupts make this difficult in
Linux for example.

2.2.1 Design goals

LWK and FWK have very different design goals. The
Wikipedia entry for Lightweight Kernel Operating System
lists these design goals [28]:

e Targeted at massively parallel environments composed
of thousands of processors with distributed memory
and a tightly coupled network.

e Provide necessary support for scalable, performance-
oriented scientific applications.

e Offer a suitable development environment for parallel
applications and libraries.

e Emphasize efficiency over functionality.

e Maximize the amount of resources (e.g. CPU, memory,
and network bandwidth) allocated to the application.

e Seek to minimize time to completion for the applica-
tion.

Table 1 takes these goals and compares them to those
of an FWK. By now it should be clear that LWK shoot
for minimal functionality to provide exactly what is needed,
but nothing more. By doing that, LWKs can achieve better
performance and scalability.

Light weight is achieved by an LWK in several ways. Look-
ing at Figure 2 we see that several components are missing
which are usually present in an FWK: e.g., a file system and
a network stack. But it is the extreme simplification of the
remaining components that is the hallmark of an LWK. We
look at several in turn.

2.2.2  Extreme simplification: Process management

Although an LWK has process and memory management
components, they are smaller and less complex. For ex-
ample, many LWK support a single task per CPU. Even
if multiple tasks are allowed, they are running using coop-
erative, non-preemptive task scheduling. A lot less code is
required for that than the very complex code and data struc-
tures required by Linux’ Completely Fair Scheduler (CFS),
for example.

The LWK scheduler’s primary task is to give as many CPU
cycles as possible to a single task. Fairness and interactivity
are not very important. This is in stark contrast to the
quality of service that an FWK attempts to achieve.

2.2.3  Extreme simplification: Memory management

LWK memory managers are kept equally simple by pro-
viding a single policy, for a specific use, on a given archi-
tecture. Again, the goal for an LWK is to get out of the
way. Instead of providing sophisticated memory allocation
schemes and paging strategies to support a wide range of
applications, large chunks (pages) of memory are handed to
the application to use or misuse. A node running an LWK
is allocated to a single user. Suboptimal use of that resource
only impacts that user.

First-generation LWKs did not even have a single policy;
merely a mechanism to provide an application with storage
for text, data, and a large heap. Next-generation LWKs
must support calls like mmap() and implement a physical
memory management system.

2.2.4  Extreme simplification: Omit functionality

An LWK is also lightweight because it can omit a lot of
functionality that FWKs and even small real-time and em-
bedded kernels must have built in. This is possible because
LWKs are paired with one or more FWKs in the system.
That is a defining characteristic of an LWK. It needs a co-
kernel or an FWK on another node to offload functions and
receive other services. While the next-generation LWKs co-
operate with an FWK on the same node, even traditional
LWXKs relied on the presence of an FWK on a nearby node:
See Figure 2.

2.2.5 Extreme simplification: Space sharing

LWKs are designed for space sharing, while FWKs virtu-
alize hardware by time sharing. LWKs can get away with
that because they target massively parallel systems with lots
of identical resources that are usually allocated in large num-
bers to a single user. Furthermore, supercomputers are de-
signed to have specialized partitions for compute, I/O, and
user interactions.

This simplifies the design and implementation of an LWK
greatly. For example, a node in such a system represents a
single security domain. While protection between processes
is still desired, and the rest of the system must be protected
from errant or malicious code, there are many security con-
cerns that are much less important or can be ignored entirely.
An FWK running in a large data center must support many
different users on each server.

2.2.6  Extreme simplification: Code and binary size

While some characteristics of an LWK are easy to assess:
“does it have a file system?”, others are harder to quantify:
“is it nimble?” Simplistically, many of the characteristics
we have described are directly related, or expressed by, how
much source code they require or binary code they execute.

Counting lines of source code is fraught with traps and
pitfalls. It is not a good measure of complexity and not a
useful metric for the definition of an LWK. Fewer lines of
code may lead to higher performance and more nimbleness,
but that alone is not sufficient for an LWK.

Comparing source code size to the code present in an
FWK causes even more problems. An FWK solves a dif-
ferent problem than an LWK. It has to work well for an ex-
tremely diverse set of applications, platforms, and devices.
An LWK is designed to run a small set of applications on
a single platform very well.

An LWK is small in size — binary and source code — and



Table 1: Design goals of LWKs and FWKs

Design goal LWK

FWK

Target

Support scalable applications
Dev. environment for parallel applications
Emphasis efficiency

Resources maximize use

Time to completion minimal

massively parallel systems laptops, desktops, servers

everything under the sun
business, games, commerce, etc.
functionality

fair sharing, QoS

when needed

should not be complex. It should be possible for a single
person to understand and remember the entire LWK. This
aids in debugging the kernel, adding new features, and pin-
pointing unexplained system behavior.

2.2.7 Coupling with an FWK

Linux supports tens of file systems, but most LWK have
none. This is possible because LWKs work in cooperation
with FWKSs running on other nodes in the system. Most I/O
functions and file system operations are function shipped to
nodes running an FWK [5]. Next-generation LWKs ship to a
Linux kernel that is local to the node: FusedOS [22], McK-
ernel [24], and mOS [29] are examples. High-performance
I/0 still goes off-node, however.

2.2.8 Effects

There are several effects that result from these extreme
simplifications.

Nimbleness: In addition to supporting highly-parallel
applications, an LWK is also meant to adapt to new hard-
ware and architectural features quickly. Extreme-scale sys-
tems often introduce new features that only gradually trickle
to servers and desktop systems. Examples include high-
performance networks and Remote Direct Memory Access
(RDMA). Since the code base and complexity of an LWK
are small, it can be nimble and adapt quickly to new re-
quirements.

Portability: It turns out that porting LWKs is not ac-
tually that easy. The main reason for that is that they are
often written for one, very specific, hardware architecture
and take advantage of any specialized feature that makes
sense. On the other hand, porting an LWK is not daunting,
since it is small.

Behavior under load: FWKs are designed to gracefully
degrade as load increases. LWKs have no degradation at all
until load exceeds the capacity of the underlying hardware.
This is not acceptable behavior in a desktop system or a
sever environment. Therefore, that is something that would
be difficult to achieve in an FWK.

Not having to degrade gracefully allows an LWK to exhibit
much more consistent, deterministic performance. This is
necessary for tightly coupled HPC applications to achieve
scalability.

Layered services and composability: Most LWKs are
designed with layered services and composability in mind.
The idea is to have the ability to layer other services on
top of the LWK. Supporting a full set of services should be
enabled and could be implemented efficiently using an LWK.

Although this notion comes up frequently, few LWK im-
plementation have succeeded with that. Microkernels seem
to be doing a better job in this area.

2.3 Comparison to microkernels

A reasonable question to ask at this point is whether an
LWK is a microkernel or maybe an exokernel.

We already mentioned in Section 2.2 one contrast between
LWKs and microkernels. The former is meant to support a
limited set of very specialized applications, while the lat-
ter is meant to provide the same functionality as an FWK,
albeit using a different implementation approach. The dif-
ference of an LWK to a FWK or a microkernel is not in its
implementation. From an LWK point of view, FWK and mi-
crokernels are no different: LWKSs target specific machines
and applications.

Composability is often mentioned in the context of LWKs
and microkernels: The idea to tailor an OS or its services to
a specific application or even a given execution and corre-
sponding data set. An argument can be made that compos-
ability would allow the configuration of a microkernel that is
suitable for extreme-scale computing. But, just like FWK,
this would be bending a kernel into a use case that it was
not really designed for.

A microkernel differs from an FWK mostly in its imple-
mentation. It targets the same users and applications as
an FWK and has to live with the same conflicts to satisfy
a diverse set of uses and environments. Although the ker-
nel itself may be small, the services and their interactions,
which are needed for a functional environment, can be very
complex.

It is the goals and attributes that define an LWK; not the
kernel size or its composability alone.

3. NEXT-GENERATION LWK

In the mOS architecture there are two different kernels
running on the cores of a single node. One is a Linux ker-
nel; the other is an LWK. This is different from traditional
LWKs and we use the intersection to define an LWK. There
are several projects that look at combining Linux function-
ality with an LWK. Kitten/Palacios, Fused OS, McKernel,
and mOS are driven by anticipated usage models of future
machines [20, 4]. The projects differ in how they provide
Linux functionality while achieving LWK performance and
scalability.

In Figure 2 we saw the components that make up a tra-
ditional LWK. The mOS LWK, as shown in Figure 3, is
simpler. It can achieve this by offloading a lot of the func-
tionality to Linux with which it shares a node. If the HAL
was small before, it almost entirely disappears now because
Linux can take care of most of it.

A lightweight co-kernel may be a purer lightweight archi-
tecture than an LWK that is forced to manage an entire
node. The question now is: how little can we get away with
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and still have an LWK?

Traditional LWKs support a subset of services to stay
lightweight. In that regard, the mOS LWK is more like a
microkernel in that it delegates services to another domain.
In the case of McKernel and mOS, the LWK uses Linux as
a server. This is still function shipping, but because the two
kernels are now co-located, certain things become possible
that were not before. For example, it is now feasible, at least
in principle, to function-ship a file-backed mmap() call and
share the work between the two kernels: Linux handles the
file I/O portion of it, while the LWK deals with allocating
the necessary memory.

Note that for Figure 3 we moved the block with “Linux /
POSIX emulation” in Figure 2 to the right into the Linux
kernel and renamed it. Emulation is no longer necessary: It
s Linux executing on the other core(s).

As mentioned before, we hope that Linux will boot and
initialize the node, as well as deal with its devices. There-
fore, we use existing code in Linux for that and the corre-
sponding boxes disappear from the LWK side of the picture.

The HAL is still on the LWK side, but we grayed it out.
Many of those functions will no longer be needed, since there
is so little code left in the LWK that deals directly with the
hardware.

There is a new piece of code that was not there before:
The kernel interaction channels are the means for the LWK
to interact with Linux. There are different ways of achiev-
ing this. One is a proxy model, used by McKernel, where
for each LWK process there also exists a process on the
Linux side. That proxy makes the Linux system calls when
instructed by the LWK, and transfers the results back to
the LWK process. Another way to achieve this is letting
the LWK call directly into the Linux kernel. These two ap-
proaches are contrasted in [10]

While the mOS LWK should be smaller and less complex
than a traditional LWK, there are some added functions to
be able to share a node with Linux, to interact with Linux,
and to provide a high level of Linux compatibility.

It is fun to look at the concerns OS designers had more
than forty years ago [3], contrast them to the design goals
of LWKs in the nineties [28], and come to grips with what
will be needed in the future.

Because the latest generation of LWKs share a node with
Linux, performance isolation becomes an important goal in
these co-kernel architectures [21, 15] and must be added to

the design goals from Section 2.2.1.

For mOS there are additional design constraints that are
now important but played no role in earlier LWKs. mOS
must provide a high level of Linux compatibility. This must
be achieved with as little intrusion as possible; i.e., no major
or extensive changes to the Linux kernel. The system must
remain maintainable and track future Linux developments.

mOS and McKernel run side-by-side with Linux on a node.
Projects like Kitten with Palacios are pursuing a different
approach. They make the LWK the hypervisor of a node
and run Linux inside a virtual machine.



4. A DEFINITION

It is now time to create a clear, concise definition. So far
we have learned that an LWK is defined by its design goals
and attributes. Among them these seem most important:

It targets a very specific set of machines and applica-
tion types

It relies on an FWK nearby

e There is no graceful degradation under load

Its components and functionality are extremely sim-
plified

Based on these observations, we could define an LWK like
this:

“An LWK is a special-purpose OS kernel de-
signed to support highly-scalable parallel applica-
tions. LWKs typically use simple resource man-
agement policies (e.g., static memory layouts, lit-
tle or mo time-sharing), provide direct user-level
access to network hardware (OS bypass), and off-
load complex OS functionality to elsewhere (e.g.,
forwarding I/0 calls to a dedicated server). A
key design goal is to execute the target workload
— highly-scalable parallel applications with non-
trivial communication and synchronization require-
ments — with higher performance and more re-
peatable performance than is possible with a general-
purpose OS approach.”

The main problem with this definition is that it is not very
concise or lightweight. Maybe a constructive definition, as
in [16], is more appropriate:

“A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e., permit-
ting competing implementations, would prevent
the implementation of the system’s required func-
tionality.”

‘While this is true for microkernels and traditional LWKs,
it is not sufficient for modern LWKs. Since they work in
conjunction with an FWK, it is possible to offload all func-
tionality to the FWK and achieve zero size. Which brings
us to a quote by Antoine de Saint Exupéry:

“Perfection is not achieved when there is noth-
ing left to add, but when there is nothing left to
take away.”

With that in mind, we declare:

“An LWK provides extremely simplified, be-
spoke services to highly-scalable, massively paral-
lel applications. An LWK is deterministic in its
behavior and delivers mazimal performance and
scalability, while relying on an FWK for addi-
tional functionality.”

S. RELATED WORK

Although each LWK project defines what they are doing,
we are not aware of an all-encompassing LWK definition. In
particular, none are sufficient to include the latest crop of
LWKs.

Of course, there is no shortage in projects that aim to
achieve LWK goals in practice. Some of them started with
a Linux kernel and tried to tame it for HPC. Examples in-
clude ZeptoOS [1] and Cray’s® CLE [13, 2]. Then there are
traditional LWKs like SUNMOS [12, 17], Puma [27, 25],
Catamount [14], and CNK [11] which struggled to achieve
full Linux compatibility. More modern versions like Kitten
together with the Palacios Virtual Machine Monitor [21],
Fused OS [22], McKernel [24], and mOS [29] try to bring
these worlds together.

This is not the first time this has been tried. Right-weight
kernels [19] have also looked at extracting the essence of an
LWK and fuse it into an FWK.

While early LWKSs’ sole purpose was to make supercom-
puting resources available to applications, newer variants are
used to research and address problems specific to extreme
scale. An example is [7] which makes use of the “smaller
memory footprint, largely deterministic state, and simpler
system structure” of an LWK to protect the OS from soft
€rTors.

6. CONCLUSIONS AND FUTURE WORK

Groups working on LWKSs usually have specific targets in
mind and are less worried about a precise definition of what
they are creating. Communicating about their research has
been possible because participants in this corner of OS re-
search “know an LWK when they see one.”

Modern LWKSs are harder to “see” because they are even
smaller; relying on a co-kernel for most of the functionality
needed. In the case of mOS this is even more true because
the current, experimental, prototype embeds the LWK in-
side the Linux kernel.

The definition of an LWK needs to be refined further and
will undoubtedly evolve over time. A survey article with a
taxonomy would be of great assistance with this. In partic-
ular, differentiation to microkernels needs to be made more
clear and work with other small and specialized OSes needs
to be taken into consideration. This may prove useful not
just from a research point of view but may have a positive
influence on further development of LWKs.
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