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Thin-film lithiation phase progression observed in a TEM liquid cell	
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•  Al electrodes show rapid capacity fade: is material unstable?	


•  Cycle thin film in liquid electrolyte (1:1 EC:DMC/1 M LiPF6)	



Crystalline material lithiation: Aluminum and Gold films� Amorphous material lithiation: Silicon films�

•  Quantitative current/voltage control at pA-levels links images to 
electrochemical signatures.	
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Experiment:�

•  a-Si is fairly stable in thin-film form; how does it differ from Al?	


•  90-nm thick film cycled at 6.3C rate, immersed in electrolyte.	
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Lithium Battery Degradation�

•  Lithium ion batteries degradation mechanisms are linked to 
nanoscale materials changes during cycling:	



TEM image of LiFePO4 particles 
on liquid cell electrodes.�
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Detrimental effects accompany Li 
movement during electrochemical cycling.�

Imaging nanoscale structures during electrochemical cycling 
in a transmission electron microscope (TEM) shows battery 
degradation mechanisms and informs mitigation strategies.	



TEM Liquid Cell Design�
•  High-resolution TEM imaging of materials in standard, volatile 

liquid electrolytes enabled by a microfabricated, sealed liquid cell 
with electron-transparent membranes:	
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•  Lithiation of thin film anodes imaged in situ:���
(1) Amorphous silicon���
(2) Crystalline Aluminum���
(3) Crystalline Gold	



•  Understand phase change ���
propagation and corresponding���
stress localization. 	
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•  Apply galvanostatic current to “chain” 
geometry of 50-nm-thick Al to cycle at 4C rate�

•  Counter / reference electrodes are 750-µm2 Al �

Transformed areas shaded pink or yellow.�
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500 nm!

•  Only 3 initial LiAl nucleation events	


•  Growth of new grains impeded by 

defects, but nucleation of new grains 
facile at phase boundary:���
Polycrystalline film results even 
with few nucleation points.	
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•  Au electrodes similar but more visible in liquid environment	


•  Two phase changes evident upon lithiation (40 nm Au, 1.3C rate)	



•  Material does not fully delithiate: final phase is not Au	


•  Phases identified in situ via convergent-beam electron diffraction	
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•  Uniform lateral contrast change: no isolated nucleation events	


•  Film “disappears” due to lowered density while immersed	


•  Electron-beam current too high: dark halo around film and 

altered potential indicates beam-induced chemistry occuring	



Analysis and Conclusions�

•  Lithiation spatially varies during cycle depending on mechanism, 
and the TEM liquid cell reveals the behavior in situ.	



Solid solution" Growth-limited" Nucleation and growth" Nucleation-limited"

Electrolyte"

•  Stress highly localized if a sharp lithiation front exists.	



•  Al and Au showed clear nucleation-limited behavior, while a-Si 
showed solid solution behavior.	



•  Surprising nucleation/growth dynamics: new grains of lithiated 
phase preferentially nucleated along phase front, not within the 
host material.	



•  Thin-film  Al  lithiation  very  reversible  over  a  few  cycles:  no 
inherent  damage  seen  in  thin  film  material.  In  contrast,  Au 
fragmented.	



•  Controlled-rate lithiation of thin films shows unique behavior for 
each  material  tested.  Other  nanomaterials  (wires,  particles) 
should obey similar mechanistic principles.	



SAND2015-3978D


