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Abstract

Here we develop a full information capture approach for Magnetic Force Microscopy (MFM),
referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data
stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The

data can be subsequently compressed, denoised, and analyzed, without information loss. Here,



G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model
systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and
electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We
investigate the use of information theory to mine the G-Mode MFM data and demonstrate its
usefulness for extracting information which may be hidden in traditional MFM modes, including
signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection
and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode
image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is
immediately implementable on any AFM platform and as such is expected to be a useful
technique for probing spatiotemporal cantilever dynamics and mapping material properties as

well as their mutual interactions.
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Magnetic force microscopy (MFM)' is a non-contact variant of Atomic Force Microscopy,
(AFM)* which allows visualization of the nanoscale magnetic field above a sample surface.
MFM is a valuable tool with a rich history’ in characterization of a variety of materials and
devices including nanoparticles,® ultra-thin films,” memory storage devices,® ferromagnetic
materials,” superconducting materials,® and even biological systems.” In MFM, a ferromagnetic
AFM tip, attached to a flexible cantilever, is brought into proximity with the surface of a sample.
Stray magnetic fields from the sample generate forces and force gradients on the magnetic tip
that affects the response of the cantilever. As the tip is scanned across the surface, both the

magnetic field and the topography can be mapped and correlated.

Direct interpretation of the magnetic force maps in MFM, is not straight forward, and can be
obscured by incomplete information of the micromagnetic structure of the tip, dynamic changes
of tip- and sample magnetization state during imaging (including both losses and Barhausen

1014 In the classical

jumps), non-linear cantilever dynamics, and non-magnetic interactions.
implementation of MFM, based on resonant frequency detection, all these interactions are mixed,
yielding a single image. Hence, separation of different magnetic mechanisms as well as

differentiating magnetic signal from other long range interactions remains an essential problem

to MFM.

Here we develop an MFM approach utilizing full information capture of the tip-surface
interaction, and contrast our findings to the classical heterodyne detection approach. We utilize
recently developed general mode, (G-Mode)'> AFM, which has previously been demonstrated
for AFM tapping mode,'> piezoresponse force microscopy'® and Kelvin probe force
microscopy.17 G-Mode samples the entire photodetector response in time domain at a sampling

rate of ~4MHz, as the tip scans the surface at constant velocity. The resulting data can be



reshaped into a 3-dimensional array by segmenting the data stream into x-position bins
containing the cantilever deflection signal as a function of time within that bin. Note that division
of the fast-scan-axis information into pixels can be performed after acquisition, enabling

multiresolution irn21ging.15’17

The resulting data file is typically on the order or 4GB for the
equivalent of a 256 x 256 pixel image taking approximately 18 minutes to capture (e.g.
comparable to standard MFM). In contrast, standard MFM images are small (~1 MB), 2D
matrices of the time averaged amplitude and phase (or resonant frequency) signals. In the case of
G-Mode, dynamic processes (including non-periodic, rare events and transients), are encoded in
the tip trajectory, captured in the data stream, and available for further analysis. Here, we
demonstrate that G-Mode can be used to emulate conventional MFM, as well as discover
signatures of non-linear interactions that are lost during heterodyne detection using information

theory analysis techniques.’®? Finally, we demonstrate a route to simultaneous electrostatic and

magnetic property mapping in a single G-Mode image dataset obtained at regular scanning rates.

Measurements were performed on an Asylum Research Cypher microscope, with as-received
Co/Cr-coated (Asylum Research, ASYMFMHM) AFM probes, with a nominal mechanical
resonance frequency and spring constant of 70 kHz and 2.0 N/m, respectively. The tips were
magnetized prior to use by bringing them into close proximity with a strong magnet. In this work

2 (i.e. BlueDrive™) to achieve a clean mechanical excitation

we used photothermal excitation
of the cantilever. As has been previously shown on a similar sample, a flat, clean cantilever drive
improves the separation of conservative and dissipative magnetic interactions.”® Standard MFM
measurements were performed in dual pass mode at 50 nm lift height, using phase sensitive

detection. For G-Mode imaging we used Matlab and LabView software for control and post

processing. National Instruments PXIe-1073 coupled with the NI PXIe-6214 DAQ architecture



was used to generate an AC cantilever excitation waveform and to capture the photodetector
signal. As a model system for magnetic domain imaging, we have chosen a ferromagnetic
Yttrium iron garnet (YIG, Y3FesOy,) sample.””**? For a system having both compositional and

17,30,31

magnetic inhomogeneity we investigate a high entropy alloy with a nominal composition

of CoFeMnNiSn.

In conventional MFM, the cantilever is driven at a fixed frequency while either the frequency or
phase of the cantilever is recorded as a 2D map. These observables can be interpreted in terms
of both the local force gradient and tip-sample dissipation.! The frequency/phase is measured by
heterodyne detection, which effectively time averages the response of the cantilever at each

pixel.

An example of G-Mode MFM results on YIG are shown in Figure 1. Here, we utilize principal
component analysis (PCA), as a fast and computationally inexpensive, first step in separating
data into orthonormal components in descending order of statistical significance based on
variance.””> Each principal component comprises an eigenvalue loading map as well as an
eigenvector. The pair can be used to interpret the type of behavior, (eigenvector) and its spatial
variation (loading map). For comparison the AFM topography and standard MFM imaging of the
same region are provided in the supplementary information, see Fig. S1 (a,b,c), along with the

results from digital based heterodyne analysis on the G-Mode MFM data (see Fig. S1(d,e,f)).

The results of the PCA analysis of the G-Mode data are shown in Figure 1, where Figure
1(a-d) depicts the first 4 loading maps and Fig. (e-h) represents their corresponding eigenvectors
respectively. The first 3 principal components represent 98.36% of the statistically significant

variance in the data, with subsequent components largely dominated by noise without observable



spatial variation. The loading maps of the first and third principal components depict “flower-
like” magnetic domain patterns, characteristic for this material and matching the contrast to the
phase maps detected using heterodyne detection (Fig. S1).** The corresponding eigenvectors for
the first and third components are dominated by a single peak (in the frequency domain) located
at the drive frequency (75.16 kHz), which indicates that the loading maps correspond to a
magnetic interaction alone. The second principal component shows weaker spatial contrast
relating to the magnetic domains. The inset of Figure 1(g) depicts a segment of the second and
third eigenvectors in the time domain demonstrating a clear phase shift with respect to each other
and the corresponding loading maps suggest this shift is related to changes in the force gradient
as a result of the tip-sample magnetic interactions. Finally, the fourth PC loading map which has
no discernible spatial contrast, and is likely related to noise in the measurement or microscope
instrumentation. The corresponding eigenvector, Fig. 1(h) corroborates this finding as there is no
response at the driving frequency, and the eigenvector frequency spectrum is dominated by 1/f

noise and thermal noise around the resonance frequency.

These results demonstrate that G-Mode combined with information theory analysis can
be used to emulate conventional MFM, and that the vast majority of the information pertaining to
tip-sample interactions is contained at a single frequency (drive frequency). It also demonstrates,
however, that PCA effectively reduces the dimensionality, allowing visualization of the high
dimensional data sets without fitting to a physical model. Furthermore, the approach can be
harnessed to effectively de-noise the signal by rejecting uncorrelated information without a priori
knowledge using a purely statistical approach. For example, the data could be reconstructed from
the first three principal components alone (eigenvectors and loadings), and the other noise

dominated principal components could be rejected.



We further proceed to analyze the spatial information present in the G-Mode PCA
loading maps in an attempt to discern other possible tip-sample interactions which may be
encoded in the complex dataset but having weak informational weight with respect to the total
response. In order to do this we calculate the radially averaged correlation function C(r) of the
loading maps where by definition C(0)=1. In the presence of discernible features the correlation
function will have a long-range tail, whereas images populated by noise have rapidly decaying
tails (Cr), where, in the limit of random noise C(»>0) = 0. We also calculate the scree plot for the
principal components which represents the informational weight as a function of principal
component number. Fig. 2(a) illustrates the radial auto correlation function results for PCA
produced images as a function of eigenvector C(r, n). Note that the first three components
contain discernible spatial features, whereas subsequent components contain either very short-
range features (for example, topographic edges and so on) or are noise dominated. Surprisingly,
some of the senior components contain long-range correlations as well, as can be confirmed by
visual inspection of the loadings maps. In particular the loading maps of the 7" and 10™ principal
components can be identified to be moderately correlated from inspection of Figure 2(a), and are
shown to have spatial variation corresponding to magnetic domains, Fig 2(c) and (e). To
investigate this further, the loading maps are plotted with a contour overlay of the YIG magnetic
domains determined from Figure 1(a) (images without contour map are provided in Fig S2).
Noteworthy, this highly correlated spatial variation corresponds to very small informational
weight as determined from the skree plot where the 7" and 10™ principal component correspond
to 0.039% and 0.032% percentage of the total variation. Furthermore, the corresponding
eigenvectors show antisymmetric type of behavior of the excitation peak which can indicate a

shift in the resonance frequency. Interestingly these principal components seem to be confined to



locations where the tip crosses over magnetic domain walls as well as showing alternating
variability for similar domains. This might suggest that these weak components correspond to
phenomena related to abrupt changes in the cantilever dynamics which could induce a change in
magnetization state in either tip or sample. From Figure 2(a) it is clear that discernible features
are expected in principal components 13-15 as the correlation function for these principal
components show a long long-range tail. Figure 2(g) and (e) depict the loading map and
eigenvector respectively, which show spatial information unrelated to the samples magnetic
properties, and an eigenvector which is dominated by a response peak located at 25 kHz far from
the excitation frequency of the cantilever (75 kHz). This type of behavior is also representative
of the 14 and 15 components and is believed to be related to microscope or instrumentation

effects. Components 13-15 collectively equate to 0.04% of the overall informational weight.

Noteworthy, heterodyne detection methods are extremely sensitive to the response at the
drive frequency and its harmonics; however, such approaches do not allow for recovering

information outside the detection frequency (e.g. intermodulation products®>

etc.). An obvious
advantage to collecting and storing an entire spectrogram is the ability to unravel the cantilever
response at each frequency, without repeating the measurement. In Figure 3 we leverage this
capability to simultaneously map magnetic properties and electrostatic properties of the high
entropy (HEA) alloy CoFeMnNiSn. Often HEAs contain domain structures having differing
electronic and magnetic plroper'ties,30’37'39 hence, the ability to probe these properties
simultaneously, on the nanoscale, would be greatly beneficial for correlation of material
microstructure with functionality. First we map the topography, work function and magnetic

variation across the sample using standard Kelvin probe force microscopy (KPFM)** and MFM

respectively, see Figure 3(a, c, d). By performing these measurements sequentially and



comparing them we can conclude the presence of at least two domains which have very different
electronic and magnetic properties since this alloy is expected to contain an L2,-structured
matrix rich in Ni, Mn, and Sn and body centered cubic (BCC)-structured second phase which is

rich in Fe and Co.

For G-Mode, we demonstrate simultaneous magnetic and electrostatic mapping by photo-
thermally driving the cantilever at the mechanical resonance wo, and modulating the electrical
signal far from resonance (3 kHz). We perform the measurement over the same sample area
shown in Figure 3(a). As seen in Figure 3(b), the response is rich in harmonics and mixing
products as a result of the non-linear interaction between the tip and sample. This nonlinearity
generates sidebands around the resonance frequency wg at wo £ we aNd wo £ 2we;. This has some
similarities to frequency modulated KPFM,** which relies on sideband generation governed by
the electrostatic force gradient as opposed to the electrostatic force. When this data is analyzed
using a digital LIA, we observed clear contrast in both amplitude and phase for all harmonics. In
this way, G-Mode allows capturing a large number (~8000) frequency information channels

4243 4

simultaneously, without sacrificing data quality. We utilize the dual harmonic detection 0

determine the contact potential difference (CPD),*"#**®

opting to use the direct electrostatic force
components (A, and A,,) to avoid indirect crosstalk of the side bands with shifts in the
mechanical resonance frequency, with the trade of poorer signal to noise compared to on

resonance KPFM. Denoising of the G-Mode KPFM data can be performed using PCA and/or

noise thresholding as has previously be described.*

Selected PCA analysis of the data, shown in Figure 3, is provided in supplementary
information (Fig S3 and S4) for comparison. In this case however, the complex tip-sample

interactions result in the statistically significant data being spread across more principal

10



components, as is expected for the multiple excitations and responses, and the electrostatic
response in principal components 11-13" collectively amounts to 0.38 % of the total signal. G-
Mode MFM provides deeper insight into the surface processes by allowing simultaneous
mapping of CPD, (see Figure 3(g)) and capacitance gradient (see Figure 3(f)) channels; as well

as increased flexibility in data exploration across frequency, time, space, and noise domains.'’

To summarize, we have demonstrated an approach for mapping magnetic domains based
on MFM combined with full photo-detector data capture and subsequent multivariate analytics,
or software based LIA. G-Mode MFM produces temporally resolved maps of magnetic domains
in a broad frequency window. This temporal component may prove useful in probing transient or
dynamic magnetic phenomena in the future, to be utilized in mapping dynamic processes such as
motion of domain walls at timescales on the order of the tip oscillation. To deal with the size and
dimensionality of the G-Mode dataset, we have explored multivariate statistical analysis to
visualize pertinent behavior and to reduce dimensionality and size of the data. A similar process,
albeit utilizing a different algorithm, can be used to fit statistical results to physical parameters.
PCA is shown to be an initial, fast method used to explore cantilever dynamics and extract
material properties. Finally, we demonstrated simultaneous mapping, and de-mixing of magnetic
and electrostatic interactions by capturing the entire cantilever response spectra allowing for
simultaneous mapping of work function variation and magnetic interactions. In the future this
temporally resolved approach once implemented on low noise platforms may prove useful for
detection and imaging of electron spin relaxation in quantum computing or spintronic devices,"’

. . . 4
as has been demonstrated with magnetic resonance force microscopy.*®
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Figure Captions

Figure. 1. (a-d) First four principal components and (g-h) and there corresponding eigenvectors
from PCA analysis of a G-Mode MFM scan on a YIG sample.

Figure 2. (a) 2D radially averaged correlation function results for the different eigenvector
loadings from the data shown in Figure 3 of the manuscript distributed over. (b) PCA Skree plot
on a log-log scale. (c,d) Seventh, (e,f) 10" and (g,h) 13™ principal component (c,e,g) loading
map and (d,f,h) eigenvector. Eigenvectors are shown in the time domain representation in insets
of (d,f,h). The contour map on was generated from the first principle component and overlayed
on the (c) and (e) for visualization purposes.

Figure 3. (a) AFM topography of a CoFeMnNiSn HEA. (b) Single pixel FFT response showing
multiple harmonics and sideband generation. Variation in (C) contact potential difference and (d)
magnetic domains determined using conventional KPFM and MFM consecutively. LIA analysis
of G-Mode data showing (e) A, and (f) A,, which were used to determine the open loop (g)
CPD. (h) Shows the simultaneously recorded magnetic domain response from LIA analysis of
the mechanical excitation at wg.
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