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Abstract 

Here we develop a full information capture approach for Magnetic Force Microscopy (MFM), 

referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data 

stream from the photodetector at sampling rates approaching the intrinsic photodiode limit.   The 

data can be subsequently compressed, denoised, and analyzed, without information loss. Here, 
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G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model 

systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and 

electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We 

investigate the use of information theory to mine the G-Mode MFM data and demonstrate its 

usefulness for extracting information which may be hidden in traditional MFM modes, including 

signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection 

and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode 

image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is 

immediately implementable on any AFM platform and as such is expected to be a useful 

technique for probing spatiotemporal cantilever dynamics and mapping material properties as 

well as their mutual interactions. 
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Magnetic force microscopy (MFM)
1
 is a non-contact variant of  Atomic Force Microscopy, 

(AFM)
2
 which allows visualization of the nanoscale magnetic field above a sample surface. 

MFM is a valuable tool with a rich history
3
 in characterization of a variety of materials and 

devices including nanoparticles,
4
 ultra-thin films,

5
 memory storage devices,

6
 ferromagnetic 

materials,
7
 superconducting materials,

8
 and even biological systems.

9
 In MFM, a ferromagnetic 

AFM tip, attached to a flexible cantilever, is brought into proximity with the surface of a sample. 

Stray magnetic fields from the sample generate forces and force gradients on the magnetic tip 

that affects the response of the cantilever. As the tip is scanned across the surface, both the 

magnetic field and the topography can be mapped and correlated.  

Direct interpretation of the magnetic force maps in MFM, is not straight forward, and can be 

obscured by incomplete information of the micromagnetic structure of the tip, dynamic changes 

of tip- and sample magnetization state during imaging (including both losses and Barhausen 

jumps), non-linear cantilever dynamics, and non-magnetic interactions.
10-14

  In the classical 

implementation of MFM, based on resonant frequency detection, all these interactions are mixed, 

yielding a single image. Hence, separation of different magnetic mechanisms as well as 

differentiating magnetic signal from other long range interactions remains an essential problem 

to MFM.    

 Here we develop an MFM approach utilizing full information capture of the tip-surface 

interaction, and contrast our findings to the classical heterodyne detection approach. We utilize 

recently developed general mode, (G-Mode)
15

 AFM, which has previously been demonstrated 

for AFM tapping mode,
15

 piezoresponse force microscopy
16

 and Kelvin probe force 

microscopy.
17

  G-Mode samples the entire photodetector response in time domain at a sampling 

rate of ~4MHz, as the tip scans the surface at constant velocity. The resulting data can be 



 5 

reshaped into a 3-dimensional array by segmenting the data stream into x-position bins 

containing the cantilever deflection signal as a function of time within that bin. Note that division 

of the fast-scan-axis information into pixels can be performed after acquisition, enabling 

multiresolution imaging.
15,17

 The resulting data file is typically on the order or 4GB for the 

equivalent of a 256 x 256 pixel image taking approximately 18 minutes to capture (e.g. 

comparable to standard MFM). In contrast, standard MFM images are small (~1 MB), 2D 

matrices of the time averaged amplitude and phase (or resonant frequency) signals. In the case of 

G-Mode, dynamic processes (including non-periodic, rare events and transients), are encoded in 

the tip trajectory, captured in the data stream, and available for further analysis. Here, we 

demonstrate that G-Mode can be used to emulate conventional MFM, as well as discover 

signatures of non-linear interactions that are lost during heterodyne detection using information 

theory analysis techniques.
18-23

  Finally, we demonstrate a route to simultaneous electrostatic and 

magnetic property mapping in a single G-Mode image dataset obtained at regular scanning rates. 

Measurements were performed on an Asylum Research Cypher microscope, with as-received 

Co/Cr-coated (Asylum Research, ASYMFMHM) AFM probes, with a nominal mechanical 

resonance frequency and spring constant of 70 kHz and 2.0 N/m, respectively. The tips were 

magnetized prior to use by bringing them into close proximity with a strong magnet. In this work 

we used photothermal excitation
24,25

 (i.e. BlueDrive
TM

) to achieve a clean mechanical excitation 

of the cantilever. As has been previously shown on a similar sample, a flat, clean cantilever drive 

improves the separation of conservative and dissipative magnetic interactions.
26

  Standard MFM 

measurements were performed in dual pass mode at 50 nm lift height, using phase sensitive 

detection. For G-Mode imaging we used Matlab and LabView software for control and post 

processing. National Instruments PXIe-1073 coupled with the NI PXIe-6214 DAQ architecture 
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was used to generate an AC cantilever excitation waveform and to capture the photodetector 

signal. As a model system for magnetic domain imaging, we have chosen a ferromagnetic 

Yttrium iron garnet (YIG, Y3Fe5O12) sample.
27,28,29

  For a system having both compositional and 

magnetic inhomogeneity we investigate a high entropy alloy
17,30,31

 with a nominal composition 

of CoFeMnNiSn. 

In conventional MFM, the cantilever is driven at a fixed frequency while either the frequency or 

phase of the cantilever is recorded as a 2D map.  These observables can be interpreted in terms 

of both the local force gradient and tip-sample dissipation.
1
 The frequency/phase is measured by 

heterodyne detection, which effectively time averages the response of the cantilever at each 

pixel.  

An example of G-Mode MFM results on YIG are shown in Figure 1. Here, we utilize principal 

component analysis (PCA), as a fast and computationally inexpensive, first step in separating 

data into orthonormal components in descending order of statistical significance based on 

variance.
32,33

 Each principal component comprises an eigenvalue loading map as well as an 

eigenvector. The pair can be used to interpret the type of behavior, (eigenvector) and its spatial 

variation (loading map). For comparison the AFM topography and standard MFM imaging of the 

same region are provided in the supplementary information, see Fig. S1 (a,b,c), along with  the 

results from digital based heterodyne analysis on the G-Mode MFM data (see Fig. S1(d,e,f)).  

 The results of the PCA analysis of the G-Mode data are shown in Figure 1, where Figure 

1(a-d) depicts the first 4 loading maps and Fig. (e-h) represents their corresponding eigenvectors 

respectively. The first 3 principal components represent 98.36% of the statistically significant 

variance in the data, with subsequent components largely dominated by noise without observable 
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spatial variation. The loading maps of the first and third principal components depict “flower-

like” magnetic domain patterns, characteristic for this material and matching the contrast to the 

phase maps detected using heterodyne detection (Fig. S1).
34

 The corresponding eigenvectors for 

the first and third components are dominated by a single peak (in the frequency domain) located 

at the drive frequency (75.16 kHz), which indicates that the loading maps correspond to a 

magnetic interaction alone.  The second principal component shows weaker spatial contrast 

relating to the magnetic domains. The inset of Figure 1(g) depicts a segment of the second and 

third eigenvectors in the time domain demonstrating a clear phase shift with respect to each other 

and the corresponding loading maps suggest this shift is related to changes in the force gradient 

as a result of the tip-sample magnetic interactions. Finally, the fourth PC loading map which has 

no discernible spatial contrast, and is likely related to noise in the measurement or microscope 

instrumentation. The corresponding eigenvector, Fig. 1(h) corroborates this finding as there is no 

response at the driving frequency, and the eigenvector frequency spectrum is dominated by 1/f 

noise and thermal noise around the resonance frequency.  

 These results demonstrate that G-Mode combined with information theory analysis can 

be used to emulate conventional MFM, and that the vast majority of the information pertaining to 

tip-sample interactions is contained at a single frequency (drive frequency). It also demonstrates, 

however, that PCA effectively reduces the dimensionality, allowing visualization of the high 

dimensional data sets without fitting to a physical model. Furthermore, the approach can be 

harnessed to effectively de-noise the signal by rejecting uncorrelated information without a priori 

knowledge using a purely statistical approach. For example, the data could be reconstructed from 

the first three principal components alone (eigenvectors and loadings), and the other noise 

dominated principal components could be rejected. 
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 We further proceed to analyze the spatial information present in the G-Mode PCA 

loading maps in an attempt to discern other possible tip-sample interactions which may be 

encoded in the complex dataset but having weak informational weight with respect to the total 

response. In order to do this we calculate the radially averaged correlation function C(r) of the 

loading maps where by definition C(0)=1. In the presence of discernible features the correlation 

function will have a long-range tail, whereas images populated by noise have rapidly decaying 

tails (Cr), where, in the limit of random noise C(r>0) = 0. We also calculate the scree plot for the 

principal components which represents the informational weight as a function of principal 

component number. Fig. 2(a) illustrates the radial auto correlation function results for PCA 

produced images as a function of eigenvector C(r, n). Note that the first three components 

contain discernible spatial features, whereas subsequent components contain either very short-

range features (for example, topographic edges and so on) or are noise dominated. Surprisingly, 

some of the senior components contain long-range correlations as well, as can be confirmed by 

visual inspection of the loadings maps. In particular the loading maps of the 7
th

 and 10
th

 principal 

components can be identified to be moderately correlated from inspection of Figure 2(a), and are 

shown to have spatial variation corresponding to magnetic domains, Fig 2(c) and (e). To 

investigate this further, the loading maps are plotted with a contour overlay of the YIG magnetic 

domains determined from Figure 1(a) (images without contour map are provided in Fig S2). 

Noteworthy, this highly correlated spatial variation corresponds to very small informational 

weight as determined from the skree plot where the 7
th

 and 10
th

 principal component correspond 

to 0.039% and 0.032% percentage of the total variation. Furthermore, the corresponding 

eigenvectors show antisymmetric type of behavior of the excitation peak which can indicate a 

shift in the resonance frequency. Interestingly these principal components seem to be confined to 
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locations where the tip crosses over magnetic domain walls as well as showing alternating 

variability for similar domains. This might suggest that these weak components correspond to 

phenomena related to abrupt changes in the cantilever dynamics which could induce a change in 

magnetization state in either tip or sample.  From Figure 2(a) it is clear that discernible features 

are expected in principal components 13-15 as the correlation function for these principal 

components show a long long-range tail. Figure 2(g) and (e) depict the loading map and 

eigenvector respectively, which show spatial information unrelated to the samples magnetic 

properties, and an eigenvector which is dominated by a response peak located at 25 kHz far from 

the excitation frequency of the cantilever (75 kHz).  This type of behavior is also representative 

of the 14 and 15 components and is believed to be related to microscope or instrumentation 

effects. Components 13-15 collectively equate to 0.04% of the overall informational weight.  

 Noteworthy, heterodyne detection methods are extremely sensitive to the response at the 

drive frequency and its harmonics; however, such approaches do not allow for recovering 

information outside the detection frequency (e.g. intermodulation products
35,36

 etc.).  An obvious 

advantage to collecting and storing an entire spectrogram is the ability to unravel the cantilever 

response at each frequency, without repeating the measurement. In Figure 3 we leverage this 

capability to simultaneously map magnetic properties and electrostatic properties of the high 

entropy (HEA) alloy CoFeMnNiSn. Often HEAs contain domain structures having differing 

electronic and magnetic properties,
30,37-39

 hence, the ability to probe these properties 

simultaneously, on the nanoscale, would be greatly beneficial for correlation of material 

microstructure with functionality. First we map the topography, work function and magnetic 

variation across the sample using standard Kelvin probe force microscopy (KPFM)
40

 and MFM 

respectively, see Figure 3(a, c, d). By performing these measurements sequentially and 
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comparing them we can conclude the presence of at least two domains which have very different 

electronic and magnetic properties since this alloy is expected to contain an L21-structured 

matrix rich in Ni, Mn, and Sn and body centered cubic (BCC)-structured second phase which is 

rich in Fe and Co.   

 For G-Mode, we demonstrate simultaneous magnetic and electrostatic mapping by photo-

thermally driving the cantilever at the mechanical resonance ω0, and modulating the electrical 

signal far from resonance (3 kHz). We perform the measurement over the same sample area 

shown in Figure 3(a). As seen in Figure 3(b), the response is rich in harmonics and mixing 

products as a result of the non-linear interaction between the tip and sample. This nonlinearity 

generates sidebands around the resonance frequency ω0 at ω0 ± ωel and ω0 ± 2ωel. This has some 

similarities to frequency modulated KPFM,
41

 which relies on sideband generation governed by 

the electrostatic force gradient as opposed to the electrostatic force. When this data is analyzed 

using a digital LIA, we observed clear contrast in both amplitude and phase for all harmonics. In 

this way, G-Mode allows capturing a large number (~8000) frequency information channels 

simultaneously, without sacrificing data quality. We utilize the dual harmonic detection
42,43

 to 

determine the contact potential difference (CPD),
17,42,43

 opting to use the direct electrostatic force 

components (Aω and A2ω)  to avoid indirect crosstalk of the side bands with shifts in the 

mechanical resonance frequency,  with the trade of  poorer signal to noise compared to on 

resonance KPFM. Denoising of the G-Mode KPFM data can be performed using PCA and/or 

noise thresholding as has previously be described.
44

  

 Selected PCA analysis of the data, shown in Figure 3, is provided in supplementary 

information (Fig S3 and S4) for comparison. In this case however, the complex tip-sample 

interactions result in the statistically significant data being spread across more principal 
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components, as is expected for the multiple excitations and responses, and the electrostatic 

response in principal components 11-13
th

 collectively amounts to 0.38 % of the total signal. G-

Mode MFM provides deeper insight into the surface processes by allowing simultaneous 

mapping of CPD, (see Figure 3(g)) and capacitance gradient (see Figure 3(f)) channels; as well 

as increased flexibility in data exploration across frequency, time, space, and noise domains.
17

  

 To summarize, we have demonstrated an approach for mapping magnetic domains based 

on MFM combined with full photo-detector data capture and subsequent multivariate analytics, 

or software based LIA. G-Mode MFM produces temporally resolved maps of magnetic domains 

in a broad frequency window. This temporal component may prove useful in probing transient or 

dynamic magnetic phenomena in the future, to be utilized in mapping dynamic processes such as 

motion of domain walls at timescales on the order of the tip oscillation. To deal with the size and 

dimensionality of the G-Mode dataset, we have explored multivariate statistical analysis to 

visualize pertinent behavior and to reduce dimensionality and size of the data. A similar process, 

albeit utilizing a different algorithm, can be used to fit statistical results to physical parameters. 

PCA is shown to be an initial, fast method used to explore cantilever dynamics and extract 

material properties.  Finally, we demonstrated simultaneous mapping, and de-mixing of magnetic 

and electrostatic interactions by capturing the entire cantilever response spectra allowing for 

simultaneous mapping of work function variation and magnetic interactions. In the future this 

temporally resolved approach once implemented on low noise platforms may prove useful for 

detection and imaging of electron spin relaxation in quantum computing or spintronic devices,
45

 

as has been demonstrated with magnetic resonance force microscopy.
46

 

 



 12 

Acknowledgements 

This research(for L. C., A. B., S. V. K., S. J.) was conducted at the Center for Nanophase 

Materials Sciences, which is a DOE Office of Science User Facility. PKL would like to 

acknowledge the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-

FE-0008855, DE-FE-0024054, and DE-FE-0011194). PKL appreciates the support of the U.S. 

Army Research Office project (W911NF-13-1-0438) and the support for the National Science 

Foundation (CMMI-1100080).  



 13 

References 

 

1
 Y Martin and H Kumar Wickramasinghe,  Applied Physics Letters 50 (20), 1455 (1987). 

2
 G. Binnig, C. F. Quate, and C. Gerber,  Phys. Rev. Lett. 56 (9), 930 (1986). 

3
 U Hartmann,  Annual review of materials science 29 (1), 53 (1999). 

4
 Victor F Puntes, Pau Gorostiza, Deborah M Aruguete, Neus G Bastus, and A Paul 

Alivisatos,  Nature materials 3 (4), 263 (2004). 
5
 M Dreyer, M Kleiber, A Wadas, and R Wiesendanger,  Physical Review B 59 (6), 4273 

(1999). 
6
 Stuart SP Parkin, Masamitsu Hayashi, and Luc Thomas,  Science 320 (5873), 190 (2008). 

7
 Feng Bi, Mengchen Huang, Sangwoo Ryu, Hyungwoo Lee, Chung-Wung Bark, Chang-

Beom Eom, Patrick Irvin, and Jeremy Levy,  Nat. Commun. 5 (2014). 
8
 A Wadas, O Fritz, HJ Hug, and H-J Güntherodt,  Zeitschrift für Physik B Condensed 

Matter 88 (3), 317 (1992). 
9
 Roger B Proksch, TE Schäffer, BM Moskowitz, ED Dahlberg, Dennis A Bazylinski, and 

Richard B Frankel,  Applied Physics Letters 66 (19), 2582 (1995). 
10

 Hans J Hug, B Stiefel, PJA Van Schendel, A Moser, R Hofer, S Martin, H-J Güntherodt, 

Steffen Porthun, Leon Abelmann, and JC Lodder,  Journal of Applied Physics 83 (11), 

5609 (1998). 
11

 J Lohau, S Kirsch, A Carl, G Dumpich, and EF Wassermann,  Journal of applied physics 

86 (6), 3410 (1999). 
12

 JM Garcıa, André Thiaville, J Miltat, KJ Kirk, JN Chapman, and F Alouges,  Applied 

Physics Letters 79 (5), 656 (2001). 
13

 A Asenjo, Miriam Jaafar, D Navas, and M Vázquez,  Journal of applied physics 100 (2), 

023909 (2006). 
14

 Thomas Häberle, Felix Haering, Holger Pfeifer, Luyang Han, Balati Kuerbanjiang, Ulf 

Wiedwald, Ulrich Herr, and Berndt Koslowski,  New Journal of Physics 14 (4), 043044 

(2012). 
15

 A. Belianinov, S. V. Kalinin, and S. Jesse,  Nature Communications 6 (2015). 
16

 Suhas Somnath, Alexei Belianinov, Sergei V Kalinin, and Stephen Jesse,  Applied 

Physics Letters 107 (26), 263102 (2015). 
17

 Liam Collins, Alex Belianinov, Suhas Somnath, Brian J Rodriguez, Nina Balke, Sergei V 

Kalinin, and Stephen Jesse,  Nanotechnology 27 (10), 105706 (2016). 
18

 Liam Collins, Stephen Jesse, Jason I Kilpatrick, Alexander Tselev, Oleksandr Varenyk, 

M Baris Okatan, Stefan AL Weber, Amit Kumar, Nina Balke, Sergei V Kalinin, and BJ 

Rodriguez,  Nature communications 5 (2014). 
19

 Alex Belianinov, Rama Vasudevan, Evgheni Strelcov, Chad Steed, Sang Mo Yang, 

Alexander Tselev, Stephen Jesse, Michael Biegalski, Galen Shipman, and Christopher 

Symons,  Advanced Structural and Chemical Imaging 1 (1), 1 (2015). 
20

 Rama K Vasudevan, Alex Belianinov, Anthony G Gianfrancesco, Arthur P Baddorf, 

Alexander Tselev, Sergei V Kalinin, and Stephen Jesse,  Applied Physics Letters 106 (9), 

091601 (2015). 
21

 Alex Belianinov, Panchapakesan Ganesh, Wenzhi Lin, Brian C Sales, Athena S Sefat, 

Stephen Jesse, Minghu Pan, and Sergei V Kalinin,  APL Materials 2 (12), 120701 (2014). 



 14 

22
 Evgheni Strelcov, Alexei Belianinov, Ying-Hui Hsieh, Ying-Hao Chu, and Sergei V 

Kalinin,  Nano letters 15 (10), 6650 (2015). 
23

 E. Strelcov, A. Belianinov, Y. H. Hsieh, S. Jesse, A. P. Baddorf, Y. H. Chu, and S. V. 

Kalinin,  ACS Nano 8 (6), 6449 (2014). 
24

 Glenn C Ratcliff, Dorothy A Erie, and Richard Superfine,  Applied physics letters 72 

(15), 1911 (1998). 
25

 A Labuda, K Kobayashi, Daniel Kiracofe, K Suzuki, PH Grütter, and H Yamada,  AIP 

Advances 1 (2), 022136 (2011). 
26

 Roger Proksch and Sergei V Kalinin,  Nanotechnology 21 (45), 455705 (2010). 
27

 S Geller and MA Gilleo,  Journal of Physics and Chemistry of Solids 3 (1), 30 (1957). 
28

 M Abe and M Gomi,  Journal of magnetism and magnetic materials 84 (3), 222 (1990). 
29

 AC Rastogi, VN Moorthy, and Sandip Dhara,  Applied Physics Letters 78 (2001). 
30

 Yong Zhang, Ting Ting Zuo, Zhi Tang, Michael C Gao, Karin A Dahmen, Peter K Liaw, 

and Zhao Ping Lu,  Progress in Materials Science 61, 1 (2014). 
31

 Ming-Hung Tsai and Jien-Wei Yeh,  Materials Research Letters 2 (3), 107 (2014). 
32

 Ian Jolliffe, Principal component analysis. (Wiley Online Library, 2002). 
33

 Hervé Abdi and Lynne J Williams,  Wiley Interdisciplinary Reviews: Computational 

Statistics 2 (4), 433 (2010). 
34

 A Wadas, John Moreland, Paul Rice, and RR Katti,  Applied physics letters 64 (9), 1156 

(1994). 
35

 Daniel Platz, Erik A Tholén, Devrim Pesen, and David B Haviland,  Applied Physics 

Letters 92 (15), 153106 (2008). 
36

 Riccardo Borgani, Daniel Forchheimer, Jonas Bergqvist, Per-Anders Thorén, Olle 

Inganäs, and David B Haviland,  Applied Physics Letters 105 (14), 143113 (2014). 
37

 PF Yu, LJ Zhang, H Cheng, H Zhang, MZ Ma, YC Li, G Li, PK Liaw, and RP Liu,  

Intermetallics 70, 82 (2016). 
38

 Tingting Zuo, Xiao Yang, Peter K Liaw, and Yong Zhang,  Intermetallics 67, 171 (2015). 
39

 Yong Zhang, TingTing Zuo, YongQiang Cheng, and Peter K Liaw,  Scientific reports 3 

(2013). 
40

 M Nonnenmacher, MP o’Boyle, and HK Wickramasinghe,  Applied physics letters 58 

(25), 2921 (1991). 
41

 Th Glatzel, S Sadewasser, and M Ch Lux-Steiner,  Applied Surface Science 210 (1), 84 

(2003). 
42

 Liam Collins, Jason I Kilpatrick, Ivan V Vlassiouk, Alexander Tselev, Stefan AL Weber, 

Stephen Jesse, Sergei V Kalinin, and Brian J Rodriguez,  Applied physics letters 104 

(13), 133103 (2014). 
43

 Liam Collins, JI Kilpatrick, Stefan AL Weber, Alexander Tselev, Ivan V Vlassiouk, Ilia 

N Ivanov, Stephen Jesse, SV Kalinin, and BJ Rodriguez,  Nanotechnology 24 (47), 

475702 (2013). 
44

 L. Collins, A. Belianinov, S. Somnath, BJ Rodriguez, N. Balke, S. V. Kalinin, and S. 

Jesse,  Nanotechnology Accepted (2016). 
45

 BC Stipe, HJ Mamin, CS Yannoni, TD Stowe, TW Kenny, and D Rugar,  Phys. Rev. 

Lett. 87 (27), 277602 (2001). 
46

 JOHN A Sidles, JOSEPH L Garbini, KJ Bruland, D Rugar, O Züger, S Hoen, and CS 

Yannoni,  Reviews of Modern Physics 67 (1), 249 (1995). 

 



 15 

 

  



 16 

Figure Captions 

Figure. 1. (a-d) First four principal components and (g-h) and there corresponding eigenvectors 

from PCA analysis of a G-Mode MFM scan on a YIG sample.  

Figure 2. (a) 2D radially averaged correlation function results for the different eigenvector 

loadings from the data shown in Figure 3 of the manuscript distributed over. (b) PCA Skree plot 

on a log-log scale. (c,d) Seventh, (e,f) 10
th

 and (g,h) 13
th

 principal component (c,e,g) loading 

map and (d,f,h) eigenvector. Eigenvectors are shown in the time domain representation in insets 

of (d,f,h). The contour map on was generated from the first principle component and overlayed 

on the (c) and (e) for visualization purposes. 

 

Figure 3. (a) AFM topography of a CoFeMnNiSn HEA. (b) Single pixel FFT response showing 

multiple harmonics and sideband generation. Variation in (C) contact potential difference and (d) 

magnetic domains determined using conventional KPFM and MFM consecutively. LIA analysis 

of G-Mode data showing (e) Aω and (f) A2ω which were used to determine the open loop (g) 

CPD. (h) Shows the simultaneously recorded magnetic domain response from LIA analysis of 

the mechanical excitation at ω0.  
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Figure 1. Collins et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

 

Figure 2. Collins et al. 
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Figure 3. Collins et al. 
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