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Abstract. Characterizing subsurface properties is crucial for reliable and4

cost-effective groundwater supply management and contaminant remedia-5

tion. With recent advances in sensor technology, large volumes of hydro-geophysical6

and geochemical data can be obtained to achieve high-resolution images of7

subsurface properties. However, characterization with such a large amount8

of information requires prohibitive computational costs associated with “big9

data” processing and numerous large-scale numerical simulations. To tackle10

such difficulties, the Principal Component Geostatistical Approach (PCGA)11

has been proposed as a “Jacobian-free” inversion method that requires κ for-12

ward simulation runs for each iteration where κ is much smaller than the num-13

ber of unknown parameters and measurements. PCGA can be conveniently14

linked to any multi-physics simulation software with independent parallel ex-15

ecutions. In this paper, we extend PCGA to handle a large number of mea-16

surements (e.g. 106 or more) by constructing a fast preconditioner whose com-17

putational cost scales linearly with the data size. For illustration, we char-18

acterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-19

scale 3-D sand box using about 6 million transient tracer concentration mea-20

surements obtained using magnetic resonance imaging. Since each individ-21

ual observation has little information on the K distribution, the data was com-22

pressed by the zero-th temporal moment of breakthrough curves, which is23

equivalent to the mean travel time under the experimental setting. Only about24

2,000 forward simulations in total were required to obtain the best estimate25

with corresponding estimation uncertainty, and the estimated K field cap-26
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tured key patterns of the original packing design, showing the efficiency and27

effectiveness of the proposed method.28
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1. Introduction

Typical subsurface inverse problems deal with the estimation of geologic heterogeneous29

parameters, such as hydraulic conductivity, from noisy and sparse measurements includ-30

ing hydraulic head, solute concentration, temperature and so on. It is well known that31

subsurface inverse problems are underdetermined and ill-posed; that is, the solution to32

the inverse problem is non-unique and sensitive to measurement and conceptual modeling33

errors. Therefore, the solution to the inverse problem and its uncertainty are evaluated34

within a statistical framework. [McLaughlin and Townley , 1996; Carrera et al., 2005;35

Oliver et al., 2008; Kaipio and Somersalo, 2007; Stuart , 2010; Smith, 2014].36

With recent advances in sensor and computation technology, unprecedented large vol-37

umes of hydro-geophysical and geochemical data sets can be obtained and processed38

[Hampson et al., 2008; Barnhart et al., 2010; Orellana and Haigh, 2008; Pamukcu and39

Ghazanfari , 2014] to achieve high-resolution images of subsurface properties for more40

accurate and reliable subsurface flow and reactive transport prediction. While a large41

data set may yield richer and more revealing information to improve inversion results42

and reduce estimation uncertainty, incorporating a plethora of information into subsur-43

face characterization requires high, often prohibitive, computational costs associated with44

“big data” processing and a large number of high-dimensional, coupled multi-physics nu-45

merical simulations. For example, in a recent extensive hydraulic tomography campaign46

[Hochstetler et al., 2015], millions of transient pressure data were successfully acquired47

from a field site, but only a few thousand measurements were carefully selected and used48
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to perform high-resolution 3-D transient hydraulic tomography to reduce computational49

costs.50

Traditional inversion techniques are not well suited for high-dimensional and joint in-51

verse problems with massive datasets because they usually require a number of numerical52

simulation model runs proportional to the size of unknowns and measurements in order53

to construct Jacobian (i.e., sensitivity) matrices. To avoid a large number of expen-54

sive simulations, a Newton-conjugate gradient (Newton-CG) type method [Haber and55

Ascher , 2001; Epanomeritakis et al., 2008] for nonlinear least square type inversion has56

been applied using inner conjugate gradient iterations that avoid full Hessian products57

by forming Hessian-vector products followed by outer Gauss-Newton iterations. While an58

inner conjugate gradient iteration requires only a few forward and adjoint system solu-59

tions independent of the problem size, the entire inversion may require a large number of60

sequential inner and outer iterations to converge without a good preconditioner.61

Another effective approach dealing with massive data is to use a small number of sum-62

marized or subsampled data from the original data set in order to save computation and63

storage costs. When the information content of an individual data record is low, with lo-64

cal influence, and/or redundant with other records, inversions using the entire or reduced65

data set often provide similar estimation results with comparable uncertainty reduction.66

In hydrogeology, temporal moments of the large data set such as transient pressure [Zhu67

and Yeh, 2006; Yin and Illman, 2009] and concentration breakthrough curves [Harvey68

and Gorelick , 1995a; Cirpka and Kitanidis , 2000; Nowak and Cirpka, 2006] are widely69

used to reconstruct unknown hydraulic conductivity fields. Randomized dimensionality70

reduction methods [Krebs et al., 2009; Haber et al., 2012; Aravkin et al., 2012] using a71
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random subset of data have been actively studied to achieve an acceptable inversion result72

close to the best estimate obtained from the complete data set.73

Among recently proposed scalable inversion approaches, the Principal Component Geo-74

statistical Approach (PCGA) [Lee and Kitanidis , 2014; Kitanidis and Lee, 2014] is an75

approximate method to the Bayesian geostatistical approach [Kitanidis , 1995, 2010] to76

estimate unknown subsurface spatial parameters and quantify the corresponding uncer-77

tainty rigorously with an affordable number of forward simulations independent of the78

problem size. PCGA has been applied to several engineering applications with high di-79

mensional unknown parameters such as hydraulic tomography, tracer data inversion [Lee80

and Kitanidis , 2014], deep aquifer characterization with heat tracer [Lee et al., 2015] and81

arsenic-bearing mineral imaging [Fakhreddine et al., 2015]. However, PCGA has not been82

applied to inverse problems with a large number of measurements.83

In this paper, we extend PCGA to handle a large number of measurements (∼ O(106)),84

an exercise that will soon become routine in the era of big data. To handle the large cok-85

riging matrix arising from the geostatistical approach, a scalable and exact preconditioner86

for PCGA is constructed. By scalability, we mean the ability of PCGA to deal with very87

large measurements and unknowns, and the computation/storage costs of the proposed88

preconditioner increase linearly with respect to the dimension of measurements and un-89

knowns. Our proposed method is used to estimate the unknown hydraulic conductivity90

field in a 3-D laboratory-scale sand box from in-situ tracer breakthrough data obtained91

using magnetic resonance imaging (MRI) [Yoon et al., 2008]. The same data set was92

used for the sand box characterization by Yoon and McKenna [2012]. The previous work93

implemented PEST [Doherty and Hunt , 2010] linked with MODFLOW [Harbaugh et al.,94
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2000], and an advective particle tracking method instead of the full advection-dispersion95

simulation model due to the prohibitive computational costs. In this work, we use coupled96

flow and transport simulation with MODFLOW [Harbaugh et al., 2000] and MT3DMS97

[Zheng and Wang , 1999], respectively, to achieve a (approximate) full geostatistical solu-98

tion, and also corresponding solution uncertainty that was not reported in the previous99

work.100

This paper is organized in the following way. Section 2 reviews the geostatistical and101

principal component geostatistical approaches. The computational framework for large102

data set inversion is also presented. Section 3 explains the MRI experiment setup briefly,103

and data reduction technique. In Section 4, PCGA is applied to two synthetic examples104

to investigate the computational efficiency and solution accuracy of the proposed method.105

Then, inversion results using the real experimental data set are presented. Concluding106

remarks follow in Section 5.107

2. Method

In this section, we review the quasi-linear geostatistical approach [Kitanidis , 1995] and108

PCGA [Kitanidis and Lee, 2014; Lee and Kitanidis , 2014]. Then we extend PCGA to109

solve large data inversion problems.110

2.1. Review of Geostatistical Approach

The observation equation, which relates the m × 1 vector of unknowns s to the n × 1111

vector of the data y is112

y = h(s) + v, v ∼ N(0,R) (1)113
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where h is the forward model mapping the parameter space Rm to the measurement114

space Rn, v is Gaussian with zero mean and covariance R that accounts for errors in115

the data y and the forward model h. The prior probability of s is Gaussian with mean116

Xβ and covariance Q, where X is the m× p known (polynomial) matrix, β is the p× 1117

unknown vector (typically p = 1), and Q is the generalized covariance matrix [Kitanidis ,118

1983, 1993].119

The posterior pdf of s and β are obtained through Bayes theorem and its negative120

loglikelihood, − ln p
′′
(s,β), is121

− ln p
′′
(s,β) =

1

2
(y − h(s))⊤R−1(y − h(s)) +

1

2
(s−Xβ)⊤Q−1(s−Xβ) (2)122

By minimizing (2) with respect to s and β, we can obtain the maximum a posterior123

(MAP) or most likely value ŝ, commonly computed through an iterative Gaussian-Newton124

method.125

For this method, we start with the latest “best” estimate s̄i, and update to a new126

solution s̄i+1. Next, the n×m Jacobian or senstivity matrix H of h at s̄i+1 is evaluated127

as:128

H =
∂h

∂s

∣∣∣∣
s=s̄i

(3)129

Then, based on the linearization of (2), the updated solution for the next iteration is130

computed as131

s̄i+1 = Xβ̄ +QH⊤ξ̄ (4)132

where β̄ and ξ̄ are computed by solving a single linear system of n+ p equations:133 [
HQH⊤ +R HX

(HX)⊤ 0

] [
ξ̄
β̄

]
=

[
y − h(s̄i) +Hs̄i

0

]
(5)134
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Steps (3) - (5) are repeated until s̄i converges to the best estimate ŝ. For strongly nonlinear135

problems, a Levenberg-Marquardt type method using a larger error matrix Rα = αR136

(where α ≥ 1) adaptively for the first few iterations can be used for better convergence.137

Note that the computation of the Jacobian requires min (m,n) + 1 forward simulation138

runs using forward or adjoint-state method. Once ŝ is obtained, the posterior covariance139

matrix V is computed as140

V = Q−
[
HQ
X⊤

]⊤ [
HQH⊤ +R HX

(HX)⊤ 0

]−1 [
HQ
X⊤

]
(6)141

2.2. Principal Component Geostatistical Approach

While the geostatistical method is well suited for small- to moderate-scale inverse prob-142

lems, computational cost can become extremely high when the method is implemented143

on finely resolved grid with a large number of measurements. The challenges originate144

from the construction of Jacobian H and the matrix products of Jacobian, particularly145

HQ. Separate construction of H and products of H with dense matrices lead to at least146

n+1 forward simulations at each iteration and O(m2n) multiplication and O(mn) storage147

costs. Furthermore, computation of H typically requires intrusive changes in the forward148

model code, which adds another level of difficulty, especially for multi-physics problems149

that utilize multiple forward models, in series or coupled.150

PCGA expedites the geostatistical approach by avoiding the direct evaluation of the151

Jacobian, by using 1) a low-rank approximation of the prior covariance Q and 2) a finite-152

difference approximation of matrix products. Assume Q is approximated through rank-κ153

truncated eigen-decomposition:154

Q ≈ Qκ = ZZ⊤ =
κ∑

i=1

ζiζ
⊤
i (7)155
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where Qκ is the rank-κ (κ ≪ m) approximation of Q, Z is the square root of Qκ using156

the eigen-decompsion, and ζi is the i-th column vector of Z which is the i-th (largest)157

eigenvector multiplied by the square root of the corresponding i-th eigenvalue of Q. A158

fast and scalable method to obtain (7) for large-scale covariance matrices is explained in159

Lee and Kitanidis [2014].160

A generic Jacobian-vector product Hu needed in (5) (e.g., u = s̄, Xi or ζi) can be161

computed approximately at the cost of an additional forward model evaluation using a162

finite-difference approximation:163

Hu =
1

δ
[h(u+ δu)− h(u)] +O(δ) (8)164

where δ is the finite-difference perturbation size. An optimal choice of δ [Brown and Saad ,165

1990] is given by166

δ̂ =

√
ϵ

∥u∥22
max

(
|s⊤u|, c⊤|u|

)
sign

(
s⊤u

)
(9)167

where ϵ is the relative machine precision, which is usually (one order of magnitude)168

greater than the square root of the machine precision, |u| = [|u1|, |u2|, ..., |um|]⊤, c =169

[c1, c2, ...cm]
⊤, ci is a typical value of |si| and sign() indicates a sign of value.170

Accordingly, the matrix-matrix products HQ and HQH⊤ are computed by171

HQ ≈ HQκ = H
κ∑

i=1

ζiζ
⊤
i =

κ∑
i=1

(Hζi) ζ
⊤
i ≈

κ∑
i=1

ηiζ
⊤
i (10)172

173

HQH⊤ ≈ HQκH
⊤ =

κ∑
i=1

(Hζi) (Hζi)
⊤ ≈

κ∑
i=1

ηkη
⊤
k (11)174

where175

ηi = Hζi ≈
1

δ
[h(s+ δζi)− h(s)] (12)176

.177
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Replacing the explicit construction and multiplication of H in (3) - (5) by (8) - (12)178

requires a total of κ + p + 2 forward model runs in each iteration, and the storage cost179

becomes O(mκ) from O(mn). As a result, PCGA can reduce the number of numerical180

simulations significantly from n+1 to κ+p+2 when a large number of measurements are181

available. Previous numerical experiments [Lee and Kitanidis , 2014; Fakhreddine et al.,182

2015; Lee et al., 2015] have shown that κ ∼ O(100) and a few hundred simulation runs183

in total are needed without any intrusive changes in the simulation model code, while184

inverse solutions are almost the same as those obtained from the geostatistical approach.185

Corresponding estimation variance can be efficiently computed as in Appendix B.186

2.3. Fast and Exact Preconditioner for PCGA

Our previous research presented high-dimensional and/or joint inversion problems with187

a moderate number of measurements (∼ O(103)). When a massive data set is available,188

solving the n + p by n + p cokriging system in (13), for example n = 106, would be189

infeasible with direct matrix inversion methods and should be implemented with iterative190

methods such as MINRES [Paige and Saunders , 1975] and GMRES [Saad and Schultz ,191

1986]. Those iterative methods usually require a preconditioner to reduce the number192

of iterations and constructing a “good” preconditioner, which is close to the inverse of193

the cokriging matrix and guarantees a few iterations, is typically expensive. However, for194

PCGA we can accelerate the direct solution of (5) or construct an effective preconditioner195

based on the exact inverse of the cokriging or so-called saddle point matrix [Benzi et al.,196

2005]:197 [
HQH⊤ +R HX

(HX)⊤ 0

]−1

:=

[
Ψ Φ
Φ⊤ 0

]−1

=

[
Ψ−1 −Ψ−1ΦS−1Φ⊤Ψ−1 Ψ−1ΦS−1

S−1Φ⊤Ψ−1 −S

]
(13)198
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where199

Ψ := HQH⊤ +R, Φ := HX, S := Φ⊤Ψ−1Φ (14)200

and the dominant cost for (13) is the computation of Ψ−1, i.e.,201

Ψ−1 =
(
HQH⊤ +R

)−1
(15)202

This type of matrix form has been actively researched as an application of the generalized203

eigenvalue problem (GEP) [Flath et al., 2011; Cui et al., 2014; Saibaba and Kitanidis ,204

2015] to approximate the Hessian of (2) with a relatively small number of terms (generally205

∼ O(100)); we follow this technique to solve (5) for PCGA. Assume that we solve the206

following GEP (see Appendix A) to find u and λ, which are the generalized eigenvector207

and eigenvalue of Q and R, respectively:208

HQH⊤u = λRu (16)209

that satisfies210

HQH⊤ = RUΛU⊤R, URU⊤ = I (17)211

where the columns of U and diagonal values of Λ are generalized eigenvectors u and212

eigenvalues λ. Then, using the Sherman-Morrison-Woodbury formula,213

Ψ−1 =
(
HQH⊤ +R

)−1
= R−1 −UDU⊤ (18)214

where diagonal matrix D whose i-th diagonal value Di is215

Di =
λi

λi + 1
(19)216

In the PCGA framework, where Q is replaced with the rank-κ approximation Qκ, we217

need to find only “κ” generalized eigenmodes for (16) to obtain the exact inverse of the218
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cokriging matrix used in PCGA using (18):219

Ψ−1 ≈ Ψ−1
κ =

(
HQκH

⊤ +R
)−1

= R−1 −UκDκU
⊤
κ (20)220

where Uκ and Λκ are generalized eigenvectors and eigenvalues of Qκ and R, respectively.221

GEP can be solved efficiently using the sequential Lanczos-based method or parallelized222

randomized SVD [Saibaba et al., 2015], with computational cost of O(nκ2) and storage223

cost of O(nκ), i.e., linear scalability with respect to the data size. Once the generalized224

eigenvalues and eigenvectors are computed, the inverse matrix (13) can be used to solve225

the cokriging system directly or as a preconditioner for iterative approaches.226

It should be noted that the iterative approaches require a form of matrix-vector product227

instead of explicit construction of (13). For example, Ψ−1
κ x can be computed as228

Ψ−1x ≈ Ψ−1
κ x = R−1x−Uκ(Dκ(U

⊤
κ x)) (21)229

without storing and computing the full matrix Ψ−1
κ . The same argument is applied to S230

andΦ in (13). In the numerical experiment we present in the next section with n = 51, 584231

and κ = 2000, GEP was solved in 10 seconds and MINRES or GMRES required no more232

than 4 iterations to achieve convergence with a small residual, e.g., 10−8.233

2.4. Choice of the number of Principal Components κ

In our previous works [Kitanidis and Lee, 2014; Lee and Kitanidis , 2014], two methods234

were proposed to choose a reasonable κ based on 1) relative eigenvalue error (the ratio235

of κ + 1-th eigenvalue to the first eigenvalue) of the prior covariance approximation and236

2) eigenspectrum of HQκH
⊤ compared to R. In many practical cases, the former would237

work effectively by keeping κ principal components that give a small relative eigenvalue238

error (e.g. ≤ 0.01). However, this criteria alone might not be sufficient, especially when239
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the information content from dense measurements is rich enough to recover small-scale240

features, and the eigenvalue decay of the prior Q chosen for such a data-intensive case241

is slow due to short correlation length, high physical domain dimension (i.e., 3-D) and242

high parameter dimension [Frauenfelder et al., 2005]. As a result, κ can vary dramatically243

depending on the relative eigenvalue error one allows. A more rigorous way would be to244

investigate the combined effect of the prior information, forward model prediction, and245

modeling and measurement errors on the approximation of the estimation results. In fact,246

the generalized eigenvalue of HQH⊤ and R discussed in Section 2.3 can be an effective247

mathematical tool for this purpose and interpreted as a generalized Rayleigh-Ritz ratio:248

λi = argmax
u∈Ui,i+1,··· ,n

u⊤HQH⊤u

u⊤Ru
(22)249

where Ui,i+1,··· ,n is the space spanned by the eigenvectors corresponding to the eigenvalues250

equal to or smaller than the i-th eigenvalue. The i-th eigenvalue maximizes the Rayleigh-251

Ritz ratio over the measurement subspace Ui,i+1,··· ,n, and can be interpreted as how much252

the unknown s contributes to the measurement variability compared to the noise R in the253

corresponding eigenspace. In other words, if λi is greater than 1, the measurements are254

more important and informative to the solution than the noise along the corresponding255

eigenvector direction (cf. Cui et al. [2014] for the Hessian approximation). Thus, we can256

choose κ whose eigenvalue λκ is close to 1. Note that one can allow κ slightly larger257

than 1 without losing accuracy since the prior Q includes redundant information on the258

prior mean structure X. The generalized prior covariance [Kitanidis and Lee, 2014] that259

excludes the effect of the prior mean can be used for more rigorous choice of κ.260

It should be noted that the analysis above is based on HQH⊤, and what we compute261

with κ principal components is κ-rank HQκH
⊤. The κ-th generalized eigenvalue λκ of262
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HQκH
⊤ (and R) would be much smaller than actual λκ of HQH⊤. Thus, one should263

check whether the eigenspectrum above λ ≈ 1 changes by adding more principal com-264

ponents in order to make sure the eigenspectrum of HQκH
⊤ is close to that of HQH⊤

265

around λκ. A practical and efficient implementation is that one starts PCGA with a small266

value of κ, then increases κ steadily in each iteration up to the value where the generalized267

eigenspectrum does not vary much (for example the spectrum above λ = 10).268

3. Application to Tracer Data Inversion

We applied the method proposed in Section 2 to a laboratory-scale hydraulic conduc-269

tivity estimation problem. The experimental procedure and data acquisition are given270

in detail by Yoon et al. [2008] and Zhang et al. [2007]. Here, we briefly explain the ex-271

perimental setup, the data processing with temporal moment analysis and the numerical272

setting.273

3.1. Experimental Setup

The experimental setup of the flowcell is shown in Figure 1. The entire flowcell has di-274

mensions of 21.5 × 9 × 8.5 cm, and is packed with 1 cm cubes of five different sand types275

described in Table 1. The hydraulic conductivity, porosity and dispersion coefficients of276

all five sand types were measured independently before packing. The “true” hydraulic277

conductivity field with five different sand types was generated using the sequential in-278

dicator simulation algorithm [Deutsch and Journel , 1998] to construct a heterogeneous279

K field for the central portion of the flowcell (14 × 8 × 8 cm) as in Figure 1 (b). The280

rest of the flowcell (a 4.5 cm zone adjacent to the inlet, a 3 cm zone adjacent to the281

outlet, a 0.5 cm thick layer on the bottom and a 0.5 cm thick vertical layer adjacent to282

D R A F T D R A F T



X - 16 LEE ET AL.: MRI IMAGING

the side walls) was filled with 50/70 sand (lowest hydraulic conductivity). For the tracer283

test, a constant head was maintained at the inlet and outlet reservoirs, and a nonreactive284

para-magnetic tracer solution was continuously injected into the initial tracer-free water285

saturated flowcell until complete breakthrough was observed in the outflow. The total286

time for the tracer solution to flow through the entire flowcell was about 4 hours.287

The signal intensity for the tracer concentration using MRI was obtained and processed288

at a resolution of 0.25 × 0.25 × 0.25 cm = 0.016 cm3, at a regular sampling interval of 2.17289

min over the MR imaging region, which is slightly smaller than the entire heterogeneous290

region (14 × 8 × 8). The MRI signal was converted into normalized tracer breakthrough291

curves (BTCs), i.e., tracer concentration varies between 0 and 1. Measurements from the292

top 0.25 cm of the heterogeneous region were not used in this study due to decreased293

imaging accuracy; the actual observation data for the inversion covers from x = 4.5 and294

17.5 cm, y = 0.5 to 8.5 cm, and z = 0.5 to 8.25 cm in the central heterogeneous region,295

and the total number of observed tracer concentration data records is 5,777,408.296

3.2. Data Processing with Temporal Moments

For tracer test data inversion, the first normalized temporal moment of tracer con-297

centration BTCs has been widely used [Cirpka and Kitanidis , 2000; Nowak and Cirpka,298

2006]. The first normalized temporal moment of a local BTC due to a pulse-like tracer299

injection, m1,n [T], is defined as300

m1,n(x) =
m1(x)

m0(x)
=

∫∞
0

tC(x, t)dt∫∞
0

C(x, t)dt
(23)301

where mi is the i-th temporal moment [Ti+1] and C is the dimensionless normalized con-302

centration [-]. m1,n represents the mean travel (arrival) time of the tracer at a monitoring303
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location. The use of the first temporal moment in the inversion has been shown to be304

robust and beneficial because the first temporal moment is continuous with respect to the305

objective function (2), and the transient transport equation (with time-invariant coeffi-306

cients) can be transformed into a steady-state equation for the pulse-type tracer injection307

[Harvey and Gorelick , 1995b; Cirpka and Kitanidis , 2000].308

Previous laboratory-scale studies [Nowak and Cirpka, 2006; Yoon and McKenna, 2012]309

performed continuous tracer injection tests and computed the first normalized moment of310

the derivative of BTCs (C
′
), m

′
1,n [T], in order to approximate the mean travel time for a311

pulse-like injection:312

m
′

1,n(x) =
m′

1(x)

m′
0(x)

=

∫ T

0
tC ′(x, t)dt∫ T

0
C ′(x, t)

(24)313

where T is the duration of the tracer experiment monitoring. However, as noted in314

Yin and Illman [2009] and Jose et al. [2004], care must be taken with additional data315

processing steps such as derivative computation and denoising; otherwise, a significant316

source of errors can be introduced, resulting in a very low signal to noise ratio and some317

information content lost. It is also worth noting that the scheme above is more appropriate318

for the flux measures; MRI measures the residence concentration from a signal over time319

within the voxel, which is an average concentration over the MRI scanning time within a320

voxel.321

For the tracer test application considered in this study, we use the relationship between322

moments of C and moments of C
′
[Valocchi , 1986], and instead of (24), evaluate the323

zero-th temporal moments, m0 [T], of the data:324

m0(x) =

∫ T

0

C(x, t)dt (25)325
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The zero-th temporal moment at a particular location represents the total tracer mass326

that passes by the location of observation and is computed as the area under the BTC. The327

zero-th temporal moment is equivalent to m
′
1,n(x) in (24) when the tracer concentration328

reaches steady state (i.e., C(x, T ) = 1):329

m
′

1,n(x) =
m′

1(x)

m′
0(x)

=

∫ T

0
tC ′(x, t)dt∫ T

0
C ′(x, t)

=
tC(x, t)|T0 −

∫ T

0
C(x, t)dt

C(x, t)|T0
= T −m0(x) (26)330

Thus, in the case of continuous injection, the time, T , to reach steady-state minus the331

zero-th moment m0 is the mean travel time of the tracer. Using the zero-th moment332

is preferable since one can avoid the derivative computation with additional numerical333

errors. In this work, the zero-th moments were computed from the MRI dataset using the334

trapezoidal rule to obtain 51,584 mean travel time measurements.335

3.3. Numerical Setting

Coupled steady-state flow and transient transport for the tracer test were simulated336

using USGS MODFLOW [Harbaugh et al., 2000] and MT3DMS [Zheng and Wang , 1999].337

A uniform grid spacing of 0.25 cm was chosen in the 3-D domain as used in previous338

works [Yoon et al., 2008; Yoon and McKenna, 2012] to have the same scale as the MRI339

data. A third-order total-variation-diminishing (TVD) scheme was chosen in MT3DMS340

to prevent numerical dispersion and oscillation. Based on a previous analysis that K341

is the most sensitive parameter and the travel-time data are relatively insensitive to the342

dispersivities [Yoon and McKenna, 2012; Nowak and Cirpka, 2006], only K is estimated in343

this study while porosity and dispersivity are assumed to be known from measurements344

taken before packing. Simulation parameters including the domain size, porosity and345

dispersivity are presented in Table 2.346
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For parameter estimation, we first generate two synthetic tracer test data sets, each347

corresponding to a different hypothetical K distribution for the same laboratory setup348

described in Section 3.1. The purpose of these synthetic tests is to investigate the per-349

formance of the proposed method under ideal conditions using known true K fields and350

conceptual modeling/experimental errors. Then, we employ our method using the actual351

tracer travel time data to estimate the unknown K distribution of the flowcell. Inversion352

parameters used in this study are listed in Table 2. Numerical simulations and inversions353

were carried out on a Linux workstation equipped with 36 Intel core 3.1 GHz processors354

and 128 GB RAM.355

4. Results

4.1. Application to Synthetic Cases

In this section, we consider inversion tests with two synthetic true K fields to investigate356

the scalability and effectiveness of our proposed method. Eight horizontal layers of the two357

K fields are plotted in the first row of Figures 2 (a) and (b), respectively. In Case 1, the358

true K field for the heterogeneous center region of the flowcell was generated from the log-359

normal distribution with an exponential covariance kernel. The remaining homogeneous360

part is assumed to be known exactly in order to simplify the structural (prior) parameter361

selection such as the prior variance, correlation length and measurement error. In Case362

2, the actual design K field packed in the flowcell was chosen to check how much the true363

field can be reconstructed in this synthetic setting prior to the inversion with the actual364

data. The same laboratory experimental setup described previously was used to generate365

5,777,408 transient concentrations from these two K fields, and 10% noise (i.e., standard366

deviation of error in the concentration measurements = 0.1 × maximum concentration)367
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was added. The zero-th temporal moments of corresponding BTCs were computed to368

obtain n = 51,584 mean travel time values. The corresponding simulation parameters are369

listed in Table 2.370

The structural parameters for the prior covariance Q and the error R were chosen from371

the parameters used for the true K field generation for Case 1, and using the cR/Q2 criteria372

[Kitanidis , 1991], which is an optimal structure (hyper) parameter selection method in373

the Bayesian framework, for Case 2. Optimal structural parameter selection within the374

PCGA framework is beyond the scope of this paper. For both cases, the initial guess375

was set to a homogeneous field of the natural logarithm of K (ln K) = 2.5, and the376

best estimate converged in 4 to 5 iterations depending on inversion parameters. We also377

performed additional tests with different initial guesses such as ln K = 0 and 5, and all378

the tests converged to the estimates presented below.379

The spectrum of the prior covariance Q is plotted in Figure 3, showing that the decay380

of the eigenspectrum is slow due to the use of an exponential covariance kernel with a381

short correlation length defined in the 3-D space. Thus, it is expected that a large value of382

κ should be retained to reduce the approximation error of Jacobian-covariance products383

in (10) and (11). Moreover, to resolve the small-scale variability in the true field, PCGA384

requires large κ to express the high-frequency components in the estimate. We chose κ =385

300 for Case 1 and 500 for Case 2, with relative eigenvalue errors of the prior covariance386

approximation (the ratio of the κ + 1-th eigenvalue to the first/largest eigenvalue) of387

0.001 and 0.01, respectively. It is worth noting that the full geostatistical approach would388

require about n = 51,584 numerical model evaluations in each iteration. A systematic389

analysis for the optimal κ selection will be presented later.390
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The best estimate and corresponding estimation uncertainty of the ln K distribution391

for Case 1 are shown in the second and third rows of Figure 2 (a), respectively. The392

best estimate identifies high and low K regions, and reproduces the connectivity patterns393

observed in the true field. Even though a large measurement error (10% of maximum394

concentration value) was assumed in this application, the information from approximately395

6 million concentration values compensates the large error and yields an accurate estimate396

of the true field. Since the measurements were collected over almost the entire area (13 ×397

8 × 8 cm) for the estimation of the heterogeneous region (14 × 8 × 8 cm), the posterior398

estimation variance is reduced uniformly. The fitting between simulated and measured399

mean travel times is plotted in Figure 4 (a). A total of 1,232 MODFLOW and MT3DMS400

model runs were required to find the best estimate in around 4 hours using independent401

36 core parallel executions. The number of model runs includes κ+ p+2 Jacobian-vector402

computations in each iteration, and the evaluation of intermediate solutions identified by403

the Levenberg-Marquardt method between iterations.404

For Case 2, the best estimate and its estimation uncertainty of the ln K distribution405

are presented in the second and third rows of Figure 2 (b), respectively. While the blocky406

interfaces of different sand types are blurred due to the large measurement error and407

Gaussian prior assignment, the best estimate identifies interconnected high K channels as408

well as other small-scale features successfully. Because of the large number of data points,409

the Gaussian prior becomes unimportant and the data solely guides the delineation of410

non-Gaussian patterns. The estimation variance around the MRI scanning volume is low,411

while a high estimation variance is observed upstream of the heterogeneous region and412
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near the outlet. The measurement fitting is plotted in Figure 4 (b) and a total of 2,124413

forward model runs was required, taking about 7.5 hours.414

To investigate the effect of the number of principal components, different values of κ415

principal components are used to estimate ln K fields in Figures 5 and 6, and compute416

the estimation variances in Figures 7 and 8. As a reference, we use the estimate with417

κ = 2,000, which is equivalent to the results that we would have gotten if we used the418

full geostatistical approach, since increasing the κ above 1,000 did not change the best419

estimate and its variance. In Case 1, where the true smooth log-normal field is estimated,420

the best estimate even with κ = 300 is practically similar to the reference estimate.421

In Case 2, on the other hand, the best estimate requires more principal components to422

identify small-scale features, and κ = 500 is enough to obtain the best estimate similar423

to the reference solution. Similar to the best estimates, the estimation variance with κ424

= 300 for Case 1 and κ = 500 for Case 2 are close to the reference variance map. As425

noted previously, this high accuracy is obtained with PCGA with only 1,232 and 2,140426

forward runs respectively, while the traditional adjoint method-based approach would427

have required at least 51,585 simulations for each iteration, highlighting the scalability of428

PCGA.429

Figure 9 shows the plot of generalized eigenvalues of HQH⊤ and R for both cases430

following the method presented in Section 2.4. The generalized eigenvalues for both cases431

are evaluated at the best estimate with κ = 2000. It is shown that κ = 300 for Case 1432

and κ = 500 for Case 2 are indeed practical choices for these synthetic problems.433
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In Figure 10, we investigate the effect of κ on the accuracy of the best estimates and

the estimation variance in terms of element-wise root-mean-square-error (RMSE):

RMSE(lnK) =

√√√√ 1

m

m∑
i=1

(
lnKref

i − lnKest
i

)2

, RMSE(vi) =

√√√√ 1

m

m∑
i=1

(
σ2
ref,i − σ2

est,i

)2
(27)

where lnKref
i and σ2

ref,i are the reference estimate and estimation variance in the grid cell434

i, and lnKest
i and σ2

est,i are the ln K estimate and its estimation variance in the same grid435

cell, respectively. It is also observed that κ ≥ 500 for Case 1 and κ ≥ 600 for Case 2 give436

negligible errors to the reference estimate and variance.437

4.2. Application to MRI Experimental Data

In this section, the actual mean travel time data set is used to estimate the ln K field of438

the 3-D flowcell and quantify estimation uncertainty. In the previous studies [Yoon et al.,439

2008; Yoon and McKenna, 2012], it was shown that the advection-dispersion simulation440

based on the actual design packing could not reproduce the measurements obtained from441

the actual experiment accurately, potentially due to loose sand packing during the con-442

struction, sand mixing at interfaces during the experiments, and various sources of errors443

from MRI data acquisition, MRI signal post-processing and conceptual modeling setup.444

Thus, the experimental design packing pattern does not exactly match the “true” packing445

pattern, and is only used for comparison purposes. We refer readers to Yoon et al. [2008]446

and Yoon and McKenna [2012] for a rigorous analysis of parameterization and model447

selections, and a detailed explanation of the simulation model discrepancy.448

To save the computational cost further, we started PCGA with κ = 100 and increased449

κ by 150 at each iteration following Section 2.4. By doing so, a total of 1,952 MODFLOW450

and MT3DMS simulations were required to achieve convergence in 5 iterations. From the451
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cR/Q2 criteria, the inversion parameters were chosen as described in Case 2 of Table 2,452

except the use of a slightly larger standard deviation of measurement error (σt = 4) to453

account for the uncertainty arising from measurement and modeling errors.454

The best estimate of the ln K field using the actual travel time data is shown in Figure455

11. Overall, the best estimate identifies high and low K zones and their connectivity456

observed in the design packing pattern, while the small-scale features in the best estimate457

are not exactly the same as those from the previous synthetic test in Figure 2, possibly458

due to changes and errors in the experiment and modeling setup as mentioned earlier.459

Corresponding estimation variance in the third row of Figure 11 indicates the high un-460

certainty outside the MRI scanning volume, especially near the outlet as expected where461

the downstream K values cannot be inferred from the upstream tracer information. In462

Figure 12, the data fitting between the simulated and measured mean travel time is dis-463

played. While measurements are reproduced relatively well, measurement fitting allows464

more errors compared to the previous synthetic case in Figure 4 (b) based on the inversion465

parameters we found. The impact of different κ values on the estimation is investigated466

in Figures 13 and 14, indicating κ = 500 is enough to achieve a full geostatistical solution467

for this application.468

In Table 3, the quality of estimated K distribution compared to the original packing469

pattern is assessed by a mapping accuracy evaluation used in Yoon and McKenna [2012].470

In terms of the mapping accuracy and visual comparison to the design packing pattern,471

the estimated K in this study is significantly better than the previous result (the third472

column of Table 3) reported in Yoon and McKenna [2012] and even comparable to another473

previous result (the fourth column of Table 3) that directly used the design packing474
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boundaries of different sand types as prior information. The relatively low mapping475

accuracy of high K sands (40/50 and 50/70 sands) with respect to the design packing476

pattern might be explained by mixing at the interfaces between high and low K sands477

during the sand packing and the flow experiments, resulting in the extension of low K478

zones. The superior mapping performance of PCGA may be because PCGA approximates479

the full geostatistical inverse solution in a better way than the pilot-point method used480

in PEST. The pilot point method often requires a careful placement of pilot points with481

respect to measurement locations and the choice of an interpolation scheme from the482

pilot points to the rest of the model domain also affects the estimation results [Doherty483

and Hunt , 2010]. As a result, the pilot point method often yields estimates different484

from the geostatistical approach [Oliver et al., 2008]. In addition, while the previous485

study used a particle tracking based advective transport simulation, we included fully486

coupled MODFLOW-MT3DMS simulation models in the inversion, which would improve487

the identification of the original packing pattern further.488

The computational cost required in PCGA is also smaller than that in Yoon and489

McKenna [2012] who assigned 1,056 pilot points using the explicit knowledge of the hetero-490

geneous and homogeneous regions. Although inversion-accelerating options supported by491

PEST including the truncated singular value decomposition (TSVD) and the SVD-assist492

approach [Doherty and Hunt , 2010] were tested with various sets of measured data, all of493

those approaches required construction of the Jacobian matrix, and the overall number494

of iterations for convergence was higher (e.g., 10-30 iterations) compared to PCGA. This495

comparison highlights the advantage of PCGA for large-scale and data intensive inverse496

problems while maintaining the accuracy close to the full geostatistical approach.497
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Note that the setup cost for the preconditioner is scalable, meaning that the proposed498

method can handle millions of measurements without difficulty. To demonstrate the scala-499

bility of the preconditioner, we performed an additional inversion with 5,777,408 individual500

tracer data records. The obtained best estimate and estimation variance using the entire501

data set are not reported here because they are almost the same as those in Figure 11,502

i.e., the inversion case using only the travel time data, which indicates higher moments503

data, would not be informative to improve the results or reduce the uncertainty in this504

case. With κ = 1000, the generalized eigen-problem for preconditioner construction was505

solved using a randomized eigen-solver [Saibaba et al., 2015] in 3 minutes, and MINRES506

required only 3 iterations to achieve convergence in 30 seconds for each Gauss-Newton507

iteration. Even with linear scalability with respect to the number of measurements, the508

computation and storage costs for the preconditioner construction and cokriging matrix509

inversion might become intractable on a personal computer due to the huge data set, but510

one can use a smaller κ value such as 250 for the preconditioner construction and obtain511

the same geostatistical solution with slightly more MINRES or GMRES iterations, e.g.,512

5 to 10 iterations.513

5. Concluding Remarks

In this work, we have improved and adapted PCGA, a scalable inversion method, to514

compute the best estimate and estimation uncertainty using a huge amount of environ-515

mental data. A fast and exact preconditioner for PCGA was presented, and a method of516

choosing the number of principal components, i.e. κ, based on a generalized eigenvalue517

analysis was provided. The generalized eigenvalue analysis can be a valuable tool for518

investigating how the combined information from the prior, data, and forward models,519
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and associated errors affect the performance of PCGA. Overall, for a high-dimensional520

inverse problem with a large number of unknowns and data, e.g., m and n ≥ 106, our pro-521

posed method requires only about κ (≪ m,n)) forward simulation runs for each iteration522

in order to construct Jacobian products, and the matrix computation and storage costs523

grow linearly with the number of measurements, n. The entire process in PCGA is thus524

scalable with respect to the unknown parameter and measurement data dimensions, and525

can be accelerated further by independent parallel forward model executions.526

The efficiency and accuracy of PCGA were demonstrated on a massive MRI data set527

inversion using coupled flow and transport MODFLOW-MT3DMS models. Since PCGA528

treats available forward models as a “black box”, the linkage of MODFLOW-MT3DMS529

to PCGA was straightforward. Around 6 millions of the concentration measurements530

converted from MRI signals were reduced to 57,344 mean travel time data records by a531

temporal moment computation, and PCGA was applied to invert the travel time data532

with affordable forward runs, only 1,952 MODFLOW-MT3DMS executions much smaller533

than those required in traditional inversion methods. Due to high information content534

from the large data set, the estimated K fields captured key patterns of the original535

sand packing design with a low estimation uncertainty. The efficient inversion of the536

real environmental data set presented in this paper shows that PCGA is a promising537

option for large-scale joint inverse problems and can provide an accurate and scalable538

estimation of unknown parameters by taking advantage of the big data and complex multi-539

physics simulation software. Future work will present the effect of spatial measurement540

density on the estimation accuracy and uncertainty reduction, and investigate prediction541

performances in a new experimental condition subject to the same sand packing (e.g.542
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[Zhang et al., 2007; Kokkinaki et al., 2013]) based on the estimated K field presented in543

this study.544

Appendix A: Generalized Eigenvalue Problem

The Generalized Eigenvalue Problem (GEP) is defined as545

Ax = λBx (A1)546

where, B is symmetric positive definite and A is symmetric. We can transform GEP into547

a typical eigenvalue problem. since B is positive definite, it has a Cholesky decomposition548

B = LL⊤. Define y = L⊤x and multiplying both sides of (A1) by L−1, we have549

L−1AL−⊤L⊤x = λL⊤x ⇒ L−1AL−⊤y = λy (A2)550

which is an eigenvalue problem and hence, we can use any algorithm for eigenvalue problem551

to solve GEPs. However, computing the Cholesky decomposition is not computationally552

feasible in many cases and alternative methods can be found in [Saad , 2011; Saibaba et al.,553

2015].554

In our case, A := HQH⊤ and B := R555

HQH⊤x = λRx (A3)556

In many cases including the application considered in the paper, error is assumed to be557

an independent and identically distributed, i.e., R = σ2I and we can use eigenproblem558

solvers and the solution becomes559

Λ =
1

σ2
ΛHQH⊤ , U =

1

σ
UHQH⊤ (A4)560

561

562

where the columns of ΛHQH⊤ and the diagonal values of UHQH⊤ are the eigenvalues and 

eigenvectors of HQH⊤, respectively. For a general diagonal error matrix R, the solution 
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is given by563

Λ = Λ
R− 1

2HQH⊤R− 1
2

U = R− 1
2U

R− 1
2HQH⊤R− 1

2
(A5)564

where the columns of Λ
R− 1

2HQH⊤R− 1
2
and the diagonal values of U

R− 1
2HQH⊤R− 1

2
are the565

eigenvalues and eigenvectors of R− 1
2HQH⊤R− 1

2 , respectively.566

Appendix B: Fast posterior variance computation

The diagonal entries of the posterior covariance matrix V in (6) are often presented as567

the estimation variance and can be computed without constructing V explicitly as568

Vii = Qii −
[
HQi

X⊤
i

]⊤ [
HQH⊤ +R HX

(HX)⊤ 0

]−1 [
HQi

X⊤
i

]
(B1)569

where Vii is the i-th diagonal element of V, Qii is the i-th diagonal entry or the prior570

variance of i-th parameter, HQi is the i-th column of HQ, and X⊤
i is the i-th column of571

X⊤. Plugging (13) into (B1) yields572

573

Vii = Qii − (HQi)
⊤Ψ−1HQi + (HQi)

⊤Ψ−1ΦS−1Φ⊤Ψ−1HQi574

− 2(HQi)
⊤Ψ−1ΦS−1X⊤

i +XiSX
⊤
i (B2)575

576

However, repetitive multiplications of the 1 by m vector (HQi)
⊤ with m by m matrices577

(e.g.,Ψ−1) for i = 1, · · · ,m would be time consuming ifm is large, i.e.,m = O(106). A fast578

way to evaluate the estimation variance is to reduce the size of the repetitive matrix-vector579

multiplications by reformulating (B2). In PCGA, HQ ≈ HZκZ
⊤
κ ≈

∑κ
i=1 ηiζ

⊤
i = HZ⊤

κ580

where the n by κ matrix H consists of column vectors ηi=1,··· ,κ, then581

582

Vii = Qii −Zi

(
H⊤Ψ−1H

)
Z⊤

i +Zi

(
H⊤Ψ−1ΦS−1Φ⊤Ψ−1H

)
Z⊤

i583

− 2Zi

(
H⊤Ψ−1ΦS−1

)
X⊤

i +XiSX
⊤
i (B3)584

585
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where Zi is the i-th “row” (a 1 by κ vector) of Zκ. In (B2), one has to evaluate products of586

a 1 by m vector and m by m matrices and the overall cost for the variance map Vii,i=1,··· ,m587

is O(m3). In (B3), on the other hand, only products of a κ by 1 vector and κ by κ matrices588

are needed with the cost of O(mκ2).589
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Figure 1. (a) Illustration of 3-D flowcell [Yoon et al., 2008] and (b) hydraulic conduc-

tivity distribution in 3 layers (out of 8 layers in total).

Table 1. Properties of Sands

Sand Type Measured K (cm/min) Mean Grain Size (cm)

12/20 25.08 0.11

20/30 13.44 0.072

30/40 6.72 0.053

40/50 3.78 0.036

50/70 2.03 0.026
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Table 2. Simulation and Inversion Parameters for the Synthetic Cases

Parameter Description Value

Case 1 Case 2

Simulation Parameters

Lx, Ly, Lz domain length and width (cm) 21, 9, 8.5

∆x,∆y,∆z grid spacing (cm) 0.25

θ porosity 0.355

αl longitudinal dispersivity (cm) 0.013 ∼ 0.055 c

αt transverse dispersivity (cm) 0.1 × αl

True K field Generation

lnK generation method Gaussiana SISIMb

Measurement Error

nC number of concentration measurement 5,777,408

σC standard deviation of measurement error (-) 0.1

Inversion Parameters

m the number of unknowns 57,344 99,072

nobs number of travel time measurements (min) 51,584

q(x, x′) covariance kernel q(x, x′) = σ2
lnK exp(−|x− x′|/l)

σ2
lnK prior variance (cm/min2) 0.5 0.1

lx, ly, lz scale parameter l in x, y, z (cm) 4, 2, 2 2, 1, 1

σt standard deviation of measurement error
for travel time (min)

3

δ finite difference interval for PCGA 0.005

a exponential covariance with σ2
lnK = 0.5 (cm2) and lx, ly, lz = 4, 2, 2 (cm)

b Zhang et al. [2007]

c The dispersivity field was determined based on the mean grain size of the sands used

in the experiment; The detailed information can be found in Yoon et al. [2008]
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Figure 2. The true (first row), best estimate (second row) and estimation uncertainty

(third row) for (a) Case 1 and (b) Case 2: (a) values at a specific height z are plotted;

(b) averaged values over the depth of 1 cm are plotted in order to compare with the true

field.
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Figure 3. The eigenvalue spectrum of the prior covariance for Case 1 (black) and Case

2 (red).
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Figure 4. Measurement data fitting: measured versus simulated mean travel times

from the best estimate for (a) Case 1 using κ = 300 and (b) Case 2 using κ = 500.
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Figure 5. The best estimates with κ = 100, 300, 500, and 2,000 for Case 1.
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Figure 6. The best estimates with κ = 250, 500, 1000 and 2,000 for Case 2.
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Figure 7. The estimation variance with κ = 100, 300, 500, and 2,000 for Case 1.

D R A F T D R A F T



LEE ET AL.: MRI IMAGING X - 43

κ = 250

Top

Layer

0

4

8
κ = 500 κ = 1000 κ = 2000

var(ln K) 
(cm/min)2

0.02

0.1

5th

Layer

0

4

8

0.02

0.1

4th

Layer

0

4

8y 
[m

]

0.02

0.1

Bottom

Layer

0 10 20
0

4

8

0 10 20 0 10 20

x [m]
0 10 20

0.02

0.1

Figure 8. The estimation variance with κ = 250, 500, 1000, and 2,000 for Case 2.
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Figure 9. The generalized eigenvalue spectrum of HQH⊤ and R; κ ≤ 1 for PCGA

would result in the negligible error.
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Figure 10. The root-mean-square error of the estimates for (a) Case 1 and (b) Case 2,

and the estimation variance for (c) Case 1 and (d) Case 2.
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Figure 11. The packing pattern (first row), best estimate (second row) and estimation

uncertainty (third row) for actual MRI travel time data inversion; averaged values over

the depth of 1 cm are plotted in order to compare with the true packing pattern.
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Figure 12. Measurement data fitting: measured versus simulated mean travel times

from the best estimate.
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Figure 13. The best estimates with κ = 250, 500, 1000 and 2,000 for actual MRI data

inversion.
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Figure 14. The estimation variance with κ = 250, 500, 1000, and 2,000 for actual MRI

data inversion.
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Table 3. Mapping accuracy of K distribution compared to the design packing pattern

Sand Type Mapping Accuracy (%)

PCGA (κ = 500) PEST a PEST (with zonal information)
b

12/20 97.3 64.5 86.9

20/30 98.0 60.8 84.8

30/40 89.4 48.5 81.1

40/50 72.6 78.2 91.2

50/70 70.8 57.1 82.3

a KIND from Yoon and McKenna [2012]; K and porosity are estimated independently

yielding the best mapping accuracy result except the case using the zonal information
b KZone from Yoon and McKenna [2012]; K field was parameterized by zonal boundaries

from the design packing pattern
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