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Abstract.  Characterizing subsurface properties is crucial for reliable and
cost-effective groundwater supply management and contaminant remedia-

tion. With recent advances in sensor technology, large volumes of hydro-geophysical
and geochemical data can be obtained to achieve high-resolution images of
subsurface properties. However, characterization with such a large amount

of information requires prohibitive computational costs associated with “big
data” processing and numerous large-scale numerical simulations. To tackle
such difficulties, the Principal Component Geostatistical Approach (PCGA)
has been proposed as a “Jacobian-free” inversion method that requires x for-
ward simulation runs for each iteration where x is much smaller than the num-
ber of unknown parameters and measurements. PCGA can be conveniently
linked to any multi-physics simulation software with independent parallel ex-
ecutions. In this paper, we extend PCGA to handle a large number of mea-
surements (e.g. 10° or more) by constructing a fast preconditioner whose com-
putational cost scales linearly with the data size. For illustration, we char-
acterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-
scale 3-D sand box using about 6 million transient tracer concentration mea-
surements obtained using magnetic resonance imaging. Since each individ-

ual observation has little information on the K distribution, the data was com-
pressed by the zero-th temporal moment of breakthrough curves, which is
equivalent to the mean travel time under the experimental setting. Only about
2,000 forward simulations in total were required to obtain the best estimate

with corresponding estimation uncertainty, and the estimated K field cap-
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» tured key patterns of the original packing design, showing the efficiency and

» effectiveness of the proposed method.
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1. Introduction

Typical subsurface inverse problems deal with the estimation of geologic heterogeneous
parameters, such as hydraulic conductivity, from noisy and sparse measurements includ-
ing hydraulic head, solute concentration, temperature and so on. It is well known that
subsurface inverse problems are underdetermined and ill-posed; that is, the solution to
the inverse problem is non-unique and sensitive to measurement and conceptual modeling
errors. Therefore, the solution to the inverse problem and its uncertainty are evaluated
within a statistical framework. [McLaughlin and Townley, 1996; Carrera et al., 2005;
Oliver et al., 2008; Kaipio and Somersalo, 2007; Stuart, 2010; Smith, 2014].

With recent advances in sensor and computation technology, unprecedented large vol-
umes of hydro-geophysical and geochemical data sets can be obtained and processed
[Hampson et al., 2008; Barnhart et al., 2010; Orellana and Haigh, 2008; Pamukcu and
Ghazanfari, 2014] to achieve high-resolution images of subsurface properties for more
accurate and reliable subsurface flow and reactive transport prediction. While a large
data set may yield richer and more revealing information to improve inversion results
and reduce estimation uncertainty, incorporating a plethora of information into subsur-
face characterization requires high, often prohibitive, computational costs associated with
“big data” processing and a large number of high-dimensional, coupled multi-physics nu-
merical simulations. For example, in a recent extensive hydraulic tomography campaign
[Hochstetler et al., 2015], millions of transient pressure data were successfully acquired

from a field site, but only a few thousand measurements were carefully selected and used
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to perform high-resolution 3-D transient hydraulic tomography to reduce computational
costs.

Traditional inversion techniques are not well suited for high-dimensional and joint in-
verse problems with massive datasets because they usually require a number of numerical
simulation model runs proportional to the size of unknowns and measurements in order
to construct Jacobian (i.e., sensitivity) matrices. To avoid a large number of expen-
sive simulations, a Newton-conjugate gradient (Newton-CG) type method [Haber and
Ascher, 2001; Epanomeritakis et al., 2008] for nonlinear least square type inversion has
been applied using inner conjugate gradient iterations that avoid full Hessian products
by forming Hessian-vector products followed by outer Gauss-Newton iterations. While an
inner conjugate gradient iteration requires only a few forward and adjoint system solu-
tions independent of the problem size, the entire inversion may require a large number of
sequential inner and outer iterations to converge without a good preconditioner.

Another effective approach dealing with massive data is to use a small number of sum-
marized or subsampled data from the original data set in order to save computation and
storage costs. When the information content of an individual data record is low, with lo-
cal influence, and/or redundant with other records, inversions using the entire or reduced
data set often provide similar estimation results with comparable uncertainty reduction.
In hydrogeology, temporal moments of the large data set such as transient pressure [Zhu
and Yeh, 2006; Yin and Illman, 2009] and concentration breakthrough curves [Harvey
and Gorelick, 1995a; Cirpka and Kitanidis, 2000; Nowak and Cirpka, 2006] are widely
used to reconstruct unknown hydraulic conductivity fields. Randomized dimensionality

reduction methods [Krebs et al., 2009; Haber et al., 2012; Aravkin et al., 2012] using a
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random subset of data have been actively studied to achieve an acceptable inversion result
close to the best estimate obtained from the complete data set.

Among recently proposed scalable inversion approaches, the Principal Component Geo-
statistical Approach (PCGA) [Lee and Kitanidis, 2014; Kitanidis and Lee, 2014] is an
approximate method to the Bayesian geostatistical approach [Kitanidis, 1995, 2010] to
estimate unknown subsurface spatial parameters and quantify the corresponding uncer-
tainty rigorously with an affordable number of forward simulations independent of the
problem size. PCGA has been applied to several engineering applications with high di-
mensional unknown parameters such as hydraulic tomography, tracer data inversion [Lee
and Kitanidis, 2014), deep aquifer characterization with heat tracer [Lee et al., 2015] and
arsenic-bearing mineral imaging [Fakhreddine et al., 2015]. However, PCGA has not been
applied to inverse problems with a large number of measurements.

In this paper, we extend PCGA to handle a large number of measurements (~ O(109)),
an exercise that will soon become routine in the era of big data. To handle the large cok-
riging matrix arising from the geostatistical approach, a scalable and exact preconditioner
for PCGA is constructed. By scalability, we mean the ability of PCGA to deal with very
large measurements and unknowns, and the computation/storage costs of the proposed
preconditioner increase linearly with respect to the dimension of measurements and un-
knowns. Our proposed method is used to estimate the unknown hydraulic conductivity
field in a 3-D laboratory-scale sand box from in-situ tracer breakthrough data obtained
using magnetic resonance imaging (MRI) [Yoon et al., 2008]. The same data set was
used for the sand box characterization by Yoon and McKenna [2012]. The previous work

implemented PEST [Doherty and Hunt, 2010] linked with MODFLOW [Harbaugh et al.,
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2000], and an advective particle tracking method instead of the full advection-dispersion
simulation model due to the prohibitive computational costs. In this work, we use coupled
flow and transport simulation with MODFLOW [Harbaugh et al., 2000] and MT3DMS
[Zheng and Wang, 1999], respectively, to achieve a (approximate) full geostatistical solu-
tion, and also corresponding solution uncertainty that was not reported in the previous
work.

This paper is organized in the following way. Section 2 reviews the geostatistical and
principal component geostatistical approaches. The computational framework for large
data set inversion is also presented. Section 3 explains the MRI experiment setup briefly,
and data reduction technique. In Section 4, PCGA is applied to two synthetic examples
to investigate the computational efficiency and solution accuracy of the proposed method.
Then, inversion results using the real experimental data set are presented. Concluding

remarks follow in Section 5.

2. Method
In this section, we review the quasi-linear geostatistical approach [Kitanidis, 1995] and
PCGA [Kitanidis and Lee, 2014; Lee and Kitanidis, 2014]. Then we extend PCGA to

solve large data inversion problems.

2.1. Review of Geostatistical Approach
The observation equation, which relates the m x 1 vector of unknowns s to the n x 1

vector of the data y is

y =h(s)+v, v~ N(O,R) (1)
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X-8 LEE ET AL.: MRI IMAGING

where h is the forward model mapping the parameter space R™ to the measurement
space R", v is Gaussian with zero mean and covariance R that accounts for errors in
the data y and the forward model h. The prior probability of s is Gaussian with mean
X3 and covariance Q, where X is the m x p known (polynomial) matrix, 3 is the p x 1
unknown vector (typically p = 1), and Q is the generalized covariance matrix [Kitanidis,
1983, 1993].

The posterior pdf of s and 3 are obtained through Bayes theorem and its negative

loglikelihood, —Inp’ (s, 3), is
~np'(5.8) = (v~ h(s) Ry ~h(s)) + 55— XB) Qs - XB) (2

By minimizing (2) with respect to s and 3, we can obtain the maximum a posterior
(MAP) or most likely value §, commonly computed through an iterative Gaussian-Newton
method.

For this method, we start with the latest “best” estimate s;, and update to a new
solution §; ;1. Next, the n x m Jacobian or senstivity matrix H of h at §;,; is evaluated
as:

oh
H= s . (3)

Si

Then, based on the linearization of (2), the updated solution for the next iteration is

computed as
i1 =XB+ QH'E (4)

where B and £ are computed by solving a single linear system of n + p equations:

(HX) T 0 | |0 0

HQH' +R HX} E—z} _ [y —h(s:) + HSi} (5)
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LEE ET AL.: MRI IMAGING X-9

Steps (3) - () are repeated until §; converges to the best estimate §. For strongly nonlinear
problems, a Levenberg-Marquardt type method using a larger error matrix R, = aR
(where o > 1) adaptively for the first few iterations can be used for better convergence.
Note that the computation of the Jacobian requires min (m,n) + 1 forward simulation
runs using forward or adjoint-state method. Once S is obtained, the posterior covariance

matrix V is computed as
v—g-— [H(TQ} ! [HQHT +R HX] B {HQ] ©)
X (HX) 0 X

2.2. Principal Component Geostatistical Approach

While the geostatistical method is well suited for small- to moderate-scale inverse prob-
lems, computational cost can become extremely high when the method is implemented
on finely resolved grid with a large number of measurements. The challenges originate
from the construction of Jacobian H and the matrix products of Jacobian, particularly
HQ. Separate construction of H and products of H with dense matrices lead to at least
n+1 forward simulations at each iteration and O(m?n) multiplication and O(mn) storage
costs. Furthermore, computation of H typically requires intrusive changes in the forward
model code, which adds another level of difficulty, especially for multi-physics problems
that utilize multiple forward models, in series or coupled.

PCGA expedites the geostatistical approach by avoiding the direct evaluation of the
Jacobian, by using 1) a low-rank approximation of the prior covariance Q and 2) a finite-
difference approximation of matrix products. Assume Q is approximated through rank-x

truncated eigen-decomposition:

Q~Q.=2Z" = Zcﬂ (7)
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X-10 LEE ET AL.: MRI IMAGING

where Q,, is the rank-x (k < m) approximation of Q, Z is the square root of Q, using
the eigen-decompsion, and (; is the i-th column vector of Z which is the i-th (largest)
eigenvector multiplied by the square root of the corresponding i-th eigenvalue of Q. A
fast and scalable method to obtain (7) for large-scale covariance matrices is explained in
Lee and Kitanidis [2014].

A generic Jacobian-vector product Hu needed in (5) (e.g., u = §, X; or ¢;) can be
computed approximately at the cost of an additional forward model evaluation using a

finite-difference approximation:

Hu = = [h(u+ du) — h(u)] + O(0) (8)

S| =

where ¢ is the finite-difference perturbation size. An optimal choice of § [Brown and Saad,

1990] is given by

€ max (Js"ul,c"|u]) sign (s"u) 9)

[[ull3

where € is the relative machine precision, which is usually (one order of magnitude)

8:

greater than the square root of the machine precision, [u| = [|ul,|ual, ..., [um|]", ¢ =
[c1, ¢, ..em] T, ¢ is a typical value of |s;| and sign() indicates a sign of value.

Accordingly, the matrix-matrix products HQ and HQH' are computed by

HQ~HQ,=H) (¢ =) (HG)¢ ~ ) n¢l (10)
=1 =1 =1
HQH' ~HQH' =) (H¢)(HE) ~ > mmy (11)
=1 i=1
where
m, = HC, ~ 5 (s +6¢,) — h(s)] (12)
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Replacing the explicit construction and multiplication of H in (3) - (5) by (8) - (12)
requires a total of kK + p + 2 forward model runs in each iteration, and the storage cost
becomes O(mk) from O(mn). As a result, PCGA can reduce the number of numerical
simulations significantly from n+1 to K 4+ p+ 2 when a large number of measurements are
available. Previous numerical experiments [Lee and Kitanidis, 2014; Fakhreddine et al.,
2015; Lee et al., 2015] have shown that x ~ O(100) and a few hundred simulation runs
in total are needed without any intrusive changes in the simulation model code, while
inverse solutions are almost the same as those obtained from the geostatistical approach.

Corresponding estimation variance can be efficiently computed as in Appendix B.

2.3. Fast and Exact Preconditioner for PCGA

Our previous research presented high-dimensional and/or joint inversion problems with
a moderate number of measurements (~ O(10%)). When a massive data set is available,
solving the n + p by n + p cokriging system in (13), for example n = 10°, would be
infeasible with direct matrix inversion methods and should be implemented with iterative
methods such as MINRES [Paige and Saunders, 1975] and GMRES [Saad and Schultz,
1986]. Those iterative methods usually require a preconditioner to reduce the number
of iterations and constructing a “good” preconditioner, which is close to the inverse of
the cokriging matrix and guarantees a few iterations, is typically expensive. However, for
PCGA we can accelerate the direct solution of (5) or construct an effective preconditioner
based on the exact inverse of the cokriging or so-called saddle point matrix [Benzi et al.,
2005]:

HQH™ +R HX] o [qf @] o {xy—l -PUes et OUiesT g

HX)T 0 ' 0 S'e'w! -S
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¥ .=HQH' +R, ®:=HX, S:=® ¥ '& (14)
and the dominant cost for (13) is the computation of ¥, i.e.,

1

v'=(HQH' +R) (15)

This type of matrix form has been actively researched as an application of the generalized
eigenvalue problem (GEP) [Flath et al., 2011; Cui et al., 2014; Saibaba and Kitanidis,
2015] to approximate the Hessian of (2) with a relatively small number of terms (generally
~ (O(100)); we follow this technique to solve (5) for PCGA. Assume that we solve the
following GEP (see Appendix A) to find u and A, which are the generalized eigenvector

and eigenvalue of Q and R, respectively:
HQH"u = \Ru (16)
that satisfies
HQH' = RUAU'R, URU' =1 (17)

where the columns of U and diagonal values of A are generalized eigenvectors u and

eigenvalues A. Then, using the Sherman-Morrison-Woodbury formula,

1

v'=(HQH +R) =R '-UDU’ (18)

where diagonal matrix D whose i-th diagonal value D; is

D, = (19

In the PCGA framework, where Q is replaced with the rank-« approximation Q,, we

need to find only “x” generalized eigenmodes for (16) to obtain the exact inverse of the
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cokriging matrix used in PCGA using (18):
v~ ' = (HQH +R) =R '-U,D,U] (20)

where U, and A, are generalized eigenvectors and eigenvalues of Q, and R, respectively.
GEP can be solved efficiently using the sequential Lanczos-based method or parallelized
randomized SVD [Saibaba et al., 2015], with computational cost of O(nk?) and storage
cost of O(nk), i.e., linear scalability with respect to the data size. Once the generalized
eigenvalues and eigenvectors are computed, the inverse matrix (13) can be used to solve
the cokriging system directly or as a preconditioner for iterative approaches.

It should be noted that the iterative approaches require a form of matrix-vector product

instead of explicit construction of (13). For example, ¥ 'x can be computed as
Ulx~ ¥ 'x =R 'x— U, (D,(U/x)) (21)

without storing and computing the full matrix ¥_'. The same argument is applied to S
and ® in (13). In the numerical experiment we present in the next section with n = 51,584
and xk = 2000, GEP was solved in 10 seconds and MINRES or GMRES required no more

than 4 iterations to achieve convergence with a small residual, e.g., 1075,

2.4. Choice of the number of Principal Components

In our previous works [Kitanidis and Lee, 2014; Lee and Kitanidis, 2014}, two methods
were proposed to choose a reasonable x based on 1) relative eigenvalue error (the ratio
of k + 1-th eigenvalue to the first eigenvalue) of the prior covariance approximation and
2) eigenspectrum of HQ,H' compared to R. In many practical cases, the former would
work effectively by keeping k principal components that give a small relative eigenvalue

error (e.g. < 0.01). However, this criteria alone might not be sufficient, especially when
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the information content from dense measurements is rich enough to recover small-scale
features, and the eigenvalue decay of the prior Q chosen for such a data-intensive case
is slow due to short correlation length, high physical domain dimension (i.e., 3-D) and
high parameter dimension |[Frauenfelder et al., 2005]. As a result, x can vary dramatically
depending on the relative eigenvalue error one allows. A more rigorous way would be to
investigate the combined effect of the prior information, forward model prediction, and
modeling and measurement errors on the approximation of the estimation results. In fact,
the generalized eigenvalue of HQH' and R discussed in Section 2.3 can be an effective

mathematical tool for this purpose and interpreted as a generalized Rayleigh-Ritz ratio:

u ' HQH u
Ai = argmax ——————
uEUiyiJrl’...’n u Ru

(22)
where U, ;11 ... , is the space spanned by the eigenvectors corresponding to the eigenvalues
equal to or smaller than the i-th eigenvalue. The ¢-th eigenvalue maximizes the Rayleigh-
Ritz ratio over the measurement subspace U ;11 ... », and can be interpreted as how much
the unknown s contributes to the measurement variability compared to the noise R in the
corresponding eigenspace. In other words, if \; is greater than 1, the measurements are
more important and informative to the solution than the noise along the corresponding
eigenvector direction (cf. Cui et al. [2014] for the Hessian approximation). Thus, we can
choose xk whose eigenvalue A, is close to 1. Note that one can allow « slightly larger
than 1 without losing accuracy since the prior Q includes redundant information on the
prior mean structure X. The generalized prior covariance [Kitanidis and Lee, 2014] that
excludes the effect of the prior mean can be used for more rigorous choice of .

It should be noted that the analysis above is based on HQH', and what we compute

with & principal components is x-rank HQ,.H'. The s-th generalized eigenvalue A, of
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HQ.H' (and R) would be much smaller than actual A\, of HQH'. Thus, one should
check whether the eigenspectrum above A ~ 1 changes by adding more principal com-
ponents in order to make sure the eigenspectrum of HQ,.H' is close to that of HQH'
around \,.. A practical and efficient implementation is that one starts PCGA with a small
value of k, then increases k steadily in each iteration up to the value where the generalized

eigenspectrum does not vary much (for example the spectrum above A = 10).

3. Application to Tracer Data Inversion

We applied the method proposed in Section 2 to a laboratory-scale hydraulic conduc-
tivity estimation problem. The experimental procedure and data acquisition are given
in detail by Yoon et al. [2008] and Zhang et al. [2007]. Here, we briefly explain the ex-
perimental setup, the data processing with temporal moment analysis and the numerical

setting.

3.1. Experimental Setup

The experimental setup of the flowcell is shown in Figure 1. The entire flowcell has di-
mensions of 21.5 x 9 x 8.5 cm, and is packed with 1 cm cubes of five different sand types
described in Table 1. The hydraulic conductivity, porosity and dispersion coefficients of
all five sand types were measured independently before packing. The “true” hydraulic
conductivity field with five different sand types was generated using the sequential in-
dicator simulation algorithm [Deutsch and Journel, 1998] to construct a heterogeneous
K field for the central portion of the flowcell (14 x 8 x 8 cm) as in Figure 1 (b). The
rest of the flowcell (a 4.5 cm zone adjacent to the inlet, a 3 cm zone adjacent to the

outlet, a 0.5 cm thick layer on the bottom and a 0.5 cm thick vertical layer adjacent to
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the side walls) was filled with 50/70 sand (lowest hydraulic conductivity). For the tracer
test, a constant head was maintained at the inlet and outlet reservoirs, and a nonreactive
para-magnetic tracer solution was continuously injected into the initial tracer-free water
saturated flowcell until complete breakthrough was observed in the outflow. The total
time for the tracer solution to flow through the entire flowcell was about 4 hours.

The signal intensity for the tracer concentration using MRI was obtained and processed
at a resolution of 0.25 x 0.25 x 0.25 cm = 0.016 cm?, at a regular sampling interval of 2.17
min over the MR imaging region, which is slightly smaller than the entire heterogeneous
region (14 x 8 x 8). The MRI signal was converted into normalized tracer breakthrough
curves (BTCs), i.e., tracer concentration varies between 0 and 1. Measurements from the
top 0.25 cm of the heterogeneous region were not used in this study due to decreased
imaging accuracy; the actual observation data for the inversion covers from x = 4.5 and
17.5 cm, y = 0.5 to 8.5 cm, and z = 0.5 to 8.25 cm in the central heterogeneous region,

and the total number of observed tracer concentration data records is 5,777,408.

3.2. Data Processing with Temporal Moments

For tracer test data inversion, the first normalized temporal moment of tracer con-
centration BTCs has been widely used [Cirpka and Kitanidis, 2000; Nowak and Cirpka,
2006]. The first normalized temporal moment of a local BTC due to a pulse-like tracer
injection, my , [T}, is defined as

my(x) J, 7 tC(x, t)dt
mo(x) Jo~ Cla, t)dt

(23)

myn(x) =

where m; is the i-th temporal moment [T*"'] and C' is the dimensionless normalized con-

centration [-]. my, represents the mean travel (arrival) time of the tracer at a monitoring
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location. The use of the first temporal moment in the inversion has been shown to be
robust and beneficial because the first temporal moment is continuous with respect to the
objective function (2), and the transient transport equation (with time-invariant coeffi-
cients) can be transformed into a steady-state equation for the pulse-type tracer injection
[Harvey and Gorelick, 1995b; Cirpka and Kitanidis, 2000].

Previous laboratory-scale studies [Nowak and Cirpka, 2006; Yoon and McKenna, 2012]
performed continuous tracer injection tests and computed the first normalized moment of
the derivative of BTCs (C"), m/Ln [T], in order to approximate the mean travel time for a

pulse-like injection:
mi(x) S tC! (@, t)dt
mo(z) [T C(x,t)

mlln(x) = (24)

where T is the duration of the tracer experiment monitoring. However, as noted in
Yin and Illman [2009] and Jose et al. [2004], care must be taken with additional data
processing steps such as derivative computation and denoising; otherwise, a significant
source of errors can be introduced, resulting in a very low signal to noise ratio and some
information content lost. It is also worth noting that the scheme above is more appropriate
for the flux measures; MRI measures the residence concentration from a signal over time
within the voxel, which is an average concentration over the MRI scanning time within a
voxel.

For the tracer test application considered in this study, we use the relationship between
moments of C' and moments of C' [Valocchi, 1986], and instead of (24), evaluate the

zero-th temporal moments, mg [T], of the data:

mo(z) = /0 Cla, t)dt (25)
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The zero-th temporal moment at a particular location represents the total tracer mass
that passes by the location of observation and is computed as the area under the BTC. The
zero-th temporal moment is equivalent to mlln(x) in (24) when the tracer concentration
reaches steady state (i.e., C'(z,T) = 1):

(z) = mi(z) [ tC(x,t)dt  tC(x,t)|F — [ C(x, t)dt
T mg(a) (POt C(a,t)[§

=T —mp(x) (26)

Thus, in the case of continuous injection, the time, T, to reach steady-state minus the
zero-th moment my is the mean travel time of the tracer. Using the zero-th moment
is preferable since one can avoid the derivative computation with additional numerical
errors. In this work, the zero-th moments were computed from the MRI dataset using the

trapezoidal rule to obtain 51,584 mean travel time measurements.

3.3. Numerical Setting

Coupled steady-state flow and transient transport for the tracer test were simulated
using USGS MODFLOW [Harbaugh et al., 2000] and MT3DMS [Zheng and Wang, 1999].
A uniform grid spacing of 0.25 cm was chosen in the 3-D domain as used in previous
works [Yoon et al., 2008; Yoon and McKenna, 2012] to have the same scale as the MRI
data. A third-order total-variation-diminishing (TVD) scheme was chosen in MT3DMS
to prevent numerical dispersion and oscillation. Based on a previous analysis that K
is the most sensitive parameter and the travel-time data are relatively insensitive to the
dispersivities [ Yoon and McKenna, 2012; Nowak and Cirpka, 2006], only K is estimated in
this study while porosity and dispersivity are assumed to be known from measurements
taken before packing. Simulation parameters including the domain size, porosity and

dispersivity are presented in Table 2.
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For parameter estimation, we first generate two synthetic tracer test data sets, each
corresponding to a different hypothetical K distribution for the same laboratory setup
described in Section 3.1. The purpose of these synthetic tests is to investigate the per-
formance of the proposed method under ideal conditions using known true K fields and
conceptual modeling/experimental errors. Then, we employ our method using the actual
tracer travel time data to estimate the unknown K distribution of the flowcell. Inversion
parameters used in this study are listed in Table 2. Numerical simulations and inversions
were carried out on a Linux workstation equipped with 36 Intel core 3.1 GHz processors

and 128 GB RAM.

4. Results

4.1. Application to Synthetic Cases

In this section, we consider inversion tests with two synthetic true K fields to investigate
the scalability and effectiveness of our proposed method. Eight horizontal layers of the two
K fields are plotted in the first row of Figures 2 (a) and (b), respectively. In Case 1, the
true K field for the heterogeneous center region of the flowcell was generated from the log-
normal distribution with an exponential covariance kernel. The remaining homogeneous
part is assumed to be known exactly in order to simplify the structural (prior) parameter
selection such as the prior variance, correlation length and measurement error. In Case
2, the actual design K field packed in the flowcell was chosen to check how much the true
field can be reconstructed in this synthetic setting prior to the inversion with the actual
data. The same laboratory experimental setup described previously was used to generate
5,777,408 transient concentrations from these two K fields, and 10% noise (i.e., standard

deviation of error in the concentration measurements = 0.1 x maximum concentration)
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was added. The zero-th temporal moments of corresponding BTCs were computed to
obtain n = 51,584 mean travel time values. The corresponding simulation parameters are
listed in Table 2.

The structural parameters for the prior covariance Q and the error R were chosen from
the parameters used for the true K field generation for Case 1, and using the cR/Q2 criteria
[Kitanidis, 1991], which is an optimal structure (hyper) parameter selection method in
the Bayesian framework, for Case 2. Optimal structural parameter selection within the
PCGA framework is beyond the scope of this paper. For both cases, the initial guess
was set to a homogeneous field of the natural logarithm of K (In K) = 2.5, and the
best estimate converged in 4 to 5 iterations depending on inversion parameters. We also
performed additional tests with different initial guesses such as In K = 0 and 5, and all
the tests converged to the estimates presented below.

The spectrum of the prior covariance Q is plotted in Figure 3, showing that the decay
of the eigenspectrum is slow due to the use of an exponential covariance kernel with a
short correlation length defined in the 3-D space. Thus, it is expected that a large value of
 should be retained to reduce the approximation error of Jacobian-covariance products
in (10) and (11). Moreover, to resolve the small-scale variability in the true field, PCGA
requires large k to express the high-frequency components in the estimate. We chose xk =
300 for Case 1 and 500 for Case 2, with relative eigenvalue errors of the prior covariance
approximation (the ratio of the x + 1-th eigenvalue to the first/largest eigenvalue) of
0.001 and 0.01, respectively. It is worth noting that the full geostatistical approach would
require about n = 51,584 numerical model evaluations in each iteration. A systematic

analysis for the optimal x selection will be presented later.
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The best estimate and corresponding estimation uncertainty of the In K distribution
for Case 1 are shown in the second and third rows of Figure 2 (a), respectively. The
best estimate identifies high and low K regions, and reproduces the connectivity patterns
observed in the true field. Even though a large measurement error (10% of maximum
concentration value) was assumed in this application, the information from approximately
6 million concentration values compensates the large error and yields an accurate estimate
of the true field. Since the measurements were collected over almost the entire area (13 x
8 x 8 cm) for the estimation of the heterogeneous region (14 x 8 x 8 cm), the posterior
estimation variance is reduced uniformly. The fitting between simulated and measured
mean travel times is plotted in Figure 4 (a). A total of 1,232 MODFLOW and MT3DMS
model runs were required to find the best estimate in around 4 hours using independent
36 core parallel executions. The number of model runs includes x + p+ 2 Jacobian-vector
computations in each iteration, and the evaluation of intermediate solutions identified by
the Levenberg-Marquardt method between iterations.

For Case 2, the best estimate and its estimation uncertainty of the In K distribution
are presented in the second and third rows of Figure 2 (b), respectively. While the blocky
interfaces of different sand types are blurred due to the large measurement error and
Gaussian prior assignment, the best estimate identifies interconnected high K channels as
well as other small-scale features successfully. Because of the large number of data points,
the Gaussian prior becomes unimportant and the data solely guides the delineation of
non-Gaussian patterns. The estimation variance around the MRI scanning volume is low,

while a high estimation variance is observed upstream of the heterogeneous region and
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near the outlet. The measurement fitting is plotted in Figure 4 (b) and a total of 2,124
forward model runs was required, taking about 7.5 hours.

To investigate the effect of the number of principal components, different values of s
principal components are used to estimate In K fields in Figures 5 and 6, and compute
the estimation variances in Figures 7 and 8. As a reference, we use the estimate with
r = 2,000, which is equivalent to the results that we would have gotten if we used the
full geostatistical approach, since increasing the x above 1,000 did not change the best
estimate and its variance. In Case 1, where the true smooth log-normal field is estimated,
the best estimate even with x = 300 is practically similar to the reference estimate.
In Case 2, on the other hand, the best estimate requires more principal components to
identify small-scale features, and x = 500 is enough to obtain the best estimate similar
to the reference solution. Similar to the best estimates, the estimation variance with x
= 300 for Case 1 and x = 500 for Case 2 are close to the reference variance map. As
noted previously, this high accuracy is obtained with PCGA with only 1,232 and 2,140
forward runs respectively, while the traditional adjoint method-based approach would
have required at least 51,585 simulations for each iteration, highlighting the scalability of
PCGA.

Figure 9 shows the plot of generalized eigenvalues of HQH' and R for both cases
following the method presented in Section 2.4. The generalized eigenvalues for both cases
are evaluated at the best estimate with x = 2000. It is shown that x = 300 for Case 1

and x = 500 for Case 2 are indeed practical choices for these synthetic problems.
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In Figure 10, we investigate the effect of k on the accuracy of the best estimates and

the estimation variance in terms of element-wise root-mean-square-error (RMSE):

m

1 & 2 1
RMSE(InK) = | — j(anjef —anfSt) . RMSE(vi) = | — > (0%, — 02,)°
m m ’ ’
i=1 =1

(27)

2

veri are the reference estimate and estimation variance in the grid cell

where In K7 and o
i, and In K¢ and o2, ; are the In K estimate and its estimation variance in the same grid

cell, respectively. It is also observed that x > 500 for Case 1 and x > 600 for Case 2 give

negligible errors to the reference estimate and variance.

4.2. Application to MRI Experimental Data

In this section, the actual mean travel time data set is used to estimate the In K field of
the 3-D flowcell and quantify estimation uncertainty. In the previous studies [ Yoon et al.,
2008; Yoon and McKenna, 2012], it was shown that the advection-dispersion simulation
based on the actual design packing could not reproduce the measurements obtained from
the actual experiment accurately, potentially due to loose sand packing during the con-
struction, sand mixing at interfaces during the experiments, and various sources of errors
from MRI data acquisition, MRI signal post-processing and conceptual modeling setup.
Thus, the experimental design packing pattern does not exactly match the “true” packing
pattern, and is only used for comparison purposes. We refer readers to Yoon et al. [2008]
and Yoon and McKenna [2012] for a rigorous analysis of parameterization and model
selections, and a detailed explanation of the simulation model discrepancy.

To save the computational cost further, we started PCGA with x = 100 and increased
x by 150 at each iteration following Section 2.4. By doing so, a total of 1,952 MODFLOW

and MT3DMS simulations were required to achieve convergence in 5 iterations. From the

DRAFT DRAFT



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

X-24 LEE ET AL.: MRI IMAGING

cR/Q2 criteria, the inversion parameters were chosen as described in Case 2 of Table 2,
except the use of a slightly larger standard deviation of measurement error (o; = 4) to
account for the uncertainty arising from measurement and modeling errors.

The best estimate of the In K field using the actual travel time data is shown in Figure
11. Overall, the best estimate identifies high and low K zones and their connectivity
observed in the design packing pattern, while the small-scale features in the best estimate
are not exactly the same as those from the previous synthetic test in Figure 2, possibly
due to changes and errors in the experiment and modeling setup as mentioned earlier.
Corresponding estimation variance in the third row of Figure 11 indicates the high un-
certainty outside the MRI scanning volume, especially near the outlet as expected where
the downstream K values cannot be inferred from the upstream tracer information. In
Figure 12, the data fitting between the simulated and measured mean travel time is dis-
played. While measurements are reproduced relatively well, measurement fitting allows
more errors compared to the previous synthetic case in Figure 4 (b) based on the inversion
parameters we found. The impact of different x values on the estimation is investigated
in Figures 13 and 14, indicating x = 500 is enough to achieve a full geostatistical solution
for this application.

In Table 3, the quality of estimated K distribution compared to the original packing
pattern is assessed by a mapping accuracy evaluation used in Yoon and McKenna [2012].
In terms of the mapping accuracy and visual comparison to the design packing pattern,
the estimated K in this study is significantly better than the previous result (the third
column of Table 3) reported in Yoon and McKenna [2012] and even comparable to another

previous result (the fourth column of Table 3) that directly used the design packing
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boundaries of different sand types as prior information. The relatively low mapping
accuracy of high K sands (40/50 and 50/70 sands) with respect to the design packing
pattern might be explained by mixing at the interfaces between high and low K sands
during the sand packing and the flow experiments, resulting in the extension of low K
zones. The superior mapping performance of PCGA may be because PCGA approximates
the full geostatistical inverse solution in a better way than the pilot-point method used
in PEST. The pilot point method often requires a careful placement of pilot points with
respect to measurement locations and the choice of an interpolation scheme from the
pilot points to the rest of the model domain also affects the estimation results [Doherty
and Hunt, 2010]. As a result, the pilot point method often yields estimates different
from the geostatistical approach [Oliver et al., 2008]. In addition, while the previous
study used a particle tracking based advective transport simulation, we included fully
coupled MODFLOW-MT3DMS simulation models in the inversion, which would improve
the identification of the original packing pattern further.

The computational cost required in PCGA is also smaller than that in Yoon and
McKenna [2012] who assigned 1,056 pilot points using the explicit knowledge of the hetero-
geneous and homogeneous regions. Although inversion-accelerating options supported by
PEST including the truncated singular value decomposition (TSVD) and the SVD-assist
approach [Doherty and Hunt, 2010] were tested with various sets of measured data, all of
those approaches required construction of the Jacobian matrix, and the overall number
of iterations for convergence was higher (e.g., 10-30 iterations) compared to PCGA. This
comparison highlights the advantage of PCGA for large-scale and data intensive inverse

problems while maintaining the accuracy close to the full geostatistical approach.
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Note that the setup cost for the preconditioner is scalable, meaning that the proposed
method can handle millions of measurements without difficulty. To demonstrate the scala-
bility of the preconditioner, we performed an additional inversion with 5,777,408 individual
tracer data records. The obtained best estimate and estimation variance using the entire
data set are not reported here because they are almost the same as those in Figure 11,
i.e., the inversion case using only the travel time data, which indicates higher moments
data, would not be informative to improve the results or reduce the uncertainty in this
case. With k = 1000, the generalized eigen-problem for preconditioner construction was
solved using a randomized eigen-solver [Saibaba et al., 2015] in 3 minutes, and MINRES
required only 3 iterations to achieve convergence in 30 seconds for each Gauss-Newton
iteration. Even with linear scalability with respect to the number of measurements, the
computation and storage costs for the preconditioner construction and cokriging matrix
inversion might become intractable on a personal computer due to the huge data set, but
one can use a smaller k value such as 250 for the preconditioner construction and obtain
the same geostatistical solution with slightly more MINRES or GMRES iterations, e.g.,

5 to 10 iterations.

5. Concluding Remarks

In this work, we have improved and adapted PCGA, a scalable inversion method, to
compute the best estimate and estimation uncertainty using a huge amount of environ-
mental data. A fast and exact preconditioner for PCGA was presented, and a method of
choosing the number of principal components, i.e. x, based on a generalized eigenvalue
analysis was provided. The generalized eigenvalue analysis can be a valuable tool for

investigating how the combined information from the prior, data, and forward models,
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and associated errors affect the performance of PCGA. Overall, for a high-dimensional
inverse problem with a large number of unknowns and data, e.g., m and n > 105, our pro-
posed method requires only about x (< m,n)) forward simulation runs for each iteration
in order to construct Jacobian products, and the matrix computation and storage costs
grow linearly with the number of measurements, n. The entire process in PCGA is thus
scalable with respect to the unknown parameter and measurement data dimensions, and
can be accelerated further by independent parallel forward model executions.

The efficiency and accuracy of PCGA were demonstrated on a massive MRI data set
inversion using coupled flow and transport MODFLOW-MT3DMS models. Since PCGA
treats available forward models as a “black box”, the linkage of MODFLOW-MT3DMS
to PCGA was straightforward. Around 6 millions of the concentration measurements
converted from MRI signals were reduced to 57,344 mean travel time data records by a
temporal moment computation, and PCGA was applied to invert the travel time data
with affordable forward runs, only 1,952 MODFLOW-MT3DMS executions much smaller
than those required in traditional inversion methods. Due to high information content
from the large data set, the estimated K fields captured key patterns of the original
sand packing design with a low estimation uncertainty. The efficient inversion of the
real environmental data set presented in this paper shows that PCGA is a promising
option for large-scale joint inverse problems and can provide an accurate and scalable
estimation of unknown parameters by taking advantage of the big data and complex multi-
physics simulation software. Future work will present the effect of spatial measurement
density on the estimation accuracy and uncertainty reduction, and investigate prediction

performances in a new experimental condition subject to the same sand packing (e.g.
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[Zhang et al., 2007; Kokkinaki et al., 2013]) based on the estimated K field presented in

this study.

Appendix A: Generalized Eigenvalue Problem

The Generalized Eigenvalue Problem (GEP) is defined as
Ax = A\Bx (A1)

where, B is symmetric positive definite and A is symmetric. We can transform GEP into
a typical eigenvalue problem. since B is positive definite, it has a Cholesky decomposition

B = LL'. Define y = L"x and multiplying both sides of (A1) by L™, we have
L'AL "L'x=)L"x = L'AL Ty = \y (A2)

which is an eigenvalue problem and hence, we can use any algorithm for eigenvalue problem
to solve GEPs. However, computing the Cholesky decomposition is not computationally
feasible in many cases and alternative methods can be found in [Saad, 2011; Saibaba et al.,
2015].

In our case, A := HQH' and B:=R
HQH'x = A\Rx (A3)

In many cases including the application considered in the paper, error is assumed to be
an independent and identically distributed, i.e., R = ¢?I and we can use eigenproblem

solvers and the solution becomes
1 1

where the columns of Agqur and the diagonal values of Ugqput are the eigenvalues and

eigenvectors of HQH, respectively. For a general diagonal error matrix R, the solution
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is given by

A=A U=R:U (A5)

_1 _1 _1 _1
R ZHQHTR 2 R ZHQHTR 2

1 are the

1 and the diagonal values of Uiy QuTR-}

where the columns of AR_ bHQHTR-

eigenvalues and eigenvectors of R_%HQHTR_%, respectively.

Appendix B: Fast posterior variance computation
The diagonal entries of the posterior covariance matrix V in (6) are often presented as

the estimation variance and can be computed without constructing V explicitly as

17 T -1 A
vi-ai- 53] PN RF (B1)

where V; is the i-th diagonal element of V, Q;; is the i-th diagonal entry or the prior

variance of i-th parameter, HQ; is the i-th column of HQ, and X, is the i-th column of

X", Plugging (13) into (B1) yields

Vi=Q;— (HQ) v 'HQ, + (HQ,) ' v &S '@ ¥ 'HQ,

—2(HQ,) "¢ '®S !X + X;SX,; (B2)

However, repetitive multiplications of the 1 by m vector (HQ;)" with m by m matrices
(e.g., ') fori =1, --- ,mwould be time consuming if m is large, i.e., m = O(10°). A fast
way to evaluate the estimation variance is to reduce the size of the repetitive matrix-vector
multiplications by reformulating (B2). In PCGA, HQ ~ HZ,.Z, =~ Y% 0 = HZ,

where the n by x matrix H consists of column vectors m,_; ... ., then
Vi=Qu—Z;(H'¥ '"H) Z] + Z, (HT‘I’_1CI>S_1<I>T\II_1’H) z;
—2Z; (H ¥ 'S ) X + X;SX, (B3)
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where Z; is the i-th “row” (a 1 by & vector) of Z,. In (B2), one has to evaluate products of
a 1 by m vector and m by m matrices and the overall cost for the variance map Vy; ;1. m
is O(m?). In (B3), on the other hand, only products of a x by 1 vector and x by k matrices

are needed with the cost of O(mk?).
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Figure 1. (a) Illustration of 3-D flowcell [Yoon et al., 2008] and (b) hydraulic conduc-

tivity distribution in 3 layers (out of 8 layers in total).

Table 1. Properties of Sands

Sand Type Measured K (cm/min) Mean Grain Size (cm)

12/20 25.08 0.11
20/30 13.44 0.072
30/40 6.72 0.053
40/50 3.78 0.036
50/70 2.03 0.026
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Table 2. Simulation and Inversion Parameters for the Synthetic Cases

Parameter Description Value

Case 1 Case 2

Simulation Parameters

L, L, L, domain length and width (cm) 21,9, 85
Az, Ay, Az grid spacing (cm) 0.25

0 porosity 0.355

a longitudinal dispersivity (cm) 0.013 ~ 0.055 ©
oy transverse dispersivity (cm) 0.1 x oy

True K field Generation

In K generation method Gaussian® SISIMP

Measurement Error

ne number of concentration measurement 5,777,408
lofe, standard deviation of measurement error (-) 0.1

Inversion Parameters

m the number of unknowns 57,344 99,072

Nobs number of travel time measurements (min) 51,584

q(z,x") covariance kernel q(x,2") = o, exp(—|z — 2’| /1)
o2 prior variance (cm/min?) 0.5 0.1

ly, Ly, L, scale parameter [ in x, y, z (cm) 4,2, 2 2,1, 1

oy standard deviation of measurement error 3

for travel time (min)

) finite difference interval for PCGA 0.005

a

exponential covariance with o , = 0.5 (cm?) and I, 1,1, = 4,2,2 (cm)
b Zhang et al. [2007]

¢ The dispersivity field was determined based on the mean grain size of the sands used
DRAFT DRAFT

in the experiment; The detailed information can be found in Yoon et al. [2008]
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Figure 2. The true (first row), best estimate (second row) and estimation uncertainty
(third row) for (a) Case 1 and (b) Case 2: (a) values at a specific height z are plotted,;
(b) averaged values over the depth of 1 cm are plotted in order to compare with the true

field.
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Figure 3. The eigenvalue spectrum of the prior covariance for Case 1 (black) and Case

2 (red).
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Measurement data fitting: measured versus simulated mean travel times

from the best estimate for (a) Case 1 using x = 300 and (b) Case 2 using x = 500.
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Figure 6. The best estimates with x = 250, 500, 1000 and 2,000 for Case 2.
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Figure 7. The estimation variance with x = 100, 300, 500, and 2,000 for Case 1.
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Figure 8. The estimation variance with x = 250, 500, 1000, and 2,000 for Case 2.
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Figure 9. The generalized eigenvalue spectrum of HQH' and R; x < 1 for PCGA

would result in the negligible error.
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(b) RMSE(In Kest) for Case 2
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The root-mean-square error of the estimates for (a) Case 1 and (b) Case 2,

and the estimation variance for (c) Case 1 and (d) Case 2.
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Figure 11. The packing pattern (first row), best estimate (second row) and estimation

uncertainty (third row) for actual MRI travel time data inversion; averaged values over

the depth of 1 cm are plotted in order to compare with the true packing pattern.
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Figure 12. Measurement data fitting: measured versus simulated mean travel times

from the best estimate.
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Figure 13. The best estimates with k = 250, 500, 1000 and 2,000 for actual MRI data

inversion.
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Figure 14. The estimation variance with x = 250, 500, 1000, and 2,000 for actual MRI

data inversion.
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Table 3. Mapping accuracy of K distribution compared to the design packing pattern

Sand Type

Mapping Accuracy (%)

PCGA (/{ = 500) PEST & PEST (with zonal information) b

12/20
20,30
30,/40
40/50

50,70

97.3

98.0

89.4

72.6

70.8

64.5

60.8

48.5

78.2

57.1

86.9

84.8

81.1

91.2

82.3

® Kinyp from Yoon and McKenna [2012]; K and porosity are estimated independently

yielding the best mapping accuracy result except the case using the zonal information
b Ky ome from Yoon and McKenna [2012]; K field was parameterized by zonal boundaries

from the design packing pattern
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