

¹ **Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging**

Jonghyun Lee¹, Hongkyu Yoon², Peter K. Kitanidis¹, Charles J. Werth³ and Albert J. Valocchi⁴

¹Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA.

²Geoscience Research and Applications Group, Sandia National Laboratories, Albuquerque, NM 87185, USA

³Department of Civil and Environmental Engineering, University of Texas, Austin, Texas, USA.

⁴Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Illinois, USA.

4 Abstract. Characterizing subsurface properties is crucial for reliable and
5 cost-effective groundwater supply management and contaminant remedia-
6 tion. With recent advances in sensor technology, large volumes of hydro-geophysical
7 and geochemical data can be obtained to achieve high-resolution images of
8 subsurface properties. However, characterization with such a large amount
9 of information requires prohibitive computational costs associated with “big
10 data” processing and numerous large-scale numerical simulations. To tackle
11 such difficulties, the Principal Component Geostatistical Approach (PCGA)
12 has been proposed as a “Jacobian-free” inversion method that requires κ for-
13 ward simulation runs for each iteration where κ is much smaller than the num-
14 ber of unknown parameters and measurements. PCGA can be conveniently
15 linked to any multi-physics simulation software with independent parallel ex-
16 ecutions. In this paper, we extend PCGA to handle a large number of mea-
17 surements (e.g. 10^6 or more) by constructing a fast preconditioner whose com-
18 putational cost scales linearly with the data size. For illustration, we char-
19 acterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-
20 scale 3-D sand box using about 6 million transient tracer concentration mea-
21 surements obtained using magnetic resonance imaging. Since each individ-
22 ual observation has little information on the K distribution, the data was com-
23 pressed by the zero-th temporal moment of breakthrough curves, which is
24 equivalent to the mean travel time under the experimental setting. Only about
25 2,000 forward simulations in total were required to obtain the best estimate
26 with corresponding estimation uncertainty, and the estimated K field cap-

²⁷ tured key patterns of the original packing design, showing the efficiency and
²⁸ effectiveness of the proposed method.

1. Introduction

29 Typical subsurface inverse problems deal with the estimation of geologic heterogeneous
30 parameters, such as hydraulic conductivity, from noisy and sparse measurements includ-
31 ing hydraulic head, solute concentration, temperature and so on. It is well known that
32 subsurface inverse problems are underdetermined and ill-posed; that is, the solution to
33 the inverse problem is non-unique and sensitive to measurement and conceptual modeling
34 errors. Therefore, the solution to the inverse problem and its uncertainty are evaluated
35 within a statistical framework. [McLaughlin and Townley, 1996; Carrera et al., 2005;
36 Oliver et al., 2008; Kaipio and Somersalo, 2007; Stuart, 2010; Smith, 2014].

37 With recent advances in sensor and computation technology, unprecedented large vol-
38 umes of hydro-geophysical and geochemical data sets can be obtained and processed
39 [Hampson et al., 2008; Barnhart et al., 2010; Orellana and Haigh, 2008; Pamukcu and
40 Ghazanfari, 2014] to achieve high-resolution images of subsurface properties for more
41 accurate and reliable subsurface flow and reactive transport prediction. While a large
42 data set may yield richer and more revealing information to improve inversion results
43 and reduce estimation uncertainty, incorporating a plethora of information into subsur-
44 face characterization requires high, often prohibitive, computational costs associated with
45 “big data” processing and a large number of high-dimensional, coupled multi-physics nu-
46 merical simulations. For example, in a recent extensive hydraulic tomography campaign
47 [Hochstetler et al., 2015], millions of transient pressure data were successfully acquired
48 from a field site, but only a few thousand measurements were carefully selected and used

49 to perform high-resolution 3-D transient hydraulic tomography to reduce computational
50 costs.

51 Traditional inversion techniques are not well suited for high-dimensional and joint in-
52 verse problems with massive datasets because they usually require a number of numerical
53 simulation model runs proportional to the size of unknowns and measurements in order
54 to construct Jacobian (i.e., *sensitivity*) matrices. To avoid a large number of expen-
55 sive simulations, a Newton-conjugate gradient (Newton-CG) type method [Haber and
56 Ascher, 2001; Epanomeritakis *et al.*, 2008] for nonlinear least square type inversion has
57 been applied using inner conjugate gradient iterations that avoid full Hessian products
58 by forming Hessian-vector products followed by outer Gauss-Newton iterations. While an
59 inner conjugate gradient iteration requires only a few forward and adjoint system solu-
60 tions independent of the problem size, the entire inversion may require a large number of
61 sequential inner and outer iterations to converge without a good preconditioner.

62 Another effective approach dealing with massive data is to use a small number of sum-
63 marized or subsampled data from the original data set in order to save computation and
64 storage costs. When the information content of an individual data record is low, with lo-
65 cal influence, and/or redundant with other records, inversions using the entire or reduced
66 data set often provide similar estimation results with comparable uncertainty reduction.

67 In hydrogeology, temporal moments of the large data set such as transient pressure [Zhu
68 and Yeh, 2006; Yin and Illman, 2009] and concentration breakthrough curves [Harvey
69 and Gorelick, 1995a; Cirpka and Kitanidis, 2000; Nowak and Cirpka, 2006] are widely
70 used to reconstruct unknown hydraulic conductivity fields. Randomized dimensionality
71 reduction methods [Krebs *et al.*, 2009; Haber *et al.*, 2012; Aravkin *et al.*, 2012] using a

72 random subset of data have been actively studied to achieve an acceptable inversion result
73 close to the best estimate obtained from the complete data set.

74 Among recently proposed scalable inversion approaches, the Principal Component Geo-
75 statistical Approach (PCGA) [Lee and Kitanidis, 2014; Kitanidis and Lee, 2014] is an
76 approximate method to the Bayesian geostatistical approach [Kitanidis, 1995, 2010] to
77 estimate unknown subsurface spatial parameters and quantify the corresponding uncer-
78 tainty rigorously with an affordable number of forward simulations independent of the
79 problem size. PCGA has been applied to several engineering applications with high di-
80 mensional unknown parameters such as hydraulic tomography, tracer data inversion [Lee
81 and Kitanidis, 2014], deep aquifer characterization with heat tracer [Lee et al., 2015] and
82 arsenic-bearing mineral imaging [Fakhreddine et al., 2015]. However, PCGA has not been
83 applied to inverse problems with a large number of measurements.

84 In this paper, we extend PCGA to handle a large number of measurements ($\sim \mathcal{O}(10^6)$),
85 an exercise that will soon become routine in the era of big data. To handle the large cok-
86 riging matrix arising from the geostatistical approach, a scalable and exact preconditioner
87 for PCGA is constructed. By scalability, we mean the ability of PCGA to deal with very
88 large measurements and unknowns, and the computation/storage costs of the proposed
89 preconditioner increase linearly with respect to the dimension of measurements and un-
90 knowns. Our proposed method is used to estimate the unknown hydraulic conductivity
91 field in a 3-D laboratory-scale sand box from in-situ tracer breakthrough data obtained
92 using magnetic resonance imaging (MRI) [Yoon et al., 2008]. The same data set was
93 used for the sand box characterization by Yoon and McKenna [2012]. The previous work
94 implemented PEST [Doherty and Hunt, 2010] linked with MODFLOW [Harbaugh et al.,

95 2000], and an advective particle tracking method instead of the full advection-dispersion
 96 simulation model due to the prohibitive computational costs. In this work, we use coupled
 97 flow and transport simulation with MODFLOW [*Harbaugh et al.*, 2000] and MT3DMS
 98 [Zheng and Wang, 1999], respectively, to achieve a (approximate) full geostatistical solu-
 99 tion, and also corresponding solution uncertainty that was not reported in the previous
 100 work.

101 This paper is organized in the following way. Section 2 reviews the geostatistical and
 102 principal component geostatistical approaches. The computational framework for large
 103 data set inversion is also presented. Section 3 explains the MRI experiment setup briefly,
 104 and data reduction technique. In Section 4, PCGA is applied to two synthetic examples
 105 to investigate the computational efficiency and solution accuracy of the proposed method.
 106 Then, inversion results using the real experimental data set are presented. Concluding
 107 remarks follow in Section 5.

2. Method

108 In this section, we review the quasi-linear geostatistical approach [Kitanidis, 1995] and
 109 PCGA [Kitanidis and Lee, 2014; Lee and Kitanidis, 2014]. Then we extend PCGA to
 110 solve large data inversion problems.

2.1. Review of Geostatistical Approach

111 The observation equation, which relates the $m \times 1$ vector of unknowns \mathbf{s} to the $n \times 1$
 112 vector of the data \mathbf{y} is

$$113 \mathbf{y} = h(\mathbf{s}) + \mathbf{v}, \quad \mathbf{v} \sim N(0, \mathbf{R}) \quad (1)$$

114 where h is the forward model mapping the parameter space \mathbb{R}^m to the measurement
 115 space \mathbb{R}^n , \mathbf{v} is Gaussian with zero mean and covariance \mathbf{R} that accounts for errors in
 116 the data \mathbf{y} and the forward model h . The prior probability of \mathbf{s} is Gaussian with mean
 117 $\mathbf{X}\beta$ and covariance \mathbf{Q} , where \mathbf{X} is the $m \times p$ known (polynomial) matrix, β is the $p \times 1$
 118 unknown vector (typically $p = 1$), and \mathbf{Q} is the generalized covariance matrix [Kitanidis,
 119 1983, 1993].

120 The posterior pdf of \mathbf{s} and β are obtained through Bayes theorem and its negative
 121 loglikelihood, $-\ln p''(\mathbf{s}, \beta)$, is

$$122 -\ln p''(\mathbf{s}, \beta) = \frac{1}{2}(\mathbf{y} - \mathbf{h}(\mathbf{s}))^\top \mathbf{R}^{-1}(\mathbf{y} - \mathbf{h}(\mathbf{s})) + \frac{1}{2}(\mathbf{s} - \mathbf{X}\beta)^\top \mathbf{Q}^{-1}(\mathbf{s} - \mathbf{X}\beta) \quad (2)$$

123 By minimizing (2) with respect to \mathbf{s} and β , we can obtain the maximum a posterior
 124 (MAP) or most likely value $\hat{\mathbf{s}}$, commonly computed through an iterative Gaussian-Newton
 125 method.

126 For this method, we start with the latest “best” estimate $\bar{\mathbf{s}}_i$, and update to a new
 127 solution $\bar{\mathbf{s}}_{i+1}$. Next, the $n \times m$ Jacobian or sensitivity matrix \mathbf{H} of \mathbf{h} at $\bar{\mathbf{s}}_{i+1}$ is evaluated
 128 as:

$$129 \mathbf{H} = \left. \frac{\partial \mathbf{h}}{\partial \mathbf{s}} \right|_{\mathbf{s}=\bar{\mathbf{s}}_i} \quad (3)$$

130 Then, based on the linearization of (2), the updated solution for the next iteration is
 131 computed as

$$132 \bar{\mathbf{s}}_{i+1} = \mathbf{X}\bar{\beta} + \mathbf{Q}\mathbf{H}^\top \bar{\xi} \quad (4)$$

133 where $\bar{\beta}$ and $\bar{\xi}$ are computed by solving a single linear system of $n + p$ equations:

$$134 \begin{bmatrix} \mathbf{H}\mathbf{Q}\mathbf{H}^\top + \mathbf{R} & \mathbf{H}\mathbf{X} \\ (\mathbf{H}\mathbf{X})^\top & \mathbf{0} \end{bmatrix} \begin{bmatrix} \bar{\xi} \\ \bar{\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{y} - h(\bar{\mathbf{s}}_i) + \mathbf{H}\bar{\mathbf{s}}_i \\ \mathbf{0} \end{bmatrix} \quad (5)$$

135 Steps (3) - (5) are repeated until $\bar{\mathbf{s}}_i$ converges to the best estimate $\hat{\mathbf{s}}$. For strongly nonlinear
 136 problems, a Levenberg-Marquardt type method using a larger error matrix $\mathbf{R}_\alpha = \alpha \mathbf{R}$
 137 (where $\alpha \geq 1$) adaptively for the first few iterations can be used for better convergence.
 138 Note that the computation of the Jacobian requires $\min(m, n) + 1$ forward simulation
 139 runs using forward or adjoint-state method. Once $\hat{\mathbf{s}}$ is obtained, the posterior covariance
 140 matrix \mathbf{V} is computed as

$$141 \quad \mathbf{V} = \mathbf{Q} - \begin{bmatrix} \mathbf{HQ} \\ \mathbf{X}^\top \end{bmatrix}^\top \begin{bmatrix} \mathbf{HQH}^\top + \mathbf{R} & \mathbf{HX} \\ (\mathbf{HX})^\top & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{HQ} \\ \mathbf{X}^\top \end{bmatrix} \quad (6)$$

2.2. Principal Component Geostatistical Approach

142 While the geostatistical method is well suited for small- to moderate-scale inverse prob-
 143 lems, computational cost can become extremely high when the method is implemented
 144 on finely resolved grid with a large number of measurements. The challenges originate
 145 from the construction of Jacobian \mathbf{H} and the matrix products of Jacobian, particularly
 146 \mathbf{HQ} . Separate construction of \mathbf{H} and products of \mathbf{H} with dense matrices lead to at least
 147 $n+1$ forward simulations at each iteration and $\mathcal{O}(m^2n)$ multiplication and $\mathcal{O}(mn)$ storage
 148 costs. Furthermore, computation of \mathbf{H} typically requires intrusive changes in the forward
 149 model code, which adds another level of difficulty, especially for multi-physics problems
 150 that utilize multiple forward models, in series or coupled.

151 PCGA expedites the geostatistical approach by avoiding the direct evaluation of the
 152 Jacobian, by using 1) a low-rank approximation of the prior covariance \mathbf{Q} and 2) a finite-
 153 difference approximation of matrix products. Assume \mathbf{Q} is approximated through rank- κ
 154 truncated eigen-decomposition:

$$155 \quad \mathbf{Q} \approx \mathbf{Q}_\kappa = \mathbf{Z} \mathbf{Z}^\top = \sum_{i=1}^{\kappa} \zeta_i \zeta_i^\top \quad (7)$$

156 where \mathbf{Q}_κ is the rank- κ ($\kappa \ll m$) approximation of \mathbf{Q} , \mathbf{Z} is the square root of \mathbf{Q}_κ using
 157 the eigen-decomposition, and ζ_i is the i -th column vector of \mathbf{Z} which is the i -th (largest)
 158 eigenvector multiplied by the square root of the corresponding i -th eigenvalue of \mathbf{Q} . A
 159 fast and scalable method to obtain (7) for large-scale covariance matrices is explained in
 160 *Lee and Kitanidis* [2014].

161 A generic Jacobian-vector product $\mathbf{H}\mathbf{u}$ needed in (5) (*e.g.*, $\mathbf{u} = \bar{\mathbf{s}}$, \mathbf{X}_i or ζ_i) can be
 162 computed approximately at the cost of an additional forward model evaluation using a
 163 finite-difference approximation:

$$164 \quad \mathbf{H}\mathbf{u} = \frac{1}{\delta} [h(\mathbf{u} + \delta\mathbf{u}) - h(\mathbf{u})] + \mathcal{O}(\delta) \quad (8)$$

165 where δ is the finite-difference perturbation size. An optimal choice of δ [*Brown and Saad*,
 166 1990] is given by

$$167 \quad \hat{\delta} = \frac{\sqrt{\epsilon}}{\|\mathbf{u}\|_2^2} \max(|\mathbf{s}^\top \mathbf{u}|, |\mathbf{c}^\top \mathbf{u}|) \text{sign}(\mathbf{s}^\top \mathbf{u}) \quad (9)$$

168 where ϵ is the relative machine precision, which is usually (one order of magnitude)
 169 greater than the square root of the machine precision, $|\mathbf{u}| = [|u_1|, |u_2|, \dots, |u_m|]^\top$, $\mathbf{c} =$
 170 $[c_1, c_2, \dots, c_m]^\top$, c_i is a typical value of $|s_i|$ and $\text{sign}()$ indicates a sign of value.

171 Accordingly, the matrix-matrix products \mathbf{HQ} and \mathbf{HQH}^\top are computed by

$$172 \quad \mathbf{HQ} \approx \mathbf{HQ}_\kappa = \mathbf{H} \sum_{i=1}^{\kappa} \zeta_i \zeta_i^\top = \sum_{i=1}^{\kappa} (\mathbf{H}\zeta_i) \zeta_i^\top \approx \sum_{i=1}^{\kappa} \boldsymbol{\eta}_i \boldsymbol{\zeta}_i^\top \quad (10)$$

$$173 \quad \mathbf{HQH}^\top \approx \mathbf{HQ}_\kappa \mathbf{H}^\top = \sum_{i=1}^{\kappa} (\mathbf{H}\zeta_i) (\mathbf{H}\zeta_i)^\top \approx \sum_{i=1}^{\kappa} \boldsymbol{\eta}_i \boldsymbol{\eta}_i^\top \quad (11)$$

175 where

$$176 \quad \boldsymbol{\eta}_i = \mathbf{H}\zeta_i \approx \frac{1}{\delta} [h(\mathbf{s} + \delta\zeta_i) - h(\mathbf{s})] \quad (12)$$

177 .

178 Replacing the explicit construction and multiplication of \mathbf{H} in (3) - (5) by (8) - (12)
 179 requires a total of $\kappa + p + 2$ forward model runs in each iteration, and the storage cost
 180 becomes $\mathcal{O}(m\kappa)$ from $\mathcal{O}(mn)$. As a result, PCGA can reduce the number of numerical
 181 simulations significantly from $n + 1$ to $\kappa + p + 2$ when a large number of measurements are
 182 available. Previous numerical experiments [Lee and Kitanidis, 2014; Fakhreddine et al.,
 183 2015; Lee et al., 2015] have shown that $\kappa \sim \mathcal{O}(100)$ and a few hundred simulation runs
 184 in total are needed without any intrusive changes in the simulation model code, while
 185 inverse solutions are almost the same as those obtained from the geostatistical approach.
 186 Corresponding estimation variance can be efficiently computed as in Appendix B.

2.3. Fast and Exact Preconditioner for PCGA

187 Our previous research presented high-dimensional and/or joint inversion problems with
 188 a moderate number of measurements ($\sim \mathcal{O}(10^3)$). When a massive data set is available,
 189 solving the $n + p$ by $n + p$ cokriging system in (13), for example $n = 10^6$, would be
 190 infeasible with direct matrix inversion methods and should be implemented with iterative
 191 methods such as MINRES [Paige and Saunders, 1975] and GMRES [Saad and Schultz,
 192 1986]. Those iterative methods usually require a preconditioner to reduce the number
 193 of iterations and constructing a “good” preconditioner, which is close to the inverse of
 194 the cokriging matrix and guarantees a few iterations, is typically expensive. However, for
 195 PCGA we can accelerate the direct solution of (5) or construct an effective preconditioner
 196 based on the exact inverse of the cokriging or so-called saddle point matrix [Benzi et al.,
 197 2005]:

$$198 \begin{bmatrix} \mathbf{H}\mathbf{Q}\mathbf{H}^\top + \mathbf{R} & \mathbf{H}\mathbf{X} \\ (\mathbf{H}\mathbf{X})^\top & \mathbf{0} \end{bmatrix}^{-1} := \begin{bmatrix} \Psi & \Phi \\ \Phi^\top & \mathbf{0} \end{bmatrix}^{-1} = \begin{bmatrix} \Psi^{-1} - \Psi^{-1}\Phi\mathbf{S}^{-1}\Phi^\top\Psi^{-1} & \Psi^{-1}\Phi\mathbf{S}^{-1} \\ \mathbf{S}^{-1}\Phi^\top\Psi^{-1} & -\mathbf{S} \end{bmatrix} \quad (13)$$

199 where

$$200 \quad \Psi := \mathbf{H} \mathbf{Q} \mathbf{H}^\top + \mathbf{R}, \quad \Phi := \mathbf{H} \mathbf{X}, \quad \mathbf{S} := \Phi^\top \Psi^{-1} \Phi \quad (14)$$

201 and the dominant cost for (13) is the computation of Ψ^{-1} , i.e.,

$$202 \quad \Psi^{-1} = (\mathbf{H} \mathbf{Q} \mathbf{H}^\top + \mathbf{R})^{-1} \quad (15)$$

203 This type of matrix form has been actively researched as an application of the generalized
 204 eigenvalue problem (GEP) [Flath *et al.*, 2011; Cui *et al.*, 2014; Saibaba and Kitanidis,
 205 2015] to approximate the Hessian of (2) with a relatively small number of terms (generally
 206 $\sim \mathcal{O}(100)$); we follow this technique to solve (5) for PCGA. Assume that we solve the
 207 following GEP (see Appendix A) to find \mathbf{u} and λ , which are the generalized eigenvector
 208 and eigenvalue of \mathbf{Q} and \mathbf{R} , respectively:

$$209 \quad \mathbf{H} \mathbf{Q} \mathbf{H}^\top \mathbf{u} = \lambda \mathbf{R} \mathbf{u} \quad (16)$$

210 that satisfies

$$211 \quad \mathbf{H} \mathbf{Q} \mathbf{H}^\top = \mathbf{R} \mathbf{U} \Lambda \mathbf{U}^\top \mathbf{R}, \quad \mathbf{U} \mathbf{R} \mathbf{U}^\top = \mathbf{I} \quad (17)$$

212 where the columns of \mathbf{U} and diagonal values of Λ are generalized eigenvectors \mathbf{u} and
 213 eigenvalues λ . Then, using the Sherman-Morrison-Woodbury formula,

$$214 \quad \Psi^{-1} = (\mathbf{H} \mathbf{Q} \mathbf{H}^\top + \mathbf{R})^{-1} = \mathbf{R}^{-1} - \mathbf{U} \mathbf{D} \mathbf{U}^\top \quad (18)$$

215 where diagonal matrix \mathbf{D} whose i -th diagonal value \mathbf{D}_i is

$$216 \quad \mathbf{D}_i = \frac{\lambda_i}{\lambda_i + 1} \quad (19)$$

217 In the PCGA framework, where \mathbf{Q} is replaced with the rank- κ approximation \mathbf{Q}_κ , we
 218 need to find only “ κ ” generalized eigenmodes for (16) to obtain the exact inverse of the

219 cokriging matrix used in PCGA using (18):

$$220 \quad \Psi^{-1} \approx \Psi_{\kappa}^{-1} = (\mathbf{H} \mathbf{Q}_{\kappa} \mathbf{H}^{\top} + \mathbf{R})^{-1} = \mathbf{R}^{-1} - \mathbf{U}_{\kappa} \mathbf{D}_{\kappa} \mathbf{U}_{\kappa}^{\top} \quad (20)$$

221 where \mathbf{U}_{κ} and \mathbf{D}_{κ} are generalized eigenvectors and eigenvalues of \mathbf{Q}_{κ} and \mathbf{R} , respectively.

222 GEP can be solved efficiently using the sequential Lanczos-based method or parallelized

223 randomized SVD [Saibaba *et al.*, 2015], with computational cost of $\mathcal{O}(n\kappa^2)$ and storage

224 cost of $\mathcal{O}(n\kappa)$, i.e., linear scalability with respect to the data size. Once the generalized

225 eigenvalues and eigenvectors are computed, the inverse matrix (13) can be used to solve

226 the cokriging system directly or as a preconditioner for iterative approaches.

227 It should be noted that the iterative approaches require a form of matrix-vector product

228 instead of explicit construction of (13). For example, $\Psi_{\kappa}^{-1} \mathbf{x}$ can be computed as

$$229 \quad \Psi^{-1} \mathbf{x} \approx \Psi_{\kappa}^{-1} \mathbf{x} = \mathbf{R}^{-1} \mathbf{x} - \mathbf{U}_{\kappa} (\mathbf{D}_{\kappa} (\mathbf{U}_{\kappa}^{\top} \mathbf{x})) \quad (21)$$

230 without storing and computing the full matrix Ψ_{κ}^{-1} . The same argument is applied to \mathbf{S}

231 and $\mathbf{\Phi}$ in (13). In the numerical experiment we present in the next section with $n = 51,584$

232 and $\kappa = 2000$, GEP was solved in 10 seconds and MINRES or GMRES required no more

233 than 4 iterations to achieve convergence with a small residual, e.g., 10^{-8} .

2.4. Choice of the number of Principal Components κ

234 In our previous works [Kitanidis and Lee, 2014; Lee and Kitanidis, 2014], two methods

235 were proposed to choose a reasonable κ based on 1) relative eigenvalue error (the ratio

236 of $\kappa + 1$ -th eigenvalue to the first eigenvalue) of the prior covariance approximation and

237 2) eigenspectrum of $\mathbf{H} \mathbf{Q}_{\kappa} \mathbf{H}^{\top}$ compared to \mathbf{R} . In many practical cases, the former would

238 work effectively by keeping κ principal components that give a small relative eigenvalue

239 error (e.g. ≤ 0.01). However, this criteria alone might not be sufficient, especially when

240 the information content from dense measurements is rich enough to recover small-scale
 241 features, and the eigenvalue decay of the prior \mathbf{Q} chosen for such a data-intensive case
 242 is slow due to short correlation length, high physical domain dimension (i.e., 3-D) and
 243 high parameter dimension [Frauenfelder *et al.*, 2005]. As a result, κ can vary dramatically
 244 depending on the relative eigenvalue error one allows. A more rigorous way would be to
 245 investigate the combined effect of the prior information, forward model prediction, and
 246 modeling and measurement errors on the approximation of the estimation results. In fact,
 247 the generalized eigenvalue of \mathbf{HQH}^\top and \mathbf{R} discussed in Section 2.3 can be an effective
 248 mathematical tool for this purpose and interpreted as a generalized Rayleigh-Ritz ratio:

$$249 \quad \lambda_i = \arg \max_{\mathbf{u} \in \mathbf{U}_{i,i+1,\dots,n}} \frac{\mathbf{u}^\top \mathbf{HQH}^\top \mathbf{u}}{\mathbf{u}^\top \mathbf{R} \mathbf{u}} \quad (22)$$

250 where $\mathbf{U}_{i,i+1,\dots,n}$ is the space spanned by the eigenvectors corresponding to the eigenvalues
 251 equal to or smaller than the i -th eigenvalue. The i -th eigenvalue maximizes the Rayleigh-
 252 Ritz ratio over the measurement subspace $\mathbf{U}_{i,i+1,\dots,n}$, and can be interpreted as how much
 253 the unknown \mathbf{s} contributes to the measurement variability compared to the noise \mathbf{R} in the
 254 corresponding eigenspace. In other words, if λ_i is greater than 1, the measurements are
 255 more important and informative to the solution than the noise along the corresponding
 256 eigenvector direction (cf. Cui *et al.* [2014] for the Hessian approximation). Thus, we can
 257 choose κ whose eigenvalue λ_κ is close to 1. Note that one can allow κ slightly larger
 258 than 1 without losing accuracy since the prior \mathbf{Q} includes redundant information on the
 259 prior mean structure \mathbf{X} . The generalized prior covariance [Kitanidis and Lee, 2014] that
 260 excludes the effect of the prior mean can be used for more rigorous choice of κ .

261 It should be noted that the analysis above is based on \mathbf{HQH}^\top , and what we compute
 262 with κ principal components is κ -rank $\mathbf{HQ}_\kappa \mathbf{H}^\top$. The κ -th generalized eigenvalue λ_κ of

263 $\mathbf{HQ}_\kappa \mathbf{H}^\top$ (and \mathbf{R}) would be much smaller than actual λ_κ of \mathbf{HQH}^\top . Thus, one should
264 check whether the eigenspectrum above $\lambda \approx 1$ changes by adding more principal com-
265 ponents in order to make sure the eigenspectrum of $\mathbf{HQ}_\kappa \mathbf{H}^\top$ is close to that of \mathbf{HQH}^\top
266 around λ_κ . A practical and efficient implementation is that one starts PCGA with a small
267 value of κ , then increases κ steadily in each iteration up to the value where the generalized
268 eigenspectrum does not vary much (for example the spectrum above $\lambda = 10$).

3. Application to Tracer Data Inversion

269 We applied the method proposed in Section 2 to a laboratory-scale hydraulic conduc-
270 tivity estimation problem. The experimental procedure and data acquisition are given
271 in detail by *Yoon et al.* [2008] and *Zhang et al.* [2007]. Here, we briefly explain the ex-
272 perimental setup, the data processing with temporal moment analysis and the numerical
273 setting.

3.1. Experimental Setup

274 The experimental setup of the flowcell is shown in Figure 1. The entire flowcell has di-
275 mensions of $21.5 \times 9 \times 8.5$ cm, and is packed with 1 cm cubes of five different sand types
276 described in Table 1. The hydraulic conductivity, porosity and dispersion coefficients of
277 all five sand types were measured independently before packing. The “true” hydraulic
278 conductivity field with five different sand types was generated using the sequential in-
279 dicator simulation algorithm [*Deutsch and Journel*, 1998] to construct a heterogeneous
280 K field for the central portion of the flowcell ($14 \times 8 \times 8$ cm) as in Figure 1 (b). The
281 rest of the flowcell (a 4.5 cm zone adjacent to the inlet, a 3 cm zone adjacent to the
282 outlet, a 0.5 cm thick layer on the bottom and a 0.5 cm thick vertical layer adjacent to

283 the side walls) was filled with 50/70 sand (lowest hydraulic conductivity). For the tracer
 284 test, a constant head was maintained at the inlet and outlet reservoirs, and a nonreactive
 285 para-magnetic tracer solution was continuously injected into the initial tracer-free water
 286 saturated flowcell until complete breakthrough was observed in the outflow. The total
 287 time for the tracer solution to flow through the entire flowcell was about 4 hours.

288 The signal intensity for the tracer concentration using MRI was obtained and processed
 289 at a resolution of $0.25 \times 0.25 \times 0.25 \text{ cm} = 0.016 \text{ cm}^3$, at a regular sampling interval of 2.17
 290 min over the MR imaging region, which is slightly smaller than the entire heterogeneous
 291 region ($14 \times 8 \times 8$). The MRI signal was converted into normalized tracer breakthrough
 292 curves (BTCs), i.e., tracer concentration varies between 0 and 1. Measurements from the
 293 top 0.25 cm of the heterogeneous region were not used in this study due to decreased
 294 imaging accuracy; the actual observation data for the inversion covers from $x = 4.5$ and
 295 17.5 cm, $y = 0.5$ to 8.5 cm, and $z = 0.5$ to 8.25 cm in the central heterogeneous region,
 296 and the total number of observed tracer concentration data records is 5,777,408.

3.2. Data Processing with Temporal Moments

297 For tracer test data inversion, the first normalized temporal moment of tracer con-
 298 centration BTCs has been widely used [Cirpka and Kitanidis, 2000; Nowak and Cirpka,
 299 2006]. The first normalized temporal moment of a local BTC due to a pulse-like tracer
 300 injection, $m_{1,n}$ [T], is defined as

$$301 \quad m_{1,n}(x) = \frac{m_1(x)}{m_0(x)} = \frac{\int_0^\infty tC(x, t)dt}{\int_0^\infty C(x, t)dt} \quad (23)$$

302 where m_i is the i -th temporal moment [T^{i+1}] and C is the dimensionless normalized con-
 303 centration [-]. $m_{1,n}$ represents the mean travel (arrival) time of the tracer at a monitoring

304 location. The use of the first temporal moment in the inversion has been shown to be
 305 robust and beneficial because the first temporal moment is continuous with respect to the
 306 objective function (2), and the transient transport equation (with time-invariant coeffi-
 307 cients) can be transformed into a steady-state equation for the pulse-type tracer injection
 308 [Harvey and Gorelick, 1995b; Cirpka and Kitanidis, 2000].

309 Previous laboratory-scale studies [Nowak and Cirpka, 2006; Yoon and McKenna, 2012]
 310 performed continuous tracer injection tests and computed the first normalized moment of
 311 the derivative of BTCs (C'), $m'_{1,n}$ [T], in order to approximate the mean travel time for a
 312 pulse-like injection:

$$313 \quad m'_{1,n}(x) = \frac{m'_1(x)}{m'_0(x)} = \frac{\int_0^T tC'(x, t)dt}{\int_0^T C'(x, t)} \quad (24)$$

314 where T is the duration of the tracer experiment monitoring. However, as noted in
 315 Yin and Illman [2009] and Jose et al. [2004], care must be taken with additional data
 316 processing steps such as derivative computation and denoising; otherwise, a significant
 317 source of errors can be introduced, resulting in a very low signal to noise ratio and some
 318 information content lost. It is also worth noting that the scheme above is more appropriate
 319 for the flux measures; MRI measures the residence concentration from a signal over time
 320 within the voxel, which is an average concentration over the MRI scanning time within a
 321 voxel.

322 For the tracer test application considered in this study, we use the relationship between
 323 moments of C and moments of C' [Valocchi, 1986], and instead of (24), evaluate the
 324 zero-th temporal moments, m_0 [T], of the data:

$$325 \quad m_0(x) = \int_0^T C(x, t)dt \quad (25)$$

326 The zero-th temporal moment at a particular location represents the total tracer mass
 327 that passes by the location of observation and is computed as the area under the BTC. The
 328 zero-th temporal moment is equivalent to $m'_{1,n}(x)$ in (24) when the tracer concentration
 329 reaches steady state (i.e., $C(x, T) = 1$):

$$330 \quad m'_{1,n}(x) = \frac{m'_1(x)}{m'_0(x)} = \frac{\int_0^T tC'(x, t)dt}{\int_0^T C'(x, t)} = \frac{tC(x, t)|_0^T - \int_0^T C(x, t)dt}{C(x, t)|_0^T} = T - m_0(x) \quad (26)$$

331 Thus, in the case of continuous injection, the time, T , to reach steady-state minus the
 332 zero-th moment m_0 is the mean travel time of the tracer. Using the zero-th moment
 333 is preferable since one can avoid the derivative computation with additional numerical
 334 errors. In this work, the zero-th moments were computed from the MRI dataset using the
 335 trapezoidal rule to obtain 51,584 mean travel time measurements.

3.3. Numerical Setting

336 Coupled steady-state flow and transient transport for the tracer test were simulated
 337 using USGS MODFLOW [*Harbaugh et al.*, 2000] and MT3DMS [*Zheng and Wang*, 1999].
 338 A uniform grid spacing of 0.25 cm was chosen in the 3-D domain as used in previous
 339 works [*Yoon et al.*, 2008; *Yoon and McKenna*, 2012] to have the same scale as the MRI
 340 data. A third-order total-variation-diminishing (TVD) scheme was chosen in MT3DMS
 341 to prevent numerical dispersion and oscillation. Based on a previous analysis that K
 342 is the most sensitive parameter and the travel-time data are relatively insensitive to the
 343 dispersivities [*Yoon and McKenna*, 2012; *Nowak and Cirpka*, 2006], only K is estimated in
 344 this study while porosity and dispersivity are assumed to be known from measurements
 345 taken before packing. Simulation parameters including the domain size, porosity and
 346 dispersivity are presented in Table 2.

347 For parameter estimation, we first generate two synthetic tracer test data sets, each
 348 corresponding to a different hypothetical K distribution for the same laboratory setup
 349 described in Section 3.1. The purpose of these synthetic tests is to investigate the per-
 350 formance of the proposed method under ideal conditions using known true K fields and
 351 conceptual modeling/experimental errors. Then, we employ our method using the actual
 352 tracer travel time data to estimate the unknown K distribution of the flowcell. Inversion
 353 parameters used in this study are listed in Table 2. Numerical simulations and inversions
 354 were carried out on a Linux workstation equipped with 36 Intel core 3.1 GHz processors
 355 and 128 GB RAM.

4. Results

4.1. Application to Synthetic Cases

356 In this section, we consider inversion tests with two synthetic true K fields to investigate
 357 the scalability and effectiveness of our proposed method. Eight horizontal layers of the two
 358 K fields are plotted in the first row of Figures 2 (a) and (b), respectively. In Case 1, the
 359 true K field for the heterogeneous center region of the flowcell was generated from the log-
 360 normal distribution with an exponential covariance kernel. The remaining homogeneous
 361 part is assumed to be known exactly in order to simplify the structural (prior) parameter
 362 selection such as the prior variance, correlation length and measurement error. In Case
 363 2, the actual design K field packed in the flowcell was chosen to check how much the true
 364 field can be reconstructed in this synthetic setting prior to the inversion with the actual
 365 data. The same laboratory experimental setup described previously was used to generate
 366 5,777,408 transient concentrations from these two K fields, and 10% noise (i.e., standard
 367 deviation of error in the concentration measurements = $0.1 \times$ maximum concentration)

³⁶⁸ was added. The zero-th temporal moments of corresponding BTCs were computed to
³⁶⁹ obtain $n = 51,584$ mean travel time values. The corresponding simulation parameters are
³⁷⁰ listed in Table 2.

³⁷¹ The structural parameters for the prior covariance \mathbf{Q} and the error \mathbf{R} were chosen from
³⁷² the parameters used for the true K field generation for Case 1, and using the cR/Q2 criteria
³⁷³ [Kitanidis, 1991], which is an optimal structure (hyper) parameter selection method in
³⁷⁴ the Bayesian framework, for Case 2. Optimal structural parameter selection within the
³⁷⁵ PCGA framework is beyond the scope of this paper. For both cases, the initial guess
³⁷⁶ was set to a homogeneous field of the natural logarithm of K ($\ln K$) = 2.5, and the
³⁷⁷ best estimate converged in 4 to 5 iterations depending on inversion parameters. We also
³⁷⁸ performed additional tests with different initial guesses such as $\ln K = 0$ and 5, and all
³⁷⁹ the tests converged to the estimates presented below.

³⁸⁰ The spectrum of the prior covariance \mathbf{Q} is plotted in Figure 3, showing that the decay
³⁸¹ of the eigenspectrum is slow due to the use of an exponential covariance kernel with a
³⁸² short correlation length defined in the 3-D space. Thus, it is expected that a large value of
³⁸³ κ should be retained to reduce the approximation error of Jacobian-covariance products
³⁸⁴ in (10) and (11). Moreover, to resolve the small-scale variability in the true field, PCGA
³⁸⁵ requires large κ to express the high-frequency components in the estimate. We chose $\kappa =$
³⁸⁶ 300 for Case 1 and 500 for Case 2, with relative eigenvalue errors of the prior covariance
³⁸⁷ approximation (the ratio of the $\kappa + 1$ -th eigenvalue to the first/largest eigenvalue) of
³⁸⁸ 0.001 and 0.01, respectively. It is worth noting that the full geostatistical approach would
³⁸⁹ require about $n = 51,584$ numerical model evaluations in each iteration. A systematic
³⁹⁰ analysis for the optimal κ selection will be presented later.

391 The best estimate and corresponding estimation uncertainty of the $\ln K$ distribution
392 for Case 1 are shown in the second and third rows of Figure 2 (a), respectively. The
393 best estimate identifies high and low K regions, and reproduces the connectivity patterns
394 observed in the true field. Even though a large measurement error (10% of maximum
395 concentration value) was assumed in this application, the information from approximately
396 6 million concentration values compensates the large error and yields an accurate estimate
397 of the true field. Since the measurements were collected over almost the entire area ($13 \times$
398 8×8 cm) for the estimation of the heterogeneous region ($14 \times 8 \times 8$ cm), the posterior
399 estimation variance is reduced uniformly. The fitting between simulated and measured
400 mean travel times is plotted in Figure 4 (a). A total of 1,232 MODFLOW and MT3DMS
401 model runs were required to find the best estimate in around 4 hours using independent
402 36 core parallel executions. The number of model runs includes $\kappa + p + 2$ Jacobian-vector
403 computations in each iteration, and the evaluation of intermediate solutions identified by
404 the Levenberg-Marquardt method between iterations.

405 For Case 2, the best estimate and its estimation uncertainty of the $\ln K$ distribution
406 are presented in the second and third rows of Figure 2 (b), respectively. While the blocky
407 interfaces of different sand types are blurred due to the large measurement error and
408 Gaussian prior assignment, the best estimate identifies interconnected high K channels as
409 well as other small-scale features successfully. Because of the large number of data points,
410 the Gaussian prior becomes unimportant and the data solely guides the delineation of
411 non-Gaussian patterns. The estimation variance around the MRI scanning volume is low,
412 while a high estimation variance is observed upstream of the heterogeneous region and

413 near the outlet. The measurement fitting is plotted in Figure 4 (b) and a total of 2,124
 414 forward model runs was required, taking about 7.5 hours.

415 To investigate the effect of the number of principal components, different values of κ
 416 principal components are used to estimate $\ln K$ fields in Figures 5 and 6, and compute
 417 the estimation variances in Figures 7 and 8. As a reference, we use the estimate with
 418 $\kappa = 2,000$, which is equivalent to the results that we would have gotten if we used the
 419 full geostatistical approach, since increasing the κ above 1,000 did not change the best
 420 estimate and its variance. In Case 1, where the true smooth log-normal field is estimated,
 421 the best estimate even with $\kappa = 300$ is practically similar to the reference estimate.
 422 In Case 2, on the other hand, the best estimate requires more principal components to
 423 identify small-scale features, and $\kappa = 500$ is enough to obtain the best estimate similar
 424 to the reference solution. Similar to the best estimates, the estimation variance with κ
 425 = 300 for Case 1 and $\kappa = 500$ for Case 2 are close to the reference variance map. As
 426 noted previously, this high accuracy is obtained with PCGA with only 1,232 and 2,140
 427 forward runs respectively, while the traditional adjoint method-based approach would
 428 have required at least 51,585 simulations for each iteration, highlighting the scalability of
 429 PCGA.

430 Figure 9 shows the plot of generalized eigenvalues of \mathbf{HQH}^\top and \mathbf{R} for both cases
 431 following the method presented in Section 2.4. The generalized eigenvalues for both cases
 432 are evaluated at the best estimate with $\kappa = 2000$. It is shown that $\kappa = 300$ for Case 1
 433 and $\kappa = 500$ for Case 2 are indeed practical choices for these synthetic problems.

In Figure 10, we investigate the effect of κ on the accuracy of the best estimates and the estimation variance in terms of element-wise root-mean-square-error (RMSE):

$$\text{RMSE}(\ln K) = \sqrt{\frac{1}{m} \sum_{i=1}^m (\ln K_i^{\text{ref}} - \ln K_i^{\text{est}})^2}, \quad \text{RMSE}(v_i) = \sqrt{\frac{1}{m} \sum_{i=1}^m (\sigma_{\text{ref},i}^2 - \sigma_{\text{est},i}^2)^2} \quad (27)$$

where $\ln K_i^{\text{ref}}$ and $\sigma_{\text{ref},i}^2$ are the reference estimate and estimation variance in the grid cell i , and $\ln K_i^{\text{est}}$ and $\sigma_{\text{est},i}^2$ are the $\ln K$ estimate and its estimation variance in the same grid cell, respectively. It is also observed that $\kappa \geq 500$ for Case 1 and $\kappa \geq 600$ for Case 2 give negligible errors to the reference estimate and variance.

4.2. Application to MRI Experimental Data

In this section, the actual mean travel time data set is used to estimate the $\ln K$ field of the 3-D flowcell and quantify estimation uncertainty. In the previous studies [Yoon *et al.*, 2008; Yoon and McKenna, 2012], it was shown that the advection-dispersion simulation based on the actual design packing could not reproduce the measurements obtained from the actual experiment accurately, potentially due to loose sand packing during the construction, sand mixing at interfaces during the experiments, and various sources of errors from MRI data acquisition, MRI signal post-processing and conceptual modeling setup. Thus, the experimental design packing pattern does not exactly match the “true” packing pattern, and is only used for comparison purposes. We refer readers to Yoon *et al.* [2008] and Yoon and McKenna [2012] for a rigorous analysis of parameterization and model selections, and a detailed explanation of the simulation model discrepancy.

To save the computational cost further, we started PCGA with $\kappa = 100$ and increased κ by 150 at each iteration following Section 2.4. By doing so, a total of 1,952 MODFLOW and MT3DMS simulations were required to achieve convergence in 5 iterations. From the

452 cR/Q2 criteria, the inversion parameters were chosen as described in Case 2 of Table 2,
453 except the use of a slightly larger standard deviation of measurement error ($\sigma_t = 4$) to
454 account for the uncertainty arising from measurement and modeling errors.

455 The best estimate of the $\ln K$ field using the actual travel time data is shown in Figure
456 11. Overall, the best estimate identifies high and low K zones and their connectivity
457 observed in the design packing pattern, while the small-scale features in the best estimate
458 are not exactly the same as those from the previous synthetic test in Figure 2, possibly
459 due to changes and errors in the experiment and modeling setup as mentioned earlier.
460 Corresponding estimation variance in the third row of Figure 11 indicates the high un-
461 certainty outside the MRI scanning volume, especially near the outlet as expected where
462 the downstream K values cannot be inferred from the upstream tracer information. In
463 Figure 12, the data fitting between the simulated and measured mean travel time is dis-
464 played. While measurements are reproduced relatively well, measurement fitting allows
465 more errors compared to the previous synthetic case in Figure 4 (b) based on the inversion
466 parameters we found. The impact of different κ values on the estimation is investigated
467 in Figures 13 and 14, indicating $\kappa = 500$ is enough to achieve a full geostatistical solution
468 for this application.

469 In Table 3, the quality of estimated K distribution compared to the original packing
470 pattern is assessed by a mapping accuracy evaluation used in *Yoon and McKenna* [2012].
471 In terms of the mapping accuracy and visual comparison to the design packing pattern,
472 the estimated K in this study is significantly better than the previous result (the third
473 column of Table 3) reported in *Yoon and McKenna* [2012] and even comparable to another
474 previous result (the fourth column of Table 3) that directly used the design packing

475 boundaries of different sand types as prior information. The relatively low mapping
476 accuracy of high K sands (40/50 and 50/70 sands) with respect to the design packing
477 pattern might be explained by mixing at the interfaces between high and low K sands
478 during the sand packing and the flow experiments, resulting in the extension of low K
479 zones. The superior mapping performance of PCGA may be because PCGA approximates
480 the full geostatistical inverse solution in a better way than the pilot-point method used
481 in PEST. The pilot point method often requires a careful placement of pilot points with
482 respect to measurement locations and the choice of an interpolation scheme from the
483 pilot points to the rest of the model domain also affects the estimation results [*Doherty*
484 and *Hunt*, 2010]. As a result, the pilot point method often yields estimates different
485 from the geostatistical approach [*Oliver et al.*, 2008]. In addition, while the previous
486 study used a particle tracking based advective transport simulation, we included fully
487 coupled MODFLOW-MT3DMS simulation models in the inversion, which would improve
488 the identification of the original packing pattern further.

489 The computational cost required in PCGA is also smaller than that in *Yoon and*
490 *McKenna* [2012] who assigned 1,056 pilot points using the explicit knowledge of the hetero-
491 geneous and homogeneous regions. Although inversion-accelerating options supported by
492 PEST including the truncated singular value decomposition (TSVD) and the SVD-assist
493 approach [*Doherty and Hunt*, 2010] were tested with various sets of measured data, all of
494 those approaches required construction of the Jacobian matrix, and the overall number
495 of iterations for convergence was higher (e.g., 10-30 iterations) compared to PCGA. This
496 comparison highlights the advantage of PCGA for large-scale and data intensive inverse
497 problems while maintaining the accuracy close to the full geostatistical approach.

498 Note that the setup cost for the preconditioner is scalable, meaning that the proposed
499 method can handle millions of measurements without difficulty. To demonstrate the scal-
500 ability of the preconditioner, we performed an additional inversion with 5,777,408 individual
501 tracer data records. The obtained best estimate and estimation variance using the entire
502 data set are not reported here because they are almost the same as those in Figure 11,
503 i.e., the inversion case using only the travel time data, which indicates higher moments
504 data, would not be informative to improve the results or reduce the uncertainty in this
505 case. With $\kappa = 1000$, the generalized eigen-problem for preconditioner construction was
506 solved using a randomized eigen-solver [Saibaba *et al.*, 2015] in 3 minutes, and MINRES
507 required only 3 iterations to achieve convergence in 30 seconds for each Gauss-Newton
508 iteration. Even with linear scalability with respect to the number of measurements, the
509 computation and storage costs for the preconditioner construction and cokriging matrix
510 inversion might become intractable on a personal computer due to the huge data set, but
511 one can use a smaller κ value such as 250 for the preconditioner construction and obtain
512 the same geostatistical solution with slightly more MINRES or GMRES iterations, e.g.,
513 5 to 10 iterations.

5. Concluding Remarks

514 In this work, we have improved and adapted PCGA, a scalable inversion method, to
515 compute the best estimate and estimation uncertainty using a huge amount of environ-
516 mental data. A fast and exact preconditioner for PCGA was presented, and a method of
517 choosing the number of principal components, i.e. κ , based on a generalized eigenvalue
518 analysis was provided. The generalized eigenvalue analysis can be a valuable tool for
519 investigating how the combined information from the prior, data, and forward models,

520 and associated errors affect the performance of PCGA. Overall, for a high-dimensional
521 inverse problem with a large number of unknowns and data, e.g., m and $n \geq 10^6$, our pro-
522 posed method requires only about κ ($\ll m, n$) forward simulation runs for each iteration
523 in order to construct Jacobian products, and the matrix computation and storage costs
524 grow linearly with the number of measurements, n . The entire process in PCGA is thus
525 scalable with respect to the unknown parameter and measurement data dimensions, and
526 can be accelerated further by independent parallel forward model executions.

527 The efficiency and accuracy of PCGA were demonstrated on a massive MRI data set
528 inversion using coupled flow and transport MODFLOW-MT3DMS models. Since PCGA
529 treats available forward models as a “black box”, the linkage of MODFLOW-MT3DMS
530 to PCGA was straightforward. Around 6 millions of the concentration measurements
531 converted from MRI signals were reduced to 57,344 mean travel time data records by a
532 temporal moment computation, and PCGA was applied to invert the travel time data
533 with affordable forward runs, only 1,952 MODFLOW-MT3DMS executions much smaller
534 than those required in traditional inversion methods. Due to high information content
535 from the large data set, the estimated K fields captured key patterns of the original
536 sand packing design with a low estimation uncertainty. The efficient inversion of the
537 real environmental data set presented in this paper shows that PCGA is a promising
538 option for large-scale joint inverse problems and can provide an accurate and scalable
539 estimation of unknown parameters by taking advantage of the big data and complex multi-
540 physics simulation software. Future work will present the effect of spatial measurement
541 density on the estimation accuracy and uncertainty reduction, and investigate prediction
542 performances in a new experimental condition subject to the same sand packing (e.g.

543 [Zhang *et al.*, 2007; Kokkinaki *et al.*, 2013]) based on the estimated K field presented in
 544 this study.

Appendix A: Generalized Eigenvalue Problem

545 The Generalized Eigenvalue Problem (GEP) is defined as

$$546 \quad \mathbf{Ax} = \lambda \mathbf{Bx} \quad (A1)$$

547 where, \mathbf{B} is symmetric positive definite and \mathbf{A} is symmetric. We can transform GEP into
 548 a typical eigenvalue problem. since \mathbf{B} is positive definite, it has a Cholesky decomposition
 549 $\mathbf{B} = \mathbf{LL}^\top$. Define $\mathbf{y} = \mathbf{L}^\top \mathbf{x}$ and multiplying both sides of (A1) by \mathbf{L}^{-1} , we have

$$550 \quad \mathbf{L}^{-1} \mathbf{AL}^{-\top} \mathbf{L}^\top \mathbf{x} = \lambda \mathbf{L}^\top \mathbf{x} \quad \Rightarrow \quad \mathbf{L}^{-1} \mathbf{AL}^{-\top} \mathbf{y} = \lambda \mathbf{y} \quad (A2)$$

551 which is an eigenvalue problem and hence, we can use any algorithm for eigenvalue problem
 552 to solve GEPs. However, computing the Cholesky decomposition is not computationally
 553 feasible in many cases and alternative methods can be found in [Saad, 2011; Saibaba *et al.*,
 554 2015].

555 In our case, $\mathbf{A} := \mathbf{HQH}^\top$ and $\mathbf{B} := \mathbf{R}$

$$556 \quad \mathbf{HQH}^\top \mathbf{x} = \lambda \mathbf{Rx} \quad (A3)$$

557 In many cases including the application considered in the paper, error is assumed to be
 558 an independent and identically distributed, i.e., $\mathbf{R} = \sigma^2 \mathbf{I}$ and we can use eigenproblem
 559 solvers and the solution becomes

$$560 \quad \mathbf{\Lambda} = \frac{1}{\sigma^2} \mathbf{\Lambda}_{\mathbf{HQH}^\top}, \quad \mathbf{U} = \frac{1}{\sigma} \mathbf{U}_{\mathbf{HQH}^\top} \quad (A4)$$

561 where the columns of $\mathbf{\Lambda}_{\mathbf{HQH}^\top}$ and the diagonal values of $\mathbf{U}_{\mathbf{HQH}^\top}$ are the eigenvalues and
 562 eigenvectors of \mathbf{HQH}^\top , respectively. For a general diagonal error matrix \mathbf{R} , the solution

563 is given by

$$564 \quad \mathbf{\Lambda} = \mathbf{\Lambda}_{\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{Q} \mathbf{H}^\top \mathbf{R}^{-\frac{1}{2}}} \quad \mathbf{U} = \mathbf{R}^{-\frac{1}{2}} \mathbf{U}_{\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{Q} \mathbf{H}^\top \mathbf{R}^{-\frac{1}{2}}} \quad (A5)$$

565 where the columns of $\mathbf{\Lambda}_{\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{Q} \mathbf{H}^\top \mathbf{R}^{-\frac{1}{2}}}$ and the diagonal values of $\mathbf{U}_{\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{Q} \mathbf{H}^\top \mathbf{R}^{-\frac{1}{2}}}$ are the
566 eigenvalues and eigenvectors of $\mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{Q} \mathbf{H}^\top \mathbf{R}^{-\frac{1}{2}}$, respectively.

Appendix B: Fast posterior variance computation

567 The diagonal entries of the posterior covariance matrix \mathbf{V} in (6) are often presented as
568 the estimation variance and can be computed without constructing \mathbf{V} explicitly as

$$569 \quad \mathbf{V}_{ii} = \mathbf{Q}_{ii} - \begin{bmatrix} \mathbf{H} \mathbf{Q}_i \\ \mathbf{X}_i^\top \end{bmatrix}^\top \begin{bmatrix} \mathbf{H} \mathbf{Q} \mathbf{H}^\top + \mathbf{R} & \mathbf{H} \mathbf{X} \\ (\mathbf{H} \mathbf{X})^\top & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{H} \mathbf{Q}_i \\ \mathbf{X}_i^\top \end{bmatrix} \quad (B1)$$

570 where \mathbf{V}_{ii} is the i -th diagonal element of \mathbf{V} , \mathbf{Q}_{ii} is the i -th diagonal entry or the prior
571 variance of i -th parameter, $\mathbf{H} \mathbf{Q}_i$ is the i -th column of $\mathbf{H} \mathbf{Q}$, and \mathbf{X}_i^\top is the i -th column of
572 \mathbf{X}^\top . Plugging (13) into (B1) yields

573

$$574 \quad \mathbf{V}_{ii} = \mathbf{Q}_{ii} - (\mathbf{H} \mathbf{Q}_i)^\top \mathbf{\Psi}^{-1} \mathbf{H} \mathbf{Q}_i + (\mathbf{H} \mathbf{Q}_i)^\top \mathbf{\Psi}^{-1} \mathbf{\Phi} \mathbf{S}^{-1} \mathbf{\Phi}^\top \mathbf{\Psi}^{-1} \mathbf{H} \mathbf{Q}_i \\ 575 \quad - 2(\mathbf{H} \mathbf{Q}_i)^\top \mathbf{\Psi}^{-1} \mathbf{\Phi} \mathbf{S}^{-1} \mathbf{X}_i^\top + \mathbf{X}_i \mathbf{S} \mathbf{X}_i^\top \quad (B2)$$

577 However, repetitive multiplications of the 1 by m vector $(\mathbf{H} \mathbf{Q}_i)^\top$ with m by m matrices
578 (e.g., $\mathbf{\Psi}^{-1}$) for $i = 1, \dots, m$ would be time consuming if m is large, i.e., $m = \mathcal{O}(10^6)$. A fast
579 way to evaluate the estimation variance is to reduce the size of the repetitive matrix-vector
580 multiplications by reformulating (B2). In PCGA, $\mathbf{H} \mathbf{Q} \approx \mathbf{H} \mathbf{Z}_\kappa \mathbf{Z}_\kappa^\top \approx \sum_{i=1}^\kappa \boldsymbol{\eta}_i \boldsymbol{\zeta}_i^\top = \mathbf{H} \mathbf{Z}_\kappa^\top$
581 where the n by κ matrix \mathbf{H} consists of column vectors $\boldsymbol{\eta}_{i=1, \dots, \kappa}$, then
582

$$583 \quad \mathbf{V}_{ii} = \mathbf{Q}_{ii} - \mathbf{Z}_i (\mathbf{H}^\top \mathbf{\Psi}^{-1} \mathbf{H}) \mathbf{Z}_i^\top + \mathbf{Z}_i (\mathbf{H}^\top \mathbf{\Psi}^{-1} \mathbf{\Phi} \mathbf{S}^{-1} \mathbf{\Phi}^\top \mathbf{\Psi}^{-1} \mathbf{H}) \mathbf{Z}_i^\top \\ 584 \quad - 2\mathbf{Z}_i (\mathbf{H}^\top \mathbf{\Psi}^{-1} \mathbf{\Phi} \mathbf{S}^{-1}) \mathbf{X}_i^\top + \mathbf{X}_i \mathbf{S} \mathbf{X}_i^\top \quad (B3)$$

586 where \mathbf{Z}_i is the i -th “row” (a 1 by κ vector) of \mathbf{Z}_κ . In (B2), one has to evaluate products of
 587 a 1 by m vector and m by m matrices and the overall cost for the variance map $\mathbf{V}_{ii,i=1,\dots,m}$
 588 is $\mathcal{O}(m^3)$. In (B3), on the other hand, only products of a κ by 1 vector and κ by κ matrices
 589 are needed with the cost of $\mathcal{O}(m\kappa^2)$.

590 **Acknowledgments.** The research was funded by the National Science Foundation
 591 through its ReNUWIt Engineering Research Center (www.renuwit.org; NSF EEC-
 592 1028968). HY was supported as part of the Center for Frontiers of Subsurface Energy
 593 Security, an Energy Frontier Research Center funded by the U.S. Department of Energy,
 594 Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.
 595 Sandia National Laboratories is a multi-program laboratory managed and operated by
 596 Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
 597 U.S. Department of Energy’s National Nuclear Security Administration under contract
 598 DE-AC04-94AL85000. We thank Arvind Saibaba for his helpful comments on precondi-
 599 tioner construction and Amalia Kokkinaki for constructive suggestions.

References

600 Aravkin, A., M. P. Friedlander, F. J. Herrmann, and T. van Leeuwen (2012), Robust inver-
 601 sion, dimensionality reduction, and randomized sampling, *Mathematical Programming*,
 602 134(1), 101–125.

603 Barnhart, K., I. Urteaga, Q. Han, A. Jayasumana, and T. Illangasekare (2010), On in-
 604 tegrating groundwater transport models with wireless sensor networks, *Ground Water*,
 605 48(5), 771–780.

606 Benzi, M., G. H. Golub, J. Liesen, ouml, and rg (2005), Numerical solution of saddle point
 607 problems, *Acta Numerica*, 14, 1–137.

608 Brown, P. N., and Y. Saad (1990), Hybrid krylov methods for nonlinear-systems of equa-
 609 tions, *Siam Journal on Scientific and Statistical Computing*, 11(3), 450–481.

610 Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten (2005), Inverse problem
 611 in hydrogeology, *Hydrogeology Journal*, 13(1), 206–222.

612 Cirpka, O. A., and P. K. Kitanidis (2000), Sensitivity of temporal moments calculated
 613 by the adjoint-state method and joint inversing of head and tracer data, *Advances in
 614 Water Resources*, 24(1), 89–103.

615 Cui, T., J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini (2014), Likelihood-
 616 informed dimension reduction for nonlinear inverse problems, *Inverse Problems*, 30(11).

617 Deutsch, C. V., and A. G. Journel (1998), *GSLIB, geostatistical software library and user's
 618 guide*, Applied geostatistics series, 2nd ed., Oxford University Press, New York.

619 Doherty, J. E., and R. J. Hunt (2010), *Approaches to highly parameterized inversion: a
 620 guide to using PEST for groundwater-model calibration*, US Department of the Interior,
 621 US Geological Survey.

622 Epanomeritakis, I., V. Akcelik, O. Ghattas, and J. Bielak (2008), A newton-cg method for
 623 large-scale three-dimensional elastic full-waveform seismic inversion, *Inverse Problems*,
 624 24(3).

625 Fakhreddine, S., J. Lee, P. K. Kitanidis, S. Fendorf, and M. Rolle (2015), Imaging geo-
 626 chemical heterogeneities using inverse reactive transport modeling: An example relevant
 627 for characterizing arsenic mobilization and distribution advances in water resources, *Ad-
 628 vances in Water Resources, in review*.

629 Flath, H. P., L. C. Wilcox, V. Akcelik, J. Hill, B. V. Waanders, and O. Ghattas (2011),
630 Fast algorithms for bayesian uncertainty quantification in large-scale linear inverse prob-
631 lems based on low-rank partial hessian approximations, *Siam Journal on Scientific*
632 *Computing*, 33(1), 407–432.

633 Frauenfelder, P., C. Schwab, and R. A. Todor (2005), Finite elements for elliptic problems
634 with stochastic coefficients, *Computer Methods in Applied Mechanics and Engineering*,
635 194 (2-5), 205–228.

636 Haber, E., and U. M. Ascher (2001), Preconditioned all-at-once methods for large, sparse
637 parameter estimation problems, *Inverse Problems*, 17(6), 1847–1864.

638 Haber, E., M. Chung, and F. Herrmann (2012), An effective method for parameter estima-
639 tion with pde constraints with multiple right-hand sides, *Siam Journal on Optimization*,
640 22(3), 739–757.

641 Hampson, G., J. Stefani, and F. Herkenhoff (2008), Acquisition using simultaneous
642 sources, *The Leading Edge*, 27(7), 918–923.

643 Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. McDonald (2000), Modflow-2000,
644 the us geological survey modular ground-water model: User guide to modularization
645 concepts and the ground-water flow process, *Tech. Rep. 2000-92*, Geological Survey
646 (U.S.).

647 Harvey, C. F., and S. M. Gorelick (1995a), Mapping hydraulic conductivity - sequen-
648 tial conditioning with measurements of solute arrival time, hydraulic-head, and local
649 conductivity, *Water Resources Research*, 31(7), 1615–1626.

650 Harvey, C. F., and S. M. Gorelick (1995b), Temporal moment-generating equations - mod-
651 eling transport and mass-transfer in heterogeneous aquifers, *Water Resources Research*,

652 31(8), 1895–1911.

653 Hochstetler, D. L., W. Barrash, C. Leven, M. Cardiff, F. Chidichimo, and P. K. Kitanidis
654 (2015), Hydraulic tomography: Continuity and discontinuity of high-k and low-k zones,
655 *Groundwater*, pp. n/a–n/a.

656 Jose, S. C., M. A. Rahman, and O. A. Cirpka (2004), Large-scale sandbox experiment
657 on longitudinal effective dispersion in heterogeneous porous media, *Water Resources
658 Research*, 40(12).

659 Kaipio, J., and E. Somersalo (2007), Statistical inverse problems: Discretization, model re-
660 duction and inverse crimes, *Journal of Computational and Applied Mathematics*, 198(2),
661 493–504.

662 Kitanidis, P. K. (1983), Statistical estimation of polynomial generalized covariance func-
663 tions and hydrologic applications, *Water Resources Research*, 19(4), 909–921.

664 Kitanidis, P. K. (1991), Orthonormal residuals in geostatistics - model criticism and
665 parameter-estimation, *Mathematical Geology*, 23(5), 741–758.

666 Kitanidis, P. K. (1993), Generalized covariance functions in estimation, *Mathematical
667 Geology*, 25(5), 525–540.

668 Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversing, *Water Resources
669 Research*, 31(10), 2411–2419.

670 Kitanidis, P. K. (2010), Bayesian and geostatistical approaches to inverse problems, in
671 *Large-Scale Inverse Problems and Quantification of Uncertainty*, pp. 71–85, John Wiley
672 & Sons, Ltd.

673 Kitanidis, P. K., and J. Lee (2014), Principal component geostatistical approach for large-
674 dimensional inverse problems, *Water Resources Research*, 50(7), 5428–5443.

675 Kokkinaki, A., D. M. O'Carroll, C. J. Werth, and B. E. Sleep (2013), Coupled simulation of
676 dnapl infiltration and dissolution in three-dimensional heterogeneous domains: Process
677 model validation, *Water Resources Research*, 49(10), 7023–7036.

678 Krebs, J. R., J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and M. D.
679 Lacasse (2009), Fast full-wavefield seismic inversion using encoded sources, *Geophysics*,
680 74(6), Wcc177–Wcc188.

681 Lee, J., and P. K. Kitanidis (2014), Large-scale hydraulic tomography and joint inversion
682 of head and tracer data using the principal component geostatistical approach (pcga),
683 *Water Resources Research*, 50(7), 5410–5427.

684 Lee, J., A. Kokkinaki, Y. Li, and P. K. Kitandis (2015), Fast large-scale inversion for
685 deep aquifer characterization, in *TOUGH2 Symposium*, Lawrence Berkeley National
686 Laboratory, Berkeley, California.

687 McLaughlin, D., and L. R. Townley (1996), A reassessment of the groundwater inverse
688 problem, *Water Resources Research*, 32(5), 1131–1161.

689 Nowak, W., and O. A. Cirpka (2006), Geostatistical inference of hydraulic conductivity
690 and dispersivities from hydraulic heads and tracer data, *Water Resources Research*,
691 42(8), W08,416.

692 Oliver, D. S., A. C. Reynolds, and N. Liu (2008), *Inverse theory for petroleum reservoir
693 characterization and history matching*, Cambridge University Press, Cambridge ; New
694 York.

695 Orellana, G., and D. Haigh (2008), New trends in fiber-optic chemical and biological
696 sensors, *Current Analytical Chemistry*, 4(4), 273–295.

697 Paige, C. C., and M. A. Saunders (1975), Solution of sparse indefinite systems of linear
 698 equations, *Siam Journal on Numerical Analysis*, 12(4), 617–629.

699 Pamukcu, S., and E. Ghazanfari (2014), Geosensing for developing sustainable responses
 700 to environmental hazards underground, in *Geo-Congress 2014 Keynote Lectures*, pp.
 701 117–139.

702 Saad, Y. (2011), Numerical methods for large eigenvalue problems, Society for Industrial
 703 and Applied Mathematics,.

704 Saad, Y., and M. H. Schultz (1986), Gmres - a generalized minimal residual algorithm for
 705 solving nonsymmetric linear-systems, *Siam Journal on Scientific and Statistical Com-
 706 putting*, 7(3), 856–869.

707 Saibaba, A. K., and P. K. Kitanidis (2015), Fast computation of uncertainty quantification
 708 measures in the geostatistical approach to solve inverse problems, *Advances in Water
 709 Resources*, 82, 124–138.

710 Saibaba, A. K., J. Lee, and P. K. Kitanidis (2015), Randomized square-root free algo-
 711 rithms for generalized hermitian eigenvalue problems, *Numerical Linear Algebra with
 712 Applications*, *in press*.

713 Smith, R. C. (2014), *Uncertainty quantification : theory, implementation, and applica-
 714 tions*, Computational science & engineering, SIAM, Society for Industrial and Applied
 715 Mathematics, Philadelphia.

716 Stuart, A. M. (2010), Inverse problems: A bayesian perspective, *Acta Numerica 2010*, Vol
 717 19, 19, 451–559.

718 Valocchi, A. J. (1986), Effect of radial flow on deviations from local equilibrium during
 719 sorbing solute transport through homogeneous soils, *Water Resources Research*, 22(12),

720 1693–1701.

721 Yin, D. T., and W. A. Illman (2009), Hydraulic tomography using temporal moments of
722 drawdown recovery data: A laboratory sandbox study, *Water Resources Research*, 45.

723 Yoon, H., and S. A. McKenna (2012), Highly parameterized inverse estimation of hydraulic
724 conductivity and porosity in a three-dimensional, heterogeneous transport experiment,
725 *Water Resources Research*, 48.

726 Yoon, H., C. Y. Zhang, C. J. Werth, A. J. Valocchi, and A. G. Webb (2008), Numerical
727 simulation of water flow in three dimensional heterogeneous porous media observed in
728 a magnetic resonance imaging experiment, *Water Resources Research*, 44(6).

729 Zhang, C. Y., C. J. Werth, and A. G. Webb (2007), Characterization of napl source zone
730 architecture and dissolution kinetics in heterogeneous porous media using magnetic
731 resonance imaging, *Environmental Science & Technology*, 41(10), 3672–3678.

732 Zheng, C., and P. P. Wang (1999), MT3DMS: A modular three-dimensional multispecies
733 transport model for simulation of advection, dispersion, and chemical reactions of
734 contaminants in groundwater systems; documentation and user's guide, *Tech. Rep.*
735 *SERDP-99-1*, DTIC Document, Vicksburg, Mississippi.

736 Zhu, J. F., and T. C. J. Yeh (2006), Analysis of hydraulic tomography using temporal
737 moments of drawdown recovery data, *Water Resources Research*, 42(2).

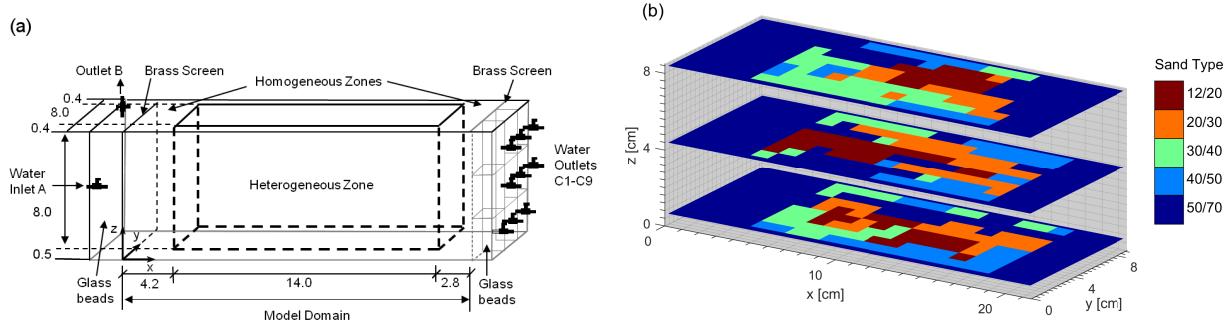


Figure 1. (a) Illustration of 3-D flowcell [Yoon *et al.*, 2008] and (b) hydraulic conductivity distribution in 3 layers (out of 8 layers in total).

Table 1. Properties of Sands

Sand Type	Measured K (cm/min)	Mean Grain Size (cm)
12/20	25.08	0.11
20/30	13.44	0.072
30/40	6.72	0.053
40/50	3.78	0.036
50/70	2.03	0.026

Table 2. Simulation and Inversion Parameters for the Synthetic Cases

Parameter	Description	Value	
		Case 1	Case 2
<u>Simulation Parameters</u>			
L_x, L_y, L_z	domain length and width (cm)		21, 9, 8.5
$\Delta x, \Delta y, \Delta z$	grid spacing (cm)		0.25
θ	porosity		0.355
α_l	longitudinal dispersivity (cm)		0.013 ~ 0.055 ^c
α_t	transverse dispersivity (cm)		$0.1 \times \alpha_l$
<u>True K field Generation</u>			
$\ln K$ generation method		Gaussian ^a	SISIM ^b
<u>Measurement Error</u>			
n_C	number of concentration measurement		5,777,408
σ_C	standard deviation of measurement error (-)		0.1
<u>Inversion Parameters</u>			
m	the number of unknowns	57,344	99,072
n_{obs}	number of travel time measurements (min)		51,584
$q(x, x')$	covariance kernel	$q(x, x') = \sigma_{\ln K}^2 \exp(- x - x' /l)$	
$\sigma_{\ln K}^2$	prior variance (cm/min ²)	0.5	0.1
l_x, l_y, l_z	scale parameter l in x, y, z (cm)	4, 2, 2	2, 1, 1
σ_t	standard deviation of measurement error for travel time (min)		3
δ	finite difference interval for PCGA		0.005

^a exponential covariance with $\sigma_{\ln K}^2 = 0.5$ (cm²) and $l_x, l_y, l_z = 4, 2, 2$ (cm)^b *Zhang et al. [2007]*^c The dispersivity field was determined based on the mean grain size of the sands used

D R A F T

D R A F T

in the experiment; The detailed information can be found in *Yoon et al. [2008]*

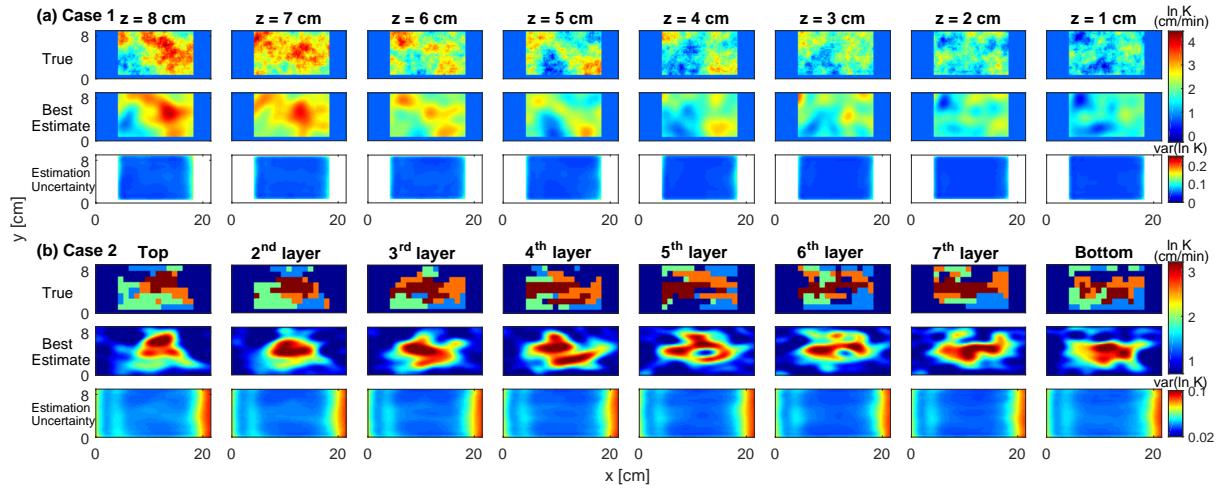


Figure 2. The true (first row), best estimate (second row) and estimation uncertainty (third row) for (a) Case 1 and (b) Case 2: (a) values at a specific height z are plotted; (b) averaged values over the depth of 1 cm are plotted in order to compare with the true field.

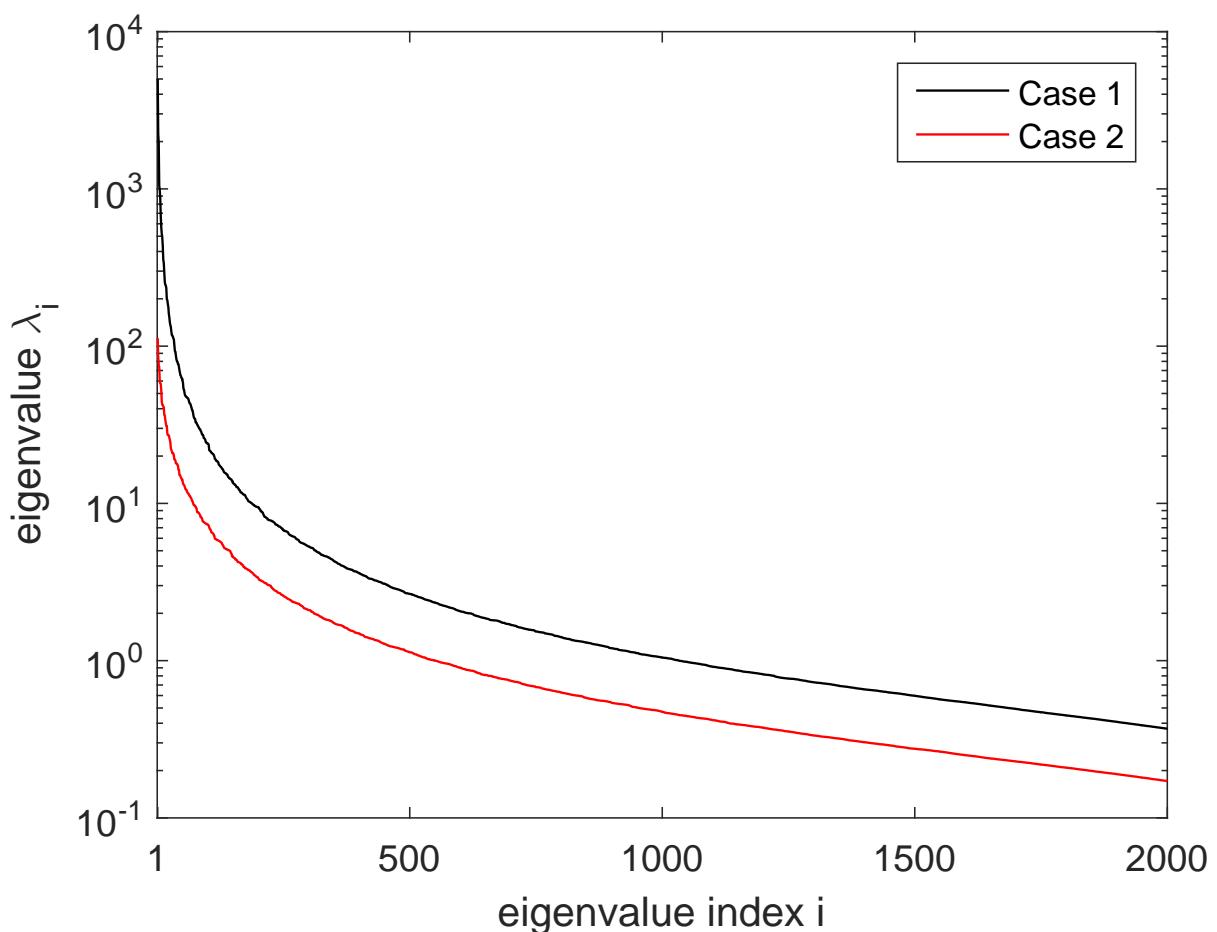


Figure 3. The eigenvalue spectrum of the prior covariance for Case 1 (black) and Case 2 (red).

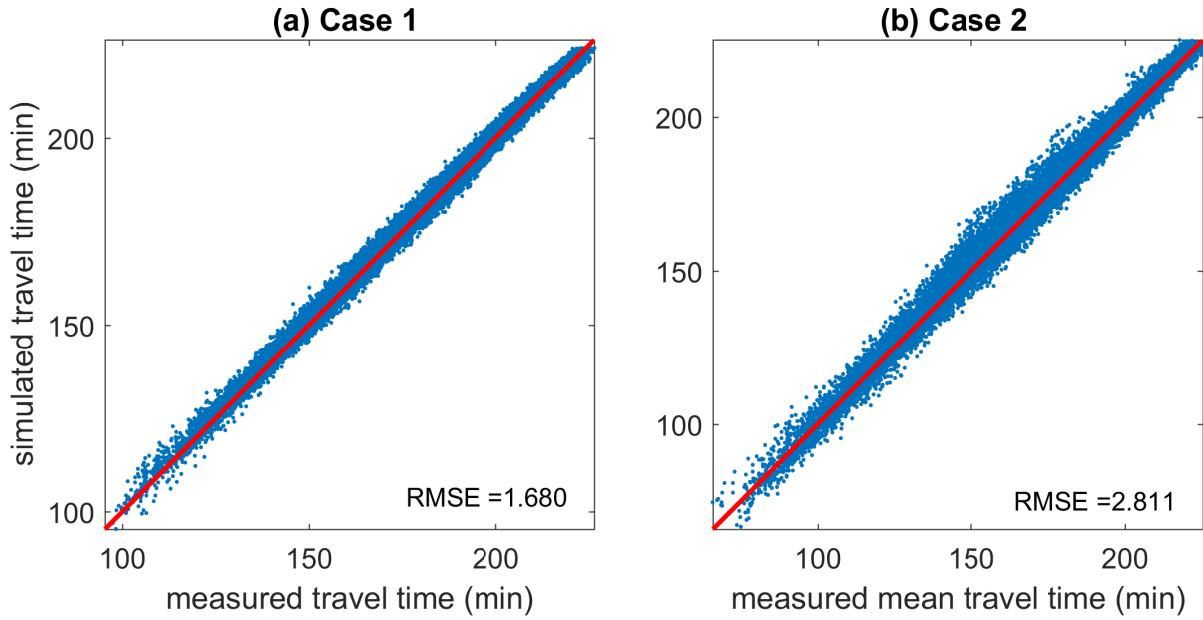


Figure 4. Measurement data fitting: measured versus simulated mean travel times from the best estimate for (a) Case 1 using $\kappa = 300$ and (b) Case 2 using $\kappa = 500$.

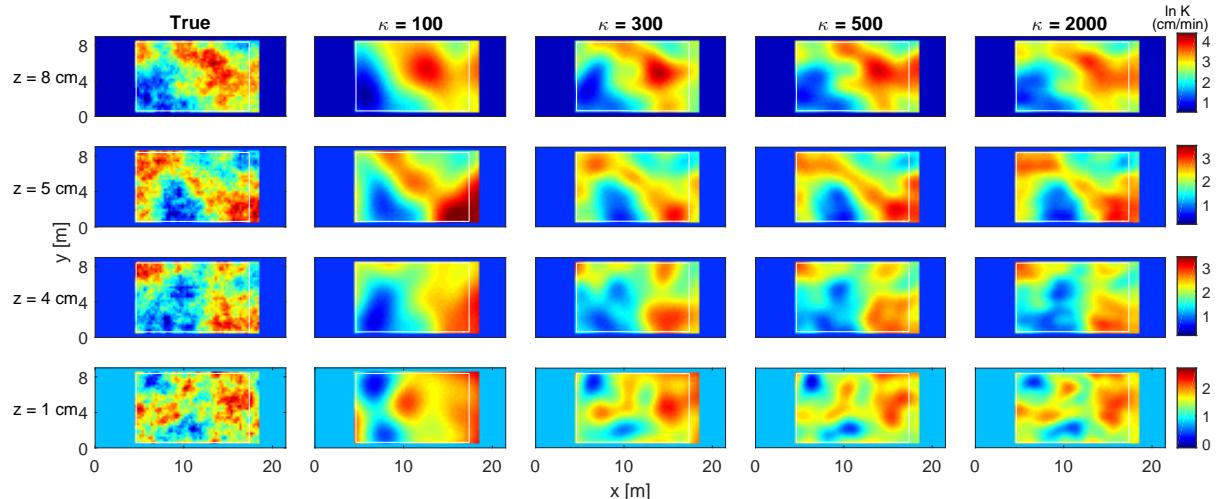


Figure 5. The best estimates with $\kappa = 100, 300, 500$, and 2,000 for Case 1.

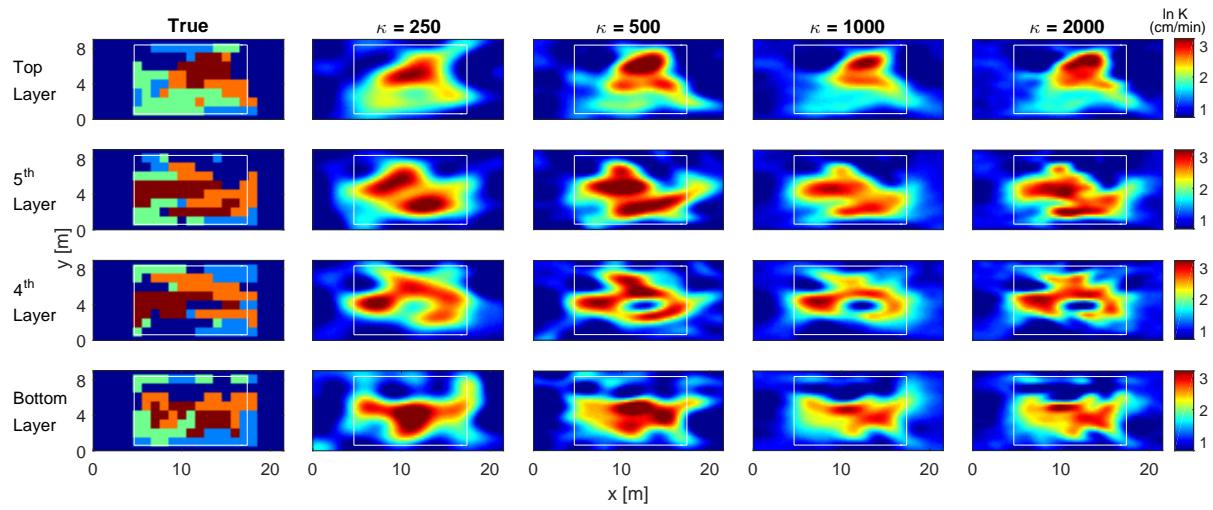


Figure 6. The best estimates with $\kappa = 250, 500, 1000$ and $2,000$ for Case 2.

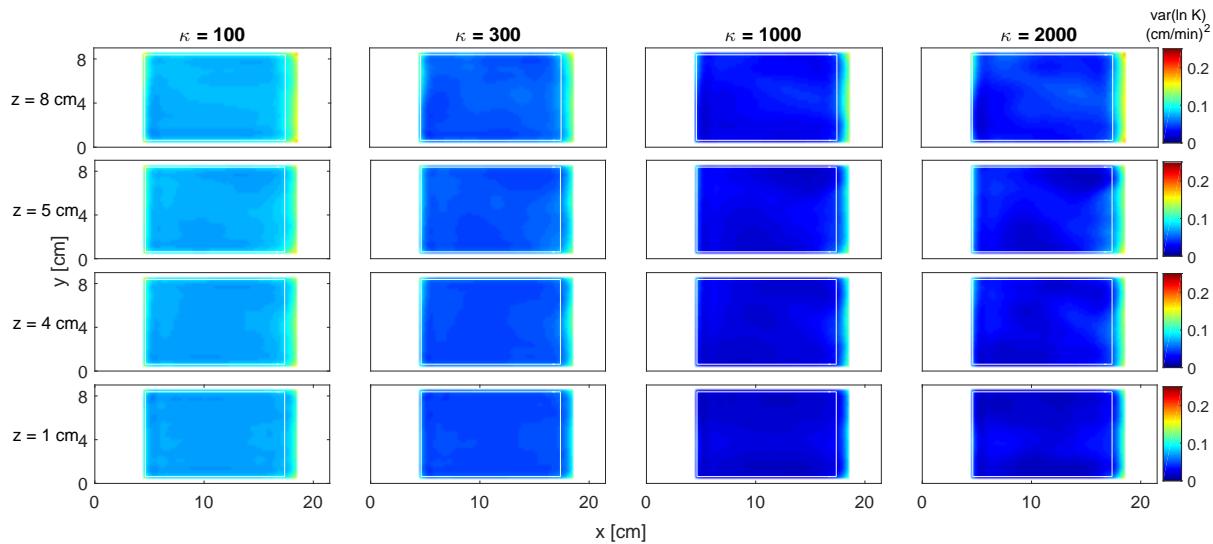


Figure 7. The estimation variance with $\kappa = 100, 300, 500$, and $2,000$ for Case 1.



Figure 8. The estimation variance with $\kappa = 250, 500, 1000$, and $2,000$ for Case 2.

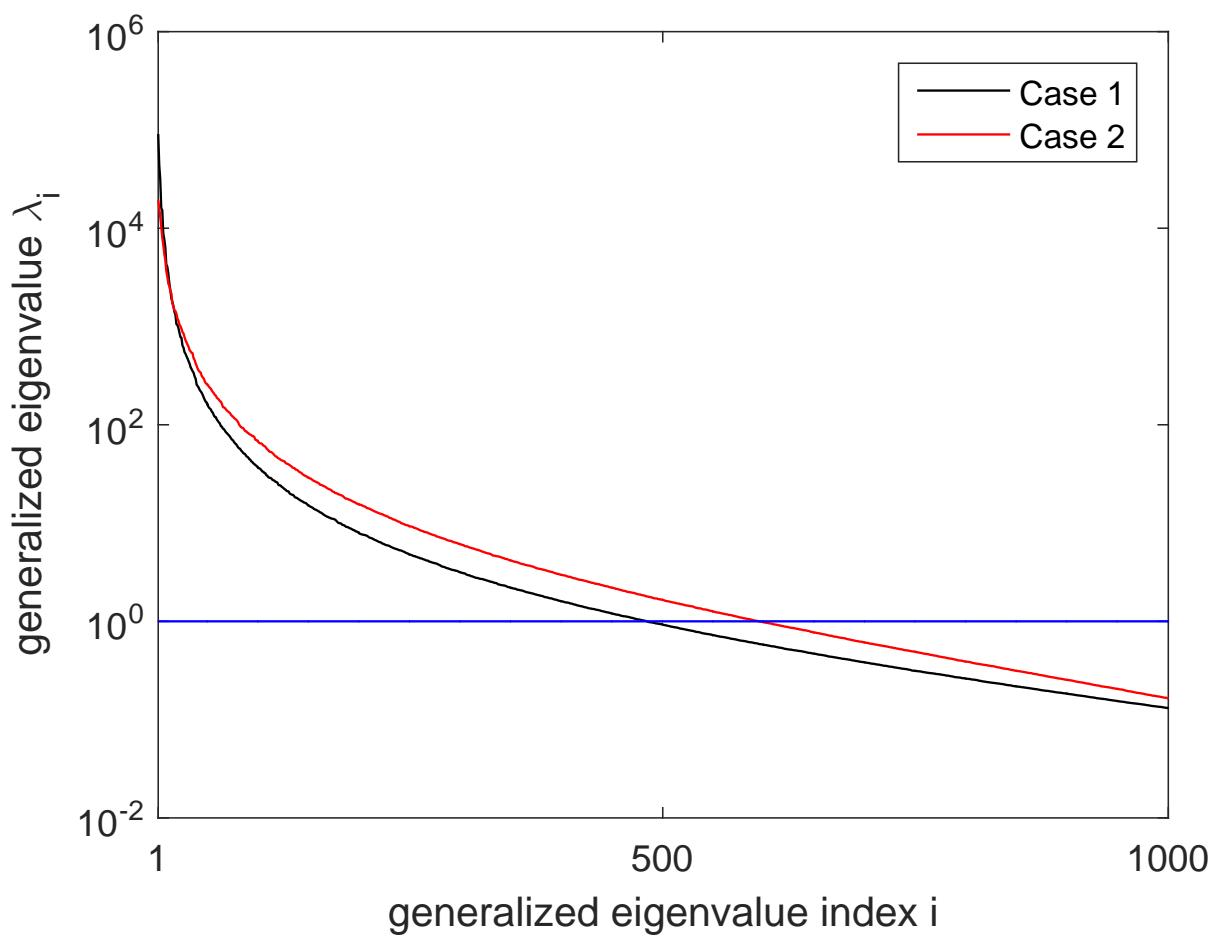


Figure 9. The generalized eigenvalue spectrum of \mathbf{HQH}^T and \mathbf{R} ; $\kappa \leq 1$ for PCGA would result in the negligible error.

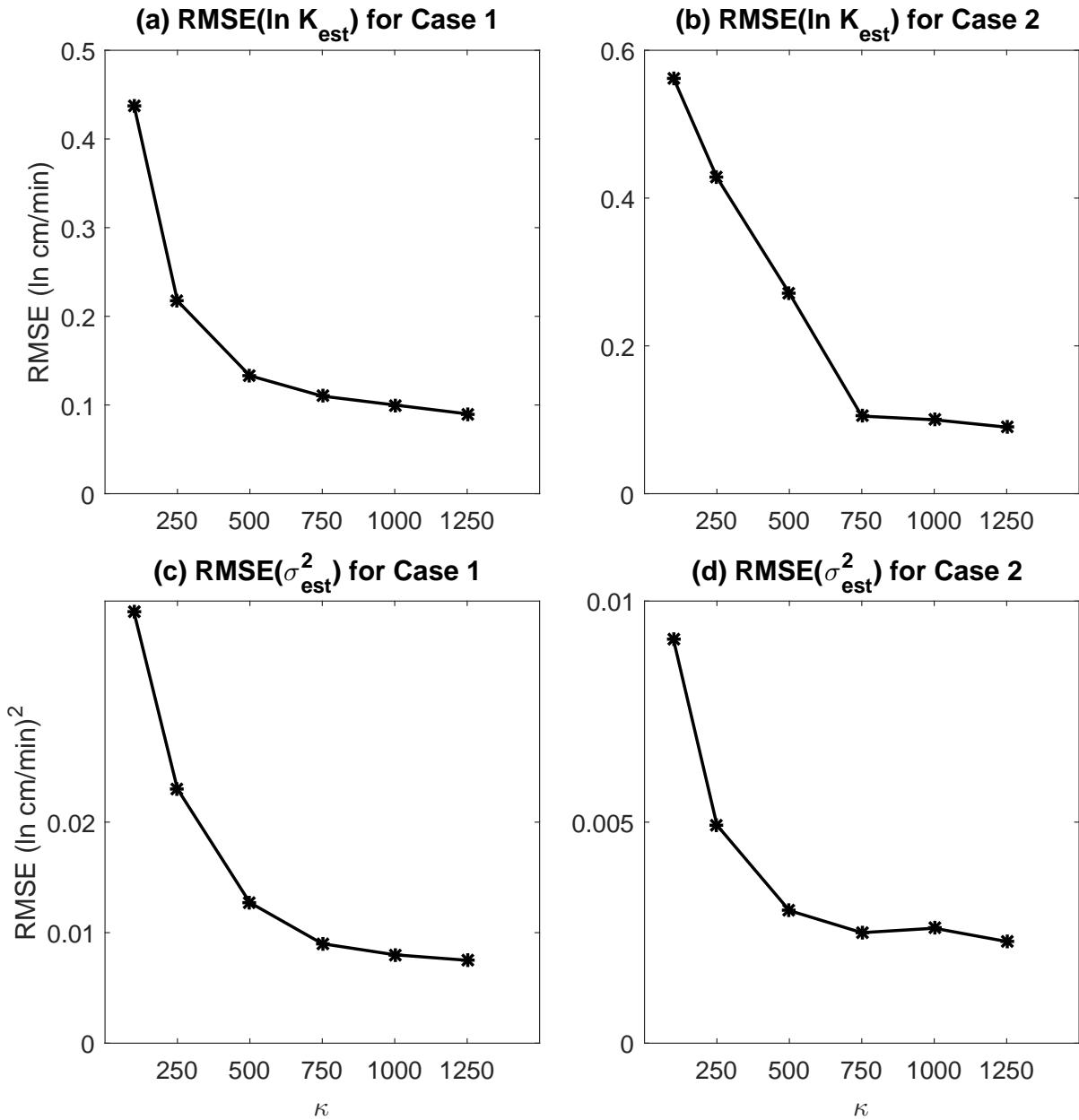


Figure 10. The root-mean-square error of the estimates for (a) Case 1 and (b) Case 2, and the estimation variance for (c) Case 1 and (d) Case 2.

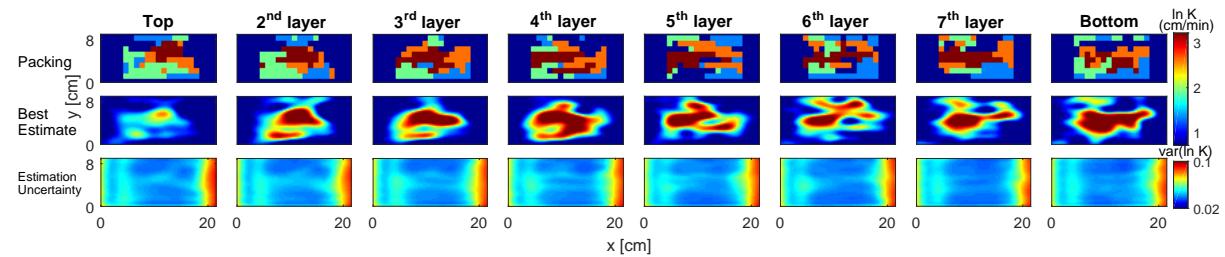


Figure 11. The packing pattern (first row), best estimate (second row) and estimation uncertainty (third row) for actual MRI travel time data inversion; averaged values over the depth of 1 cm are plotted in order to compare with the true packing pattern.

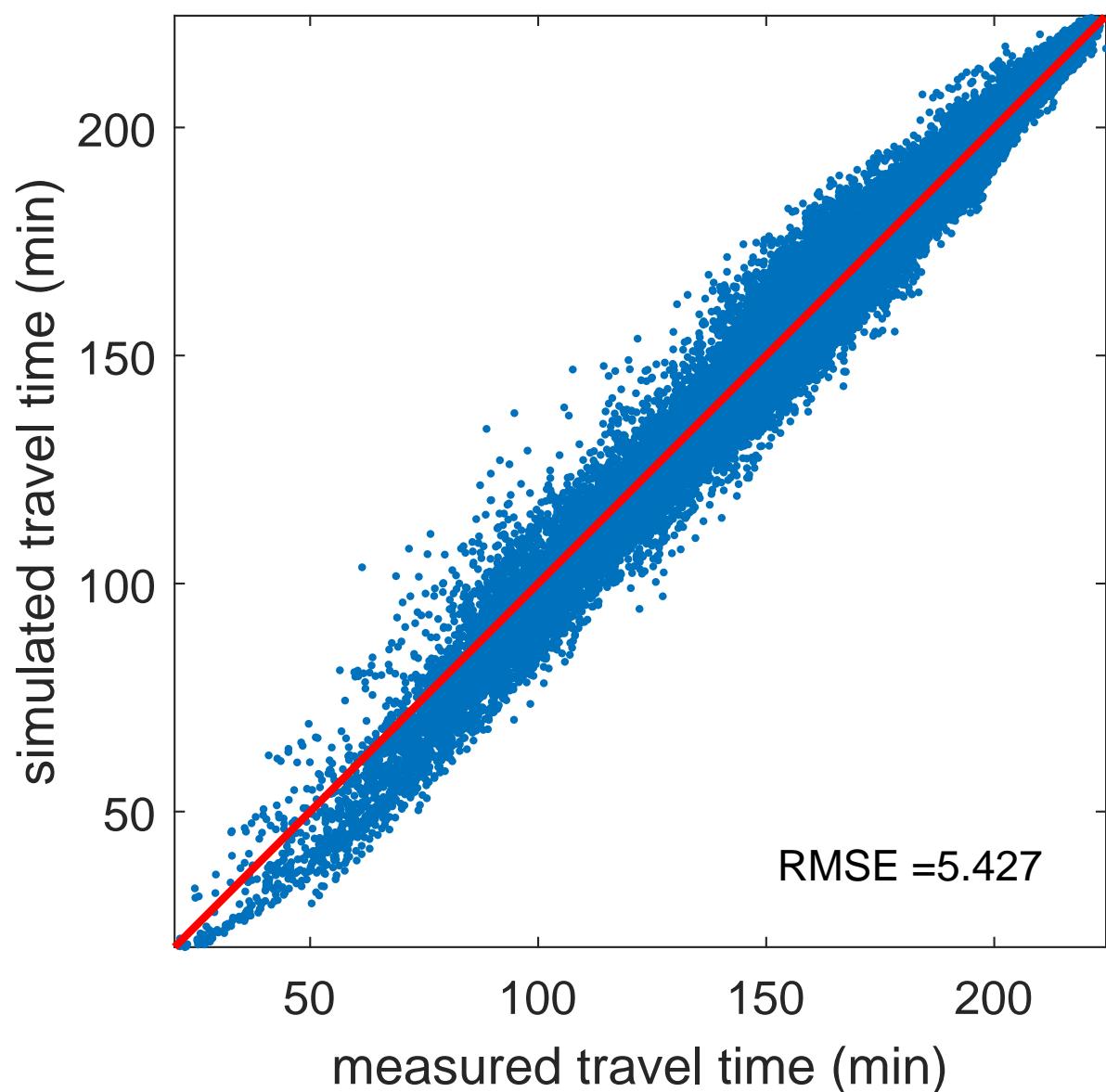


Figure 12. Measurement data fitting: measured versus simulated mean travel times from the best estimate.

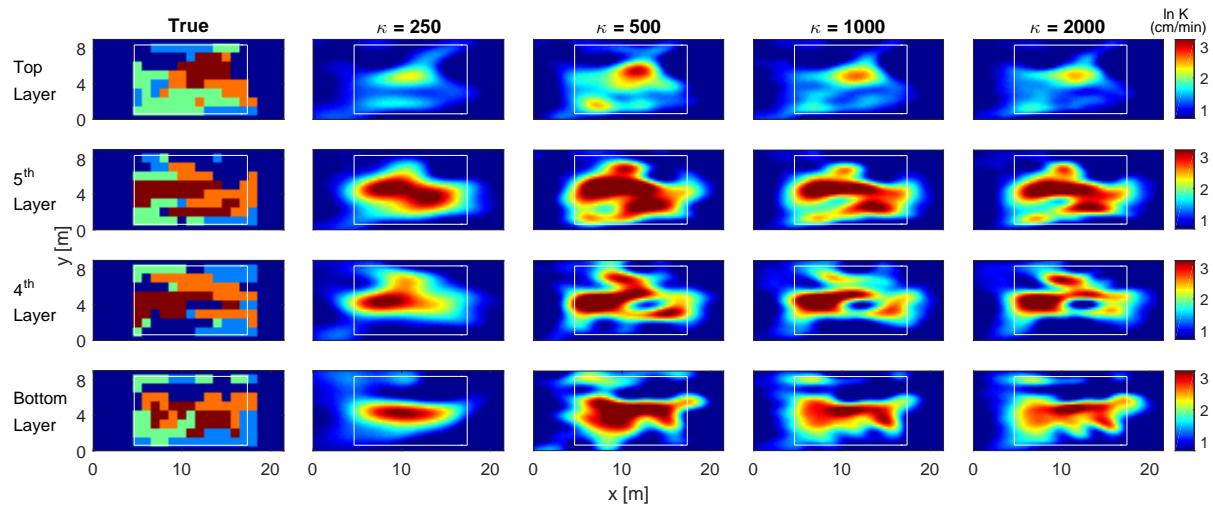


Figure 13. The best estimates with $\kappa = 250, 500, 1000$ and $2,000$ for actual MRI data inversion.

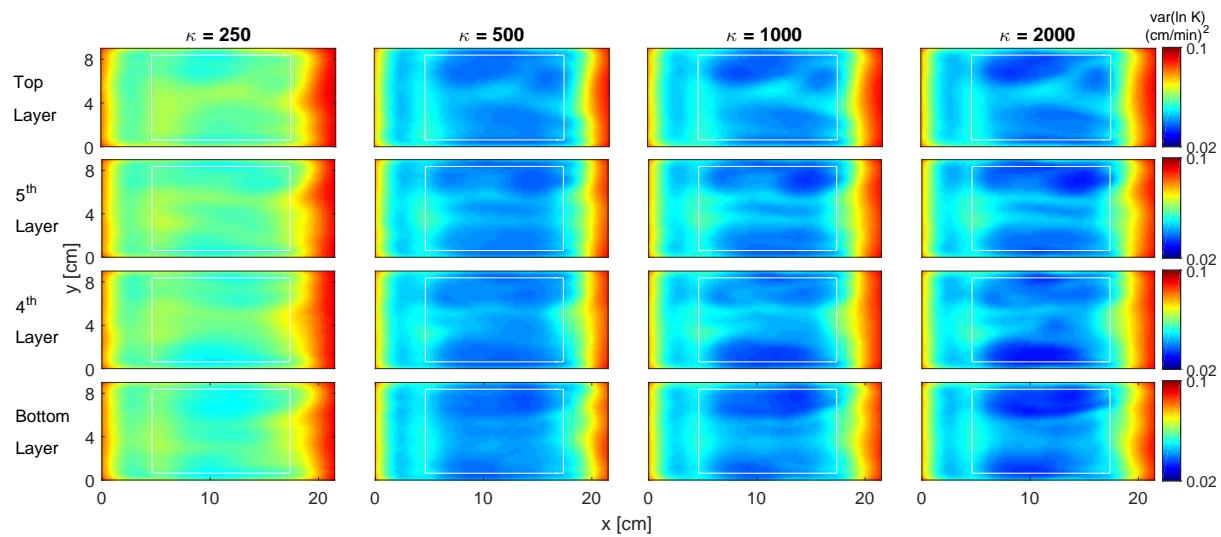


Figure 14. The estimation variance with $\kappa = 250, 500, 1000$, and $2,000$ for actual MRI data inversion.

Table 3. Mapping accuracy of K distribution compared to the design packing pattern

Sand Type	Mapping Accuracy (%)		
	PCGA ($\kappa = 500$)	PEST ^a	PEST (with zonal information) ^b
12/20	97.3	64.5	86.9
20/30	98.0	60.8	84.8
30/40	89.4	48.5	81.1
40/50	72.6	78.2	91.2
50/70	70.8	57.1	82.3

^a K_{IND} from *Yoon and McKenna* [2012]; K and porosity are estimated independently

yielding the best mapping accuracy result except the case using the zonal information

^b K_{Zone} from *Yoon and McKenna* [2012]; K field was parameterized by zonal boundaries

from the design packing pattern