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SNL/ECF requires optical velocimeters for the study

of high speed material motion

= Qur mission contributes to the
R&D and design of small-scale
components that contain
energetic materials
(pyrotechnics and explosives)

» Measurement of fast-moving
surfaces necessary for design of
EBWSs, hotwire devices,
understanding EM sensitivity
and performance.

= Many of our diagnostic tools
rely on optical velocity
interferometry at an exterior
surface or interface.
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Motions spanning several orders of magnitude in
velocity, event duration and length scales must be
measured to impact component development needs
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= Surface/interface velocities
are collected at a point, over a
line, or across an area.

10000

Event Velocity Range (m/s)




ORVIS sought to overcome temporal
limitations of VISAR Design Motivations:

= To improve the temporal resolution of
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ORVIS development since its start at SNL ) &5,

1977 |
Fringes on Camera
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1982
ORVIS is born!

Oh! Line Imaging! |

1984-2002 ]
Flyers, Flyers and more Flyers... 1999-2005
Inert Material Studies
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2000-Present
EM Studies at the MesoscaIeJ

Moving forward with expanded applications....
Non-planar geometries, multi-ORVIS, SIM-ORVIS
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Optically Recording Velocity Interferometer
System (ORVIS) for point, line, and surface imaging

L1O: Magnified Target Image
with Superimposed Fringe Pattern
at Crossing Plane LIO: Fringe Record at
Streak Camera Slit
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Varied settings: Camera recording time, Velocity-per-fringe, Image magnification and fringe density




Understanding fringe records with an idealized 7 o

National
Laboratories

p o b I em 3. Generate fringe record by specifying VPF and fringe spacing
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Careful use of ORVIS requires appreciation of
experimental realities....
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Target Construction

Temporal Resolution

* Reflective surface preparatio

« Window conditions * Interferometer VPF _
* lllumination Source Intensity

 Detector Sensitivity/Resolution
* Required Recording Time

* Trigger Reliability

Velocity Resolution Spatial Resolution

* Interferometer VPF
* Interferometer Fringe Spacing
 Detector Sensitivity/Resolution
» Material Properties (Dispersion)

» Image Magnification
* Interferometer Fringe Spacing
» Detector Sensitivity/Resolution

Image Analysis

» Methodology (QM or FTM)
* Pre-analysis FT filtering
* Practicalities of adding fringe jumps




Laser-Driven Flyer Studies Motivated by Direct e
Optical Initiation Concepts
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Flyer launch record provides
impact velocity and planarity

S.A. Sheffield, J. W. Rogers, Jr., and J.N. Castafieda,
in Shock Waves in Condensed Matter, ed. Y. M. R. E. Setchell et al., SAND2002-0005 (January
Gupta (Plenum, New York, 1986),pp. 541-545. 2002)




CDU-Driven Flyer Studies LfrE

= Polymer flyers launched with a
high-capacitance CDU are used
In chip slapper devices.

» Seek understanding of flyer
shape for boundary conditions of
mechanical stimulus to EM.

* ORVIS useful due to spatial
resolution across flyer shape.

= Affords new motivations to
automatically track front shape
via contrast loss.




Tests with engineered spatial features result in g o
complex shocks measureable with ORVIS

Configuration of Robocast Target: quartz window
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ORVIS can record statistics of temporal and )
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Standard target for powder bed experiments
Set Screws Sugar
(to fix window position) A
Impactor Line-Imaging ORVIS
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—p .
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Add second ORVIS interferometer for dual- )
delay-leg operation

2
Target Chamber Interferometer 1

High Pressure
Breech

KC-Sugar Target
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ORVIS records analyzed for particle velocity in (@) &
position and time

‘Rolling’ quadrature analysis
method maintains fringe - Spatlally Averaged Velocmes

phase relationship yet now [ T
shifts by 1 pixel.
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But more can be extracted from ORVIS records!
Characterize fluctuations about mean...

Laboratories

" Probability Density Functions (PDF) useful for describing distribution
of states. Currently, prevailing “language” for coordination with
mesoscale simulations.

= Distributions shown here consider all positions and time within ROI.
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Multiple ORVIS coupled to gas gun at the
Explosive Components Facility
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imaging ORVIS on planar
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Interferometer 1:
Low Magnification
with Variable
Recording Time
VPF > 0.24 km/s/f

Interferometer 2:
Low Magnification
with Long
Recording Time
VPF > 0.24 km/s/f
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Short Recording Time
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Multiple lasers afford additional ORVIS lines for =,
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interrogation at high temporal resolution
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Demonstrated ability to independently}
position two laser lines on target

= Configuration exploits modifications
to laser polarization, polarizing beam arran;ﬁ;iggt'
splitters and dove prisms for light for cross-line
sheet manipulation onto target and
through interferometers.

= While successfully demonstrated in
‘cross-hair’ arrangement, not suitable
for use on large wedge samples in ‘T’
arrangement. Limited by finite size
collection optics and corresponding
off-axis image distortion.

= Cross-talk observed at the crossing
point.

Raw fringe images from each line of cross-hair.
Symmetric aluminum impact at 0.35 km/s.



ORVIS has inherent benefits, but also
significant challenges for EM
Light collection is paramount

Position

Challenges increase with increased

deviation from planar geometry: collection lens, f/#
» Heterogeneous test materials with <=0 —
thin buffers o :
incident

= Non-planar geometries
= Edge-on interfaces beam ]
vemax /’
- /\/1
» Focus attention on the target reflectance :
and seek a quantitative method to
optimize surface properties for a given

test geometry.

spatially ]

invariant
BRDF

First, some examples to motivate....

‘rough’surface




NX materials of current interest

» Bed of Ammonium Nitrate prills with Fuel Oil (ANFO)
has very large heterogeneities compared to most

. 1600
other explosives.
__ 1400
» Very long duration precursor with dispersive shock 5 is08
observed. 2
§ 1000} - L) !
=
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Meso-volume Stress fields during detonation loading 0 :
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Fringe records show light loss after precursor motion —g) e,
tradeoff with buffer thickness
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SIM-ORVIS captures transverse motion of curved
surface when diffuse reflector employed

= ORVIS can collect transverse surface velocities
due to large collection optics. However, the
apparent velocity measured depends on V, and .
V, of all reflected light. L

V, =12V, (cos(2a) +1) +1/2V, sin(2a) —
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brushless

aluminum ellipse
motor

laser diode,
photodetector

= 25,000 rpm ellipse rotation for peak speeds ~30
m/s compared with VPF ~100 m/s/f. 102
images captured at 32,000 fps with Shimadzu
HPV-2.

time = 0.48 ms time = 1.60 ms time = 2.40 ms

Apparent Velocity (m/s)

Velocity (mvs)
I | ]

Time (ms)
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Polymer flyer shape and impact studied with SIQ) &

Earliest demonstration of SIO collected one
frame per test.
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Renewed interest due to modern camera

technology, high energy CDU capabilities,
and EM modeling needs.
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EXpe”mentaI Cha”e_nges associated with the Stop motion of fringe field from laser-driven flyer launch
transparent properties of the polymer, fast (Trott, et al. 2001)
exposures required for stop motion (<10 ns)

and plasma light emission affect data quality
and resolution.

Time =0 ns

Time = 90 ns Velocity (X, y, t=90 ns)

=3

Velocity [km/s]
-~ @
y

o
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Position Position

Maximum flyer velocities between 1-2 km/s
were measured (VPFE = 0.94 km/s).




SNL’s Impact-Loaded Wedge Test for modernized )
shock-to-detonation transition data
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The Impact-Loaded Wedge Test combines:
= controllability of gun testing

» ease of wedge tests

= coupled to ORVIS

—
To camera

Collected data includes wave arrival times and post-
shock/detonation particle velocities with high spatial and
temporal resolution.

Wedge face
Note that laser light directed to collect specific component of heel

velocity (not aligned with surface normal). Traditional Wedge Test

( Target Chamber
High Pressure
Breech
50/50
T ‘ . M1 Beamsplitter
Optics for Line

lllumination EM Wedge Target Arrangement

5 Argon filled
light sources

Wedge Target




ILWT requires ORVIS coupled to non-planar geometries

= Concept demonstrated using brass (inert) wedges
= Distance-time and particle velocity data possible
= Recent testing with plastic wedges and diffuse reflectors

10-inch long
projectile

12 mm

o
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Particle Velocity (km/s)

=]
=N o

Position
Position

2

--------------------------

Time———

Cooper and Trott. AIP Conf. Proc. (2012)

Time : Position (mm)

= Consistent loss of light results correlated with wedge angle.
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Start exploring role of target reflectance and
dependence on surface roughness - BRDF
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Disruptions to the surface reflectance properties
and geometrical relationship to collection optics
directly influences data quality. One of the
outstanding experimental challenges due to non-
planar targets and highly heterogeneous EM.

Bidirectional Reflectance Distribution Function
explored as a quantitative means to predict light
collection from surface. Cooper, M. (2014) Applied e W
Optics 53(24)' F21-F30. preparation impacts fringe quality
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ORVIS suited for mission-related R&D covering range (i) i
of event velocities, time durations, and length scales

Established capabilities in:
» low and high velocity events

» systematic studies of powder bed response to impact
» quantification of statistical distributions of response

» collecting data in non-traditional materials and geometries

Plenty of opportunities for more diagnostic advancements and enhanced application:

» Optimizing trade-offs of velocity, temporal, and spatial resolution to tailor
diagnostic to a particular application.

» Efficient image analysis methods with modernized uncertainty analysis.

» Reduce overhead required to field ORVIS diagnostic — opportunities exist for
near standardized operation in specific applications while maintaining novel
state-of-the-art advancements to complex materials and new applications.

After 25 years, why are the number of ORVIS researchers still small?
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