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NPT: Isothermal-isobaric ensemble Chemical potential of CH, versus pressure using NPT calculations. The chemical potential

Evidence of nano-scale porosity in kerogen increases with pressure. This information is needed as input for uVT calculations.
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0.05 (Left) Adsorption isotherms for methane in a slit-shape pore with sizes 3, 4 and 5nm. The pore walls

0.00 —— are pristine graphene. No significant variation is observed in the isotherms as the size of the pore
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. increases because the surface area of the first adsorption layer does not change. (Right) Excess
Distance(A) . . . . .
adsorption of CH, in a slit pore, excluding the first layer of adsorption by the walls. The excess amount

266 304 342 38 . , (©) , , is the largest in between 1,000-5,000 psi, which is a typical range for shale gas reservoir initial
Density profile of CH, across the diameter of a 4nm slit pore at 353K and at (a) 580 psi, (b) 4,000psi and (c ) pressures

D‘iEtEIlEE:[j'-il} 12,000 pst pore pressure. The density of CH, is not constant in the pore and higher densities are obtained near
the wall (First Layer). The red lines are free gas values and the calculated density in the middle of the pore
tend to match these free gas values.
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Carbon Nanotube Models-DET Molecular Modeling of Methane-Kerogen
Interactions

g Organic Models with Heterogeneities-DFT

CH,@(4,4) CH,@(7,0)

Density functional theory (DFT) calculations have been
carried out using the VASP code within the generalized
gradient approximation with the Perdew-Burke-Ernzerhof
exchange-correlation functional (GGA/PBE) for the structural
optimization of the following structures:

Di-vacancy graphene

N-doped graphene Pristine graphene
(2 atoms out of sheet)

Prisitine 3-D periodic single-walled carbon nanotubes This study is focused on kerogen interactions

(SWCNT): calculations were carried out for both armchair- with methane, methane + H,0, methane +
and zigzag-type SWCNTs with similar diameters, i.e. (4,4) ) a0 T €O, BREeric il Aees t.o the
(5.42 A diameter), (7,0) (5.48 A diameter), (7,7) (9.49 A ) ( development of both thermodynamic and
diameter), (12,0) (9.39 A diameter), (14,14) (18.98 A O transport properties of methane in kerogen
diameter) and (25,0) (19.57 A diameter). nanopores.
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CH4@SWCNTs: the structure and interaction of one CH4
molecule inside (4,4), (7,0), (7,7), (12,0), (14,14) and (25,0)
SWCNTs was investigated; charge distribution maps of the
CH4@SWCNTs were obtained.
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Fluid-Rock Model Interaction

Kerogen Model with
Molecular Formula C.H.OS.

(A) Organic model with heterogeneities, (B) Lenard Jones potential profile for the interaction between
methane and organic models and (C) Lenard Jones parameters obtained for the methane-organic wall
interactions in the presence of the heterogeneities. The epsilon parameter slightly varies with the
heterogeneities on the surface.
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