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Moore’s Law in Several Variables

IC performance saturated
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IC Performance Dominated by G
Interconnect Issues
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Key Technology

Innovations and Drivers

Type of Change
Technology Node Driver
AlSi alloy 1.0pm Contact reliability (leakage/spiking) —> Material
AlSi1Cu alloy 0.8pum Line reliability (EM) > Material
TiN /T1iW barrier | 0.5um Contact reliability (Re; spiking )
}  (Re: spiking) > Material
W-plug 0.5pum Scaling — straight sidewalls 1n .
contacts & vias (step coverage) [—> Material
TiN-AlCu-TiN 0.5um Reliability — hillocks
Metal lines Top ARC provision Material
Contact silicide 0.35pm | Scaling — junction depth > Material
CMP 0.35pm | MLM lithography s
Global dielectric planarisation Process
Cu metallisation 0.18pum | R-C propagation delay —> Material
Dual damascene 0.18pm | Lithography - global planarisation | Process
Cu RIE process
Zero overlay 0.18um | scaling
o = —> Process
line-via
Low k dielectric 0.13pm | R-C propagation delay > Material

Keith Buchanan, “The evolution of interconnect technology for silicon integrated circuitry,” GaAs

MANTECH Conference, (2002)



3D-ICs Reduce Interconnect Length

~3 pum

~ 7 pm
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Reduction in L by a factor of ~ 2.3
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Figure 12. Wirelength distribution for three-dimensional and two-
dimensional architectures.

D. Stroobandt, “Recent advances in system-level interconnect
prediction,” IEEE Circuits and Systems, 11, pp3-20, (2000).

Treating Interconnects as
distributed circuit elements :
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Predominately 3DIC = TSVs G

Hght Stacked Chips (WSP)

VERTICAL
INTERCONNECTION

INSULATING
LAYER

Y. Akasaka, “Three-
Dimensional IC Trends,” Proc.

IEEE, 74, pp1703-1714, DARPA MTO
(1986) 3D-ICs Portfolio

Solid State Technology

IFTLE 176 2013 IEDM; Micron,
TSMC, Tohoku Univ., NC State,
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Some Work On Monolithic 3D-ICs (Gl

SIO1 Gy}

Ishihara et. al., “Monolithic 3D-ICs with single grain Si thin film
transistors,” Solid State Electronics, 71, pp. 80-87, (2012).
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Wong et. al., “Monolithic 3D Integrated Circuits,”
IEEE VLSI TSA, 1-4244-0585-8/07, (2012).
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Micron-scale 3D Fabrication:
Membrane Projection Lithography
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Polymer Based MPL Process Flow Gl
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Polymer-Based MPL Structures




Can MPL Process Be Generalized? Elll

Question: Can we generalize MPL to include ion implantation and dry
etching, as well as deposition in a CMOS compatible material
system?

Long Channel Metal Gate CMOS

Well PMOS NMOS Contact Metal 1
Implant Source/Drain  Source/Drain Cuts Deposition
Implant Implant




Deposition:
CMOS Compatible Material Set
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Examples of CMOS-Compatible IVIPL-
Deposition




Sources of MPL Distortion




Directional Etching
Secret ingredient: Faraday Cage
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Use Faraday Cage to Reorient The
Plasma Sheath |

Planar Faraday Cage Tilted Faraday Cage
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Oblique Directional Etching in the

Literature

D222
Directional reactive ion etching at oblique angles
G. D. Boyd, L. A. Coldren, and F. G. Storz
Bell Laboratories, Holmdel, New Jersey 07733
(Received 13 December 1979; accepted for publication 24 January 1980)
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Journal of The Electrochemical Society, 156 (7) D222-D225 (2009)
0601 3-465 12000 1 56( THDI2 2452500 & The Electrochemical Society

Oblique-Directional Plasma Etching of Si Using a Faraday
Cage

Jin-Kwan Lee," Seung-Haeng Lee® Jae-Ho Min? Il-Yong Jang?®
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Oblique Directional Etching in the
Literature
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Free-Standing Mechanical and Photonic Nanostructures in Single-

Crystal Diamond
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Monolithic Faraday Cage @

nature LETTERS
materla] S PUBLISHED ONLINE: 9 AUGUST 2009 | DOL 10.1038/NMAT2507

Direct creation of three-dimensional photonic
crystals by a top-down approach

Shigeki Takahashi*, Katsuyoshi Suzuki*, Makoto Okano, Masahiro Imada, Takeshi Nakamori,
Yuji Ota, Kenji Ishizaki and Susumu Noda®
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Example SEMs of vertical patterned
etches
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Wafer-level Faraday Cage @
Clamp Ring
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Directional Implantation:
Currently in HYM = Halo implants
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Process Sim Modeling: Angled
Implantation
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Currently in Fabrication G
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Conclusions ®

= Device level 3D ICs can potential reduce interconnect lengths
by factors (compared to % by improving materials)

= MPL is a general fabrication technique for patterning 3D
structures in CMOS compatible materials.

= CMP-flatness of membrane — high NA immersion stepper
compatible.

= MPL requires only fixturing changes to current SOA
semiconductor processing equipment.

= Fabrication of device-level 3D-ICs underway to demonstrate
proof of concept long-channel metal gate CMOS.




QUESTIONS?

dbburck@sandia.gov
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