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Motivation

= |nvestigate mechanisms that cause explosives to fail at small
scales

= Mechanisms that control explosive initiation and propagation
typically have a strong dependence on microstructure

= Physical vapor deposition provides ability to manipulate
microstructure by varying deposition conditions

* Preparation-Structure-Property relationships




Physical Vapor Deposition - HNS @
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= Decomposition onset: at melt or earlier NO, Nz
= Lower vapor pressures, slower deposition rates HNSC' 2N

= Maximum Deposition Rate: ~ 10-20 um/hr
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HNS Film Microstructure

Fracture cross-section of an HNS film. lon-polished cross-section of an HNS film.

= Vapor-deposited HNS exhibits a columnar microstructure oriented
perpendicular to the substrate with column widths on the order of 1 um

= Density and porosity distribution are dependent on deposition conditions
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HNS Film Microstructure
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Histogram of a Euclidean distance map

lon-polished cross-sections of HNS films deposited at

10 °C (left) and 45 °C (right). Each image is 25 ym across. [ndicating distances from any pixel to a pore
In HNS films deposited at 10 °C and 45 °C.

= 2-D sections indicate that average film density decreases with increasing
substrate temperature from ~ 91 %TMD at 10 °C to ~ 86 % TMD at 45 °C

— Getting new FIB capability online to better quantify 3-D porosity distribution and density
= Spacing between pores decreases as substrate temperature increases




Thin Film Detonation Experiments ~ @:-

Photograph of an optical fiber probe with
inset showing a six-around-one connector.
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Example oscilloscope data and resultant position vs.time  on a deposited explosive film. Fibers
plot used to determine detonation velocity. are illuminated to show their locations.

Velocity = 7.461 + 0.019 mm/us
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HNS Critical Thickness Experiments @
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Framing camera image of a 1.6 mm wide HNS line (left) and a video (15 ns
exposure, 135 ns interframe time) showing detonation propagation (right).
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HNS Critical Thickness Experiments @&
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Detonation velocity vs. thickness for HNS films deposited with different substrate temperatures.

= Detonation does not propagate in HNS films thinner than ~ 200 zm
= Low detonation velocities compared to pressed powders at similar densities
— Suggests that these tests are in the “velocity deficit” region of the critical thickness curve

= Despite differences in density, similar detonation velocities and failure thicknesses

are observed for the two different microstructures
e



HNS Corner Turning ) .

Framing camera images (15 ns exposure, 165 ns interframe time) from an HNS critical thickness

test that did not ignite properly. The detonation front’s failure to propagate along the length of
the line demonstrates the poor corner-turning ability of HNS.

= Early experiments were ignited from the edges of the pad at the end of the
HNS line; occasionally detonation only initiated on one side of the pad

— Likely due to contact issues between PETN initiation increment and the HNS pad

= When ignited from only one side, the detonation front was unable to turn the
corner and propagate along the length of the line.

— Prompted a redesign of the initiation geometry 9




Near-Threshold Detonation Instabilities (&=,
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Dent track from a near-failure HNS detonation Dent track from a near-failure HNAB detonation
experiment showing cross-hatching patterns experiment showing cross-hatch patterns only

throughout the track. near the edge of the dent.

= Dent tracks in the polycarbonate substrates record instabilities in the detonation
front at near-failure conditions

= “Cell size” in dent tracks from HNS films is several times larger than seen in similar

experiments with HNAB films 10



Conclusions ) peim

= Altering substrate temperature during deposition changes
resultant density and porosity distribution in the film

= Lower film density and smaller average spacing between pores with
Increasing substrate temperature

= Detonation fails to propagate in HNS films thinner than ~ 200 zm

= Detonation velocities and failure thicknesses are similar in these
HNS films, despite the differences in microstructure

= Cross-hatch patterns in dent tracks indicate instabilities in
detonation front at near failure conditions

11




Acknowledgements ) o

Funding:

Joint Department of Defense/Department of Energy Munitions Technology
Development Program

Detonation testing:
J. Patrick Ball

SEM:
M. Barry Ritchey




| : Questidns’? : 'i




Backup Slides

14




Sandia
l'l National
Laboratories

Thresholding SEI\/I Cross-sections
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Euclidean Distance Maps 1) ..
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Histogram showing distributions of the distances
; Y poddi/ =3 depicted in the Euclidean maps. Note that the higher
. : 27 . counts at larger distances for films deposited at 10 °C
Euclidean distance maps depicting the distance indicates a larger average spacing between pores.
from any given pixel to the nearest pore for HNS
films deposited at 10 °C (top) and 45 °C (bottom).
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