The Password Problem

Elizabeth Walkup
Stanford University

Passwords are an ubiquitous, established part of the Internet today, but they
are also a huge security headache. Single sign-on, OAuth, and password
managers are some of the solutions to this problem. OAuth is a new, popu-
lar method that allows people to use large, common authentication providers
for many web applications. However, it comes at the expense of some pri-
vacy: OAuth makes users easy to track across websites, applications, and
devices. Password managers put the power in the hands of the users, but this
vulnerability survey reveals that you have to be extremely careful which
program you choose. All in all, password managers are the solution of
choice for home users and small organizations, but large companies will
probably want to invest in their own SSO solutions.

9

1. INTRODUCTION

Passwords are an ubiquitous, established part of the Internet today,
but they are also a huge security headache. The average user has so
many different accounts with different sites that it’s almost impos-
sible to remember them all. This leads to problems like password
reuse - according to a 2012 study, over 61% of people reuse pass-
words on multiple sites [1]. This is a problem because if one site
account gets stolen, hackers will test that username and password
on other sites as well. People will also write down passwords on pa-
per or in text files (which makes them easier to steal). And in gen-
eral, people tend to choose weak passwords on their own, especially
predictable ones that are vulnerable to dictionary attacks. Several
methods have evolved to help combat this issue: password man-
agers, single sign-on (SSO), and two-factor authentication. This pa-
pers examines these methods and the protections they offer against
different attackers.

1.1 Single Sign-On (SSO)

SSO is an authentication process that allows users to have one ac-
count (and so one password) to access multiple different applica-
tions. Traditionally, these have been used internally in companies,
where the applications are all owned by the same entity. There
are many flavors of SSO, since organizations like to implement
their own version. Some common SSO protocols include SAML,
CoSign, CAS, and WebAuth, which is used here at Stanford.

A new method similar to SSO has arrived on the scene recently:
OAuth. It is not quite the same as SSO - users must enter their user-
name and password for each application. But it is the same user-
name and password for each one, which cuts down on the number
of accounts a user must remember. OAuth by itself is an autho-
rization protocol, not an authentication protocol, but it is conve-
nient because it allows applications to use the outside authentica-
tion provider of their choice. OAuth is also the basis for authenti-
cation protocols like OpenID Connect and Facebook Connect. Any
time you log into somewhere using your Facebook or Google ac-
count, you are using OAuth. This convenience has gained OAuth a
huge following, especially among mobile apps and small web apps.
Because of its popularity and recentness, this paper will focus on
OAuth more than traditional SSO protocols in Section 3. Note that

SAND2016- 5208T

OAuth has had two major iterations: OAuth 1.0 and OAuth 2.0.
They are very different protocols - this paper will only cover OAuth
2.0, which is the one that is currently popular.

1.2 Password Managers

Password managers are a familiar concept to most people: they
store all your passwords in an encrypted vault, so the only pass-
word you have to remember is the master password for the vault.
However, over the years, the scope and platform of the average
password manager has changed dramatically. Now, almost every
password manager is a desktop app linked with browser extensions
linked to a cloud storage account, possibly also linked to multi-
ple devices and mobile apps. This is more convenient for users -
passwords can be accessed from anywhere and filled in without
typing. But it greatly increases the attack surface of the password
manager program, which becomes a single point of failure in user
security. And often, these components cannot be separated easily -
for instance, the Dashlane program will not let you use the desk-
top app until you install their browser extension (although you can
uninstall it later). 90% of password managers come with browser
extensions and mobile applications, and 60% offer cloud accounts.
For a full list of all the platforms offered by the examined password
managers, see Appendix A. In Section 4, this paper will examine
the new security benefits offered by modern password managers as
well as their vulnerabilities.

1.3 Two-Factor Authentication

There are three things that can be used for authentication: some-
thing you know, something you have, and something you are. Pass-
words are something you know, but, as mentioned, they are often
stolen or cracked. Two-factor authentication addresses the security
of passwords without changing the number of the passwords a user
has to remember.

In two-factor authentication, the user must supply a second form
of authentication in addition to the normal password. It could be
something they have, like a keyfile fob, or a code from a mobile
device, or it could be something they are, like fingerprint reading.
This means an attacker attempting to access the account cannot get
in with just the password - they must get around the second factor
as well, which can be difficult, especially for a remote attacker with
no physical access to the target user.

Two-factor authentication can be used both with normal pass-
words, SSO, and with password managers for extra security. The
most commonly used second factor is something you have - a
phone. A one-time code is sent via text or voicemail, or obtained
through an app. For instance, Stanford’s WebAuth uses Duo, a mo-
bile app, to supply the second factor when logging in. All major
OAuth providers, including Facebook, Google, Twitter, Tumblr,
and Github, have a phone-based two-factor option. However, none
of them use it by default - the user must opt in. Google also allows
users to use a USB with a security key, but in general this is not
supported.

Of the password managers surveyed, 80% had support for two-
factor authentication in the form of mobile device codes, similar

to SSO. Hoever, password managers also commonly use biomet-
rics as a second factor, especially fingerprints, as more and more
computers and phones come with readers built in. 60% had sup-
port for biometric two-factor authentication - all of these offered
fingerprint support, and 10% offered the less secure face recogni-
tion option as well (LogMeOnce and True Key). 30% supported the
use of an external USB key (most commonly YubiKey) as a second
factor - these were Dashlane, KeePass, Keychain Access, LastPass,
LogMeOnce, and PassPack. For the full list of password managers
that support two-factor authentication, see Appendix B.

1.4 Attacker Types

Four different kinds of attackers will be considered when dis-
cussing security:

(1) Passive network attacker - this attacker can view, but not mod-
ify, network traffic between the victim and the server. They
may also attack the server to steal information.

(2) Active network attacker - can both view and modify network
traffic between the victim and the server. They can also inter-
cept traffic, allowing them to so things like perform man-in-
the-middle attacks or SSL downgrade attacks.

(3) Malware attacker - this attacker has malware installed on the
victim’s machine and is looking to exfiltrate more valuable in-
formation. Malware actions include keylogging, intercepting
network traffic, or checking the clipboard contents.

(4) Physical attacker - this attacker has physical access to both
the victim and their computer. They could install malware, run
cracking programs, use the computer, or find passwords writ-
ten down nearby.

2. RELATED WORK
2.1 OAuth

In 2012, J. Bonneau et al.[10] recognized the growing need to re-
place passwords and did a large survey of OAuth, single sign-on,
password managers, and other solutions available. They found that,
in general, single sign-on methods seemed to offer the best usabil-
ity and security improvements. However, they only looked at two
password managers: Firefox and LastPass. However, people like
Sun and Beznosov[9] were already looking critically at OAuth 2.0:
they found several vulnerabilities in the provider implementations
of Google, Facebook, and Microsoft, though they found none in the
protocol itself. Other OAuth vulnerability discoveries include that
of Andrey Labunets[11], who used redirect URI vulnerabilities and
RPC calls to leak information and attack provider websites. Even
years later, OAuth implementations are still not immune to attacks,
as demonstrated by the work of P.Hu and W. C.Lau[12], which used
app impersonation to gain access to a huge amount of data in Face-
book’s social graph.

2.2 Password Managers

There have been several studies done on vulnerabilities in various
parts of password managers. In 2014, Silver et al. [6] studied aut-
ofill vulnerabilities, attacks, and defenses in both desktop and mo-
bile password managers. Some of the research done on password
managers in this paper extends on their work. Li, Zhiwei et al. [5]
They analyzed 5 of the most popular web-based password man-
agers, evaluating them in 4 areas: bookmarklet vulnerabilities, clas-
sic web vulnerabilities, logic vulnerabilities, and UI vulnerabilities.

They found that 4 out of the 5 password managers had vulnerabili-
ties that allowed arbitrary password stealing (in light of a network-
based attacker). Since bookmarklets have largely fallen out of favor
now, this new research looks at a larger variety of password man-
agers and their web vulnerabilities.

P. Gasti and K. B. Rasmussen[7] have taken a crack at break-
ing the database encryption methods of password manager vaults,
while Chatterjee et al.[8] proposed a password manager called
NoCrack that generates plausible but fake passwords when given
the wrong master password. The idea is to make it take much longer
for attackers to brute force a stolen password database.

3. SINGLE SIGN-ON (SSO)
3.1 The OAuth Protocol

OAuth 2.0 is more of a framework than a protocol - it leaves many
implementation details, such as data storage, up to the programs
that use it. It provides authorization but not authentication - an im-
portant distinction that often confuses people. An outside provider
must supply authentication, or use a protocol like Facebook Con-
nect or OpenlD, which are authentication built off of OAuth. The
goal of OAuth is to allow applications to access data on a server
without giving the app the user’s credentials. This means the user
does not have to create a separate account for the app, and their
credentials are not stored or given away needlessly.
There are four types of authorization flows:

(1) Authorization Code Flow - the user is redirected to the authen-
tication server, where they enter their credentials and authorize
the app to access their data. The server sends the app an autho-
rization code, which it then trades for an access token.

(2) Implicit Flow- the user is redirected to the authentication
server, where they enter their credentials and authorize the app
to access their data. The server sends the app an access token
to their redirect URIL.

(3) Client Credentials Flow - a POST is done directly to the au-
thentication server from the app using credentials belonging to
the client app. The server sends an access token back.

(4) Resource Owner Password Flow - a POST is done directly to
the authentication server from the app using credentials be-
longing to the user. The server sends an access token back.

The Authorization Code flow is by far the most widely used. Client
Credentials flow is used for applications that do not use user inter-
action.

Service Browser Auth Server

request resource

request|

Credential
verification can be
done by another
server, OAuth does
not cover that

aumorizat‘\on code;|
re
Quest accesd With auth cod
e

access token

[8Source

Fig. 1: OAuth Auth Code Flow

3.2 OAuth Implementations

OAuth has benefited from being a younger protocol by taking full
advantage of open-source and hobby coding to build up a large
set of implementations. There are over 50 OAuth implementations
in 12 different programming languages. However, there are some
problems.

For starters, a good chunk of OAuth implementations (roughly
20%) are for OAuth 1.0, which is no longer in common use. There
is even a confusingly-named Python project called python-oauth2
that only implements OAuth 1.0. Most maintained projects will im-
plement both, but it can be confusing sorting through them all. For
the purposes of this research, only OAuth 2.0 implementations will
be considered.

The confusion is not just present among open source users -
OAuth provider companies are also a mixed bag. 41% of the top 61
providers still use OAuth 1.0 [14]. 11% (including LinkedIn, Twit-
ter, and Google) implement both OAuth 1.0 and OAuth 2.0, mostly
for backwards compatibility, since OAuth 1.0 cannot be used di-
rectly with OAuth 2.0.

As is often the case in open-source projects, they were created
and are no longer maintainted. Roughly 30% of OAuth 2.0 imple-
mentations were created and dropped before the OAuth 2.0 spec-
ifications were formally done, so their completeness is dubious at
best. Also, many of the smaller implementations done by hobby-
ists are only compatible with a single authentication provider, like
Google, Facebook, or Twitter. This makes general use and testing
difficult.

3.2.1 Differences. With so many implementations, and with a
standard that is often vague, differences will arise. Some of the
more important ones are:

—URL format - some use simple url arguments, some store data in
JSON format.

—OAuth flow types - OAuth has 4 different authorization grant
flows, and not all client implement them all. The most common
one by far is the authorization code flow, which simply gets a
token from the server to present later when requesting a resource.

—Storage options - OAuth leaves the question of how to store client
secrets and other sensitive information up to the implementer and
developers. The most common ones are MySQL and SQLite.

—Permission tests - for a legitimate user who requests permissions
they do not have authorization for, it is often left up to the devel-
oper whether to throw and error and/or return only the applicable
permissions.

3.3 OAuth Vulnerabilities

A lot of OAuth implementations, by themselves, do not offer se-
curity features - most of the time, these are left up to the user to
implement, or to choose to use in their program. For that reason, it
is sometimes hard to say definitively if an implementation is vul-
nerable to a certain attack or not. Here are the four most common
issues seen in OAuth implementations:

(1) Auth Code Replay Attacks - when a provider sends an autho-
rization code, they must delete it or expire it after it has been
redeemed by the client (or after a designated short amount of
time) to prevent an attacker from redeeming it themselves. The
attacker could have obtained it via logs, hacked databases, or
possibly from network traffic, and they could then use it to get

an access token with access to the victim’s account. None of
the implementations examined provided any utilities to help
manage this, and several had access logs where the auth codes
were recorded as part of the URL requested.

(2) Redirect URI path traversal - if subdirectories are allowed to
be set during URI validation, using tricks like ”%2e%?2e” or
”/../” within the url can allow an attackers to traverse the server
folder tree. The solution is to make sure the redirect URI is
identical to the one registered, but this almost always left up
to the library user as a choice, since there could potentially be
applications that need it the other way.

(3) Access Token Abuse - mobile and server applications (ones
with less human interaction) often use a supplied, pre-
generated access token. If a single access token is supplied
by the user for multiple application authorizations, a malicious
app can take a user’s access token and use it to gain access
to the victim’s account on the other applications. The solution
to this is that the OAuth provider needs to check that the to-
ken was issued for the specific client ID that is requesting to
use it. This is not something included in most OAuth server
implementations, but high-profile providers like Facebook and
Google do provide methods to check this.

(4) CSRF - OAuth provider endpoints must use CSRF tokens in
their forms, or they become vulnerable to CSRF attacks, which
allows client account hijacking. Most implementations are not
involved in building the forms, but this vulnerability occured
in a few that were made for a specific content platform, like
Django or Flask.

3.4 OAuth Provider Security

Using a single account for everything creates a single point of fail-
ure - if the password for that account is stolen, attackers could ac-
cess your accounts across many different sites. This is one of the
reasons password re-use is frowned upon. Users need to be careful
what companies they place this trust in. Ideally, passwords should
be stored securely, at least salted and hashed, to make them diffi-
cult to crack, but given enough time and resources even that can be
broken.

There have been countless instances of password hashes being
stolen recent years - companies are constantly under attack. Com-
panies that are OAuth providers are no exception, and there are
many recent examples. In 2013, GitHub suffered a massive brute
force attack which compromised many user accounts. In response,
the company had to improve its rate limiting and crack down on
weak passwords [19]. The next year, Yahoo! had the usernames
and passwords of email accounts stolen [21]. In November of 2015,
Amazon sent out password reset notices in response to a suspected
security issue with the way passwords were transmitted from or
stored on user devices [18]. Around the same time, Instagram had
an issue with its OAuth API that allowed third-party apps using
its services to steal and store user passwords [20]. In 2016, Tumblr
announced that it only just now learned of a breach that occurred al-
most 3 years ago (in 2013) [16], where attackers stole the database
of salted and hashed passwords. As a result, all affected accounts
were required to change their passwords. Tumblr is considered one
of the top an OAuth providers. Another one of the top providers,
LinkedIn, suffered a massive breach of a similar nature in 2012,
which affected over 117 million accounts [17]. However, it wasn’t
until 2016, nearly four years later, that they discovered the full ex-
tent of the breach and forced most of those accounts to reset their
passwords.

Although companies that provide OAuth authentication may
have the best of security intentions, the fact is that most compa-
nies do not immediately know when they have been hacked. A
2013 survey done by Verizon [15] found that 70% of company
breaches were discovered by someone outside the company. Also,
as demonstrated by recent examples, breaches (which tend to hap-
pen in hours or over a few days) are often not discovered until
months or years later. The same survey found that the majority of
breaches (66%) took months to discover, and 4% took years. Dur-
ing all that time, the attackers are free to make use of the data that
they’ve stolen, without consumers even realizing that their account
has been compromised. And, once the breach is discovered, con-
tainment usually takes days (41%) to months (22%). So if someone
puts their all of their trust in a single company, they need to be ex-
tremely sure that company has good security, which is difficult to
do.

3.5 OAuth Privacy

Very few users realize that by using an app with an OAuth provider,
they are often sharing data with that provider. The privacy policies
of nine of the largest top companies that are OAuth providers were
examined: Google, Facebook, Twitter, Dropbox, GitHub, Windows
Live, SoundCloud, Box, and Foursquare. Two out of the nine com-
panies (GitHub and Windows Live) do not have specific privacy
policies in place.

Where policies existed, they had all been updated within the
last 2 years, showing how the rapidly changing environment of
data collection affects service providers. API providers were split
on change notification policies. Facebook, Dropbox, Box, and
Foursquare all promise to notify developers via email when the
policies change substantially. Box has the strongest guarantee, as
they explicitly promise a notice 30 days in advance of the changes.
On the other hand, Google, Twitter, and SoundCloud make no
promises about change notifications and expect interested parties
to simply check their webpage often.

Only Foursquare made it explicit that developers must say that
their app shares information with the company, although Facebook,
Twitter, Dropbox, SoundCloud, and Foursquare all require appli-
cations using their APIs to have users agree to privacy policies. A
sample of a handful of mobile apps using the Facebook API showed
that none of them included information about Facebook’s data col-
lection in their privacy policies (only that for the app itself). So
these things are most likely not being enforced.

Google, to perhaps no ones surprise, collects the most informa-
tion and reserves the most rights for itself. It gathers every piece
of data imaginable except for strictly legally regulated things, like
health. It even goes out of its way to specify that app developers
are not allowed to try and anonymize anything or try and prevent
Google’s heavy monitoring. Google even creepily says it is trying
to figure out “the people who matter to you most”. Google and
Facebook also go one step further than other providers and give
themselves the right to access the developer’s app or website con-
tent for any purpose as long as they are using the providers APL
The information is not limited to the provider either - Google, Face-
book, Twitter, and Foursquare all reserve the right to send the in-
formation they gather to “interested” third parties.

3.5.1 Tracking. Because of its flexible, URL-based data for-
mat, OAuth integrates with mobile applications much more eas-
ily than traditional SSO methods. As a result, it is hugely popu-
lar in mobile apps. Previously, websites like Google and Facebook
tracked users through cookies in the browser, but this did not ex-

pand well to mobile. OAuth offers the capability to bridge that gap.
Because applications must register with providers, the provider can
tell exactly which apps are being used with a particular account,
and what data is requested. OAuth also allows providers to spec-
ify extra fields in the data, meaning any extra data could be sent
along with the authorization. All companies except Foursqure have
clauses that allow them use data gathered from the OAuth APIs
in tracking and ad targeting for the end user. So not only can they
track you - they already are, and they have been working on it long
enough to integrate it into publicly-available legal documents.

3.6 Other SSO Methods

Some other SSO protocols are described below in comparison with
OAuth.

3.6.1 SAML
Service Browser Auth Server
POST wiji
2ith auth request Verify auth
login page request
creqv,i."”.&”“s
generate token
SAML token
resoU,CG

Fig. 2: SAML flow

SAML is the most commonly used SSO solution, and it provides
both authentication and identity management. Like OAuth, it has
many different kinds of flows that can be used. The most common
scenario is pictured above. It has a much stricter data format than
OAuth, but it is faster because it avoid the extra network round
trip that OAuth takes to the provider. On average, for a very min-
imal setup, SAML was 11.29% faster than OAuth, a difference of
roughly 50 milliseconds per request.

OAuth 2.0 (2012) SAML 2.0 (2005)

- Vague/young standard + More mature standard/tools

- Does not contain user identity + Signing/user identity included

- No authentication (but can be added)

+ Does authentication and identity management

- Requires an extra round trip for packets | + Fewer packets sent in general

- Slower + Faster

+ Flexible token-based authorization - Stricter XML format

+ Could even use SAML’s XML format

- Sends more data over the wire in general

+ Easy to invalidate access tokens - A bit more difficult to revoke access

+ Mobile works with no mods - Difficult to use with mobile

SAML is difficult to use on mobile because of the way it uses
the HTTP POST body. Usually mobile apps have no access to
this. It makes redirecting a login request to a mobile app extremely
counter-intuitive. There are ways in can be done, and has been done
successfully, but OAuths simple URL parameter passing make it
much easier to use in mobile environments.

3.62 CAS

Service Browser

request resource.
redii te
edirectlto login Server

Auth Server

send ticket: rantin

Back- Use ticket

channel B validate ticket
rant acces:

Todi
edirect to reg ource

et page

IeSource

Fig. 3: CAS protocol

The CAS protocol (not to be confused with the CAS server soft-
ware suite by the same authors) provides both authentication and
authorization. However, it requires an extra network round-trip and
sends a lot more data than OAuth, so overall it runs more slowly.
It also has a less flexible XML data format. It works for mobile
devices if an extra REST API is added.

In terms of maturity, there is no real contest - CAS has an
enterprise-grade implementation under active development with
full software support. Its specification is detailed and much more
complete than OAuths. However, it really only has this one im-
plementation (whereas OAuth has dozens), and because it is enter-
prise, its a huge software suite that takes a lot more effort to install
than any OAuth implementation. Small-scale apps and even small
business are probably going to lean towards OAuth just because of
that. On the other hand, CAS has a professional security response
team, and a single implementation means that bugs don’t linger in
old implementations once they are fixed.

3.6.3 Cosign
Service Browser Auth Server
request resource
If no
cookie 2t servicelcookie, set return ur|
Check for login
\ogin 9322 cookie
Credentials
Set login cookie/
service cookie
1o return il pair

check|service cookie

successful check

Fig. 4: CoSign protocol

Like OAuth, CoSign is more of a framework than a full-fledged
protocol. They both work with many different kinds of authenti-

cation servers, and they both use URL query parameters to pass
information between endpoints. They both avoid giving the service
application user identity credentials by default. However, CoSign is
clearly designed for user-based interaction (since it was designed as
a university SSO solution), whereas OAuth is centered around ap-
plications. CoSign provides authentication, but not authorization,
whereas OAuth is the opposite. Cosign uses a back-channel to the
server to check a user’s access, whereas OAuth makes an extra net-
work round trip, which results in CoSign being slightly faster.

CoSign seems to suffer from a lack of clear security design, even
more so than the vague OAuth standard. A few of the larger prob-
lems are:

—SSL is recommended but not forced, whereas OAuth requires it.

—HttpOnlycookieprotection is available,but not documented, and
is turned off by default.

—When logging out, there is a delay where the user still has access
to the service because of a cache timeout, and the service server
must do extra work to mitigate this.

—It is open to CSRF attacks - CoSign does not check that the same
user that was authenticated is the one requesting access. It only
checks that the service cookie has a login cookie. This can be
mitigated using IP checking or Kerberos tickets, but neither of
these are on by default.

4. PASSWORD MANAGERS

Twenty of the most-recommended password managers were eval-
uvated in this study: 1Password, Dashlane, Trend Micro Pass-
word Manager, IdentitySafe, KeePass, Keeper, Keychain Access
(iCloud Keychain), LastPass, LogMeOnce, MSecure, NeedMy-
Password, PassPack, Password Boss, True Key (formerly Pass-
wordBox), Password Depot, Password Genie, Roboform, SplashID
Safe, Sticky Password, and Zoho Vault. Additionally, the password
managers of Firefox, Chrome, and Safari were evaluated for their
autofill properties.

4.1 Cryptography

There are a lot of different pieces of cryptography that go into
password manager vaults. First, the master password itself must
be turned into a key. This is usually done with many iterations of
the PBKDF2 key generation algorithm. The number of iterations
ranges from 100,000 (1Password) to 1,000 (Keeper, Zoho Vault).
In a secure password manager, neither the password nor the key
is stored anywhere - instead the key is recomputed whenever the
password is entered.

The exception to this key generation approach is PassPack. It,
perhaps unwisely, uses its own custom key generation algorithm,
citing parallelism issues. This key generation algorithm involves
taking every other byte of a SHA-256 hash, then doing several
rounds of salted hashing.

This master key is used to encrypt the account data that the user
wants to store. 90% of the programs surveyed used AES-256 to
encrypt the vault. The only real exception was MSecure, which uses
Blowfish-256.

For a full list of encryption methods and their variations, see Ap-
pendix C.

4.2 Benefits

In addition to cutting down on the number of passwords to remem-
ber, password managers have added many beneficial new features.

75% of them offer two-factor authentication, and 60% have sup-
port for some form of biometrics, with fingerprint being the most
common. Several of the higher-end programs also offer Active Di-
rectory/LDAP integration for enterprise users.

Besides simply storing your passwords, almost all password
managers will also generate secure passwords for new accounts and
give you a strength score for your existing passwords, so you can
see which ones are weak and should be changed. The newest bene-
fits also include password managers that can automatically change
your password and those that notify you if you may be affected by
a security breach at a company where you have an account (for in-
stance, if their password hashes were stolen). Right now, the only
password managers that do both are Dashlane and LastPass.

50% of password managers also offer keylogger protection in
the form of virtual keyboards. Rather than typing, the user clicks
on the keys of a displayed keyboard, whose input is translated by
the password manager. This prevents a keylogger from picking up
keystrokes from the main keyboard. For a full table of which pass-
word managers have which features, see Appendix B.

4.3 Browser Extension Autofill Vulnerabilities

Browser extensions are extremely convenient - they allow user-
name and password fields to be filled with minimal or no user in-
teraction. Unfortunately, this opens some avenues of attack for an
active network attacker. For instance, if an attacker controlled a
router in a cafe, they could serve a router login page with invisible
forms, embedded iFrames, or pages that pop up behind the current
window. When the victim goes to log in, their browser extension
might automatically fill in these fields, and then that data could be
sent back to the attacker with some Javascript.

As a continuation (and re-evaluation) of the research done by
Silver et al [6], several different possible autofill scenarios were
tested on the password managers with browser extensions:

(1) Default - a login page with a username and password field,
served with valid HTTPS.

(2) HTTP - the same login page, but now served with HTTP in-
stead of HTTPS

(3) Different form action - the form POSTs to a different url

(4) Autocomplete="off” - this attribute is put in both the fields and
the form header

(5) iFrame - the original login form, placed in an iFrame in a page
with the same origin/domain.

(6) Modified field name - the name and id of the fields were
changed

(7) display=none - this CSS attribute was applied to the form, mak-
ing it invisible.

(8) opacity=0 - this CSS attribute was applied to the form, making
it invisible.

(9) Pop-under - the original login page is opened in a background
window.

Some password managers with browser extensions (like Identity
Safe, Password Depot, Password Genie) were not evaluated be-
cause they were Windows-only, and a customizable Windows ma-
chine was not readily available. The browser password managers
for Safari, Chrome, and Firefox were also evaluated, for a total of
14 different password managers. Safari and Chrome actually de-
feated the pop-under code (the window opened on top instead), so
extensions were tested in Firefox for this scenario.

There were six different actions that could happen in each sce-
nario:

—Auto - auto-fill both fields and auto-submit

—Fill - auto-fill both fields

—User - auto-fill only the username field

—Click - requires the user to click one button, then it fills and sub-
mits

—Click-Fill - requires the user to click one button to fill both fields,
but does not submit the form

—None - no action taken or available from the password manager

Auto is the most dangerous behavior and also the most conve-
nient. The user literally has to do nothing, but that also means an
attacker requires no user interaction. Only Dashlane, LogMeOnce,
and TrueKey used Auto - Dashlane and True Key used it for the de-
fault and pop-under scenarios, and LogMeOnce for every scenario
except the ones that made the form invisible.

HTTP pages were, for the most part, distrusted by the password
managers. LogMeOnce and Dashlane still both used Auto on the
HTTP page, and StickyPassword and Firefox still used Fill. But
every other program either required user interaction or refused to
help with filling the fields at all. Since sending credentials in the
clear is a very bad idea, it seems like the default should be to refuse
to use HTTP. Surprisingly, no one gave any extra warning to the
user about the page being insecure.

Almost no one recognized or cared when the form action was
different. The action in this case was the same as the default except
in the case of Dashlane, which used Fill instead of Auto (a minor
downgrade). The modified field name only mattered to LastPass,
but this may have been because it broke the way it saved the data
(it refused to do anything in this scenario).

It was discovered that the autocomplete="off” attribute is com-
pletely ignored by every program. It did not stop any auto-fills or
click-fills. The autocomplete attribute is not particularly new, so it
seems people have simply chosen to ignore it.

29% of these password managers recognized when the login
page was in an iFrame: Dashlane, PassPack, SpashID Safe, and
Sticky Password. These 4 refuse to do anything when the login page
is in an iFrame. All other password managers continued their de-
fault behavior in this scenario. iFrames are particularly dangerous,
because they can be inserted in any page, meaning an attacker could
put them in any weak same origin page, or (if the site did not use
some form of framebusting) on their own site to harvest credentials.

Most programs treated the two scenarios that made the forms in-
visible the same. The exception was Dashlane - in the display=none
scenario, it only auto-filled the user field, whereas when opacity=0
it filled both. Keeper, LogMeOnce, Splashld Safe, Sticky Password,
and Chrome all recognized both cases and treated them the same
(usually by not filling anything). That means 57% of these pass-
word managers did not recognize when a form was being hidden,
which is bad for users, because it means they could populate a form
that the user isn’t even aware of.

In the case of the pop-under window, only four password man-
agers treated it differently than a normal login window: 1Password,
Keeper, PassPack, and SplashID Safe. Opening and closing a large
number of pop-under windows could also be an advantage to an
attacker looking to harvest credentials - it would be safer if only
the window currently in focus was considered by the browser ex-
tensions.

For the full table of autofill behaviors, see Appendix F.

4.4 Web App Issues/Vulnerabilities

4.4.1 Protecting the Master Password. One of the most com-
mon security claims made on any password manager press release

is that your master password is never “transmitted or stored any-
where”. And while this may be true in most cases, the way the state-
ment is phrased is somewhat misleading. The master password may
not be stored or transmitted, but what if the encryption key derived
from it is? The key is just as useful (more so, in fact) than the pass-
word itself. And what if a derivative of the password is stored, such
as a hash value for login? The claim is still true, but the security
is now more questionable. For instance, in 2015, LastPass servers
were breached, and a large amount of data was stolen, including
user master password derivatives [3]. In their case, LastPass claims
the derivatives were the master password run through over 100,000
iterations of PBKDF?2, and thus extremely difficult to crack. How-
ever, it still recommended that users change their master password
because of this.

Of the twenty password managers surveyed, 11 of them had
web applications that accessed the saved passwords. Now, there
are many ways a web application could be vulnerable, but some
concerns are unique to password managers. A password manager
web app requires the user to enter their master password into a web
form, and this can be problematic if any information about the mas-
ter password is stored on the server or passed over the network.

There are three different strategies that password managers have
in their web applications. The first and simplest is that they treat
the master password like an account password - the password or
some derivative is sent to the server, who then checks it against a
stored value and tells the client if the password was correct. This
is how LastPass, 1Password, LogMeOnce, NeedMyPassword, and
SplashID Safe work.

The second, slightly more complicated method uses two pass-
words: a traditional account password for logging in and a master
password for the vault encryption. The user must enter both to see
the data. The account password is treated like a normal account
password and compared to its hash, while the vault password is
used only for decryption on the client side. The password managers
that use this strategy are Trend Micro, Zoho Vault, and PassPack.

The third and final method is probably the most secure: no pass-
word data is sent over the network at all. The master password is
used to generate a key, and that key is used to attempt decryption on
a known value. If the decryption is successful, the user is logged in,
otherwise, the application knows the password is wrong. Dashlane,
Keeper, and Roboform all use this method.

In this study, 5 other password managers (in addition to Last-
Pass) were found that could be vulnerable to a breach of the kind
suffered by LastPass: 1Password, LogMeOnce, NeedMyPassword,
PassPack, and Splashld Safe. These all send some derivative of
the password or master key over the network to the server. Need-
MyPassword and SplashID Safe both sent the password over the
network in its original form. PassPack and LogMeOnce both send
the derived master key over the network. 1Password sends a salted
PBKDF2 hash of the password, similar to LastPass.

For full details on the operation and what is sent over the network
for different password managers, see Appendix E.

4.4.2 Protecting the Data. The data in a password manager
vault should, ideally, be accessible to no one but the user. Secure
web application accomplish this by doing all encryption and de-
cryption on the client side in the browser, so that the server (and
any network attacker) never see the data in the clear. Almost all the
programs use this approach - however, there are two exceptions.
NeedMyPassword and SplashID Safe both send the vault data un-
encrypted (within a TLS connection) to the client. This means that
either they are decrypted server-side, or they are not encrypted at
all, which means that the company that owns the password man-

ager has access to the data. If that company were to be hacked, the
hackers could see the data as well, either by stealing or by planting
malware on the server to send the decrypted data to them. I suspect
that NeedMyPassword does not encrypt the data at all - it claims
to use *256-bit’ encryption, but that seems to just be referring to its
TLS key size. SplashID Safe claims to use AES-256, so it is more
likely there that the data is being decrypted server-side. Either way,
both practices are insecure.

4.5 General Web Security

The 11 password managers with web apps were also evaluated for
general web security practices. Every password manager on the list
used HTTPS/TLS, but not all were equally secure. LogMeOnce
and LastPass used HTTPS, but not on all elements of the page
- some images and scripts were loaded over HTTP. This is inse-
cure because an active network attacker could intercept and modify
those elements with malicious content, possibly content that could
steal any usernames and passwords entered on the page. 8 of the
11 password managers made use of the Strict-Transport-Security
HTML header, which says that the page can only be accessed with
HTTPS.

Almost all pages used the same default TLS settings: TLS ver-
sion 1.2 with a 128-bit key and the ECDHE, RSA, AES-128, GCM,
SHA-256 cipher suite. There were two exceptions to this. NeedMy-
Password uses TLS version 1.0, with a 256-bit key with RSA, AES,
and SHA-1. Trend Micro uses a 112-bit key with RSA, 3DES, and
SHA-1, a surprisingly old combination.

There are also the typical web security considerations: cookie
protection, CSRF attacks, and XSS attacks. Six of the 11 pro-
grams used HTTPOnly cookie protection (meaning the cookies
can only be accessed during a web connection, and not a client-
side script), and 2 apps (Keeper and NeedMyPassword) did not
store any cookies. HTTPOnly is good protection against malware
or malicious browser extensions. Surprisingly, only one program
(SplashID Safe) made use of CSRF tokens in their forms. Most
programs had no Content Security Policy header to mitigate XSS
attacks. LogMeOnce had this header, but it had extremely broad
permissions, including an ’unsafe-eval’ exemption to run untrusted
Javascript. Only 3 password managers used the X-XSS-Protection
HTML header: LogMeOnce, Keeper, and Zoho Vault.

For a table of all the measures used, see Appendix D.

4.5.1 iFrame Embedding. iFrames are of particular concern
because of the potential for tricking browser extensions into aut-
ofilling and for phishing a user with part of a legitimate site in an
iFrame in a malicious site. So it is beneficial to password managers
to ensure their login page cannot be contained in an iFrame (this is
called framebusting). 5 of the 11 programs did not make use of the
X-Frame-Options HTML header for protection: 1Password, Last-
Pass, LogMeOnce, NeedMyPassword, and Roboform.

4.6 Browser Password Managers

Browser-based password managers are generally not recom-
mended, and there are several reasons why.

(1) Encryption schemas for these tend to be weaker (Chrome and
IE use 3DES) than other password managers.

(2) Browser extensions can access them. A single malicious exten-
sion could steal all your passwords.

(3) They are usually encrypted under the users account in the sys-
tem keychain. So any malware running at the user level can

read them, or anyone who sits down at the computer while the
user is logged in.

Firefox is the only browser that doesnt encrypt its logins in the
user account. Instead, it has an optional master password that is
turned off by default - if no master password is set, a blank pass-
word is used.

4.7 Recommended Password Manager

The password manager market is very saturated - theres a huge
number of programs with an equally large variety of offerings. So
there should be no reason to use a substandard program. Of the 20
password managers examined, I would recommend Dashlane.

Dashlane is relatively new the market, but it has a well-rounded
suite of features, including the coveted breach alerts and automatic
password changes. It works on all major platforms and has an easy
yet slick-looking user interface. It is free for most users, and offers
cloud storage for a price.

From the security perspective, Dashlane is one of only 3 pass-
word managers that lay out all their security practices in a security
whitepaper [4], so they are not relying on security through obscu-
rity. They use decent encryption, with the second-highest number
of PBKDF?2 rounds, and they do not pass any password-related in-
formation over the network. However, it is recommended that you
turn off the auto-login feature in order to make it harder for active
network attackers to exploit the auto-fill feature.

5. SSO VS. PASSWORD MANAGERS
5.1 Security

Both SSO and password managers protect against a passive net-
work attacker by using TLS (OAuth requires the use of TLS), as-
suming the attacker cannot crack the TLS after the fact in time for
it to be useful.

For an active network attacker, it is more variable. Some pass-
word managers have insecure practices that allow a man-in-the-
middle attack to steal the password or key and the encrypted data.
However, those that pass no password information over the net-
work are immune to this particular approach. But active network
attackers can still exploit autofill vulnerabilities for many pass-
word managers. The vulnerability of a password manager can be
greatly reduced by simply not using a browser extension, but some-
times that is not an option. With SSO, it depends on the security of
the provider - Google probably has decent security, but not every
provider may, as seen in the password breach survey. In general,
SSO protects against active network attackers better than password
managers - OAuth’s security considerations were specifically de-
signed against an active network attacker[13].

SSO offers no protection against a malware attacker - the user
enters their password as usual and it can be stolen in a variety of
ways with malware on the machine. And since in this case the user
is using this password for many applications, it is more valuable to
attacks and more detrimental if it is stolen. Password managers can
offer protection against keyloggers and clipboard sniffers. While
this isn’t a perfect solution (once malware is on your machine,
there’s no knowing what it will do), it is at least partial protection,
which SSO does not offer. Using two-factor authentication with ei-
ther method offers more protection, because a stolen password does
not automatically compromise your account.

Against a physical attacker, the results are also mixed. If you
leave your computer unlocked, or if your account password is by-
passed, an attacker can use passwords stored in Chrome, IE, or the

iCloud Keychain. Most password managers do not have this issue -
they lock the vault when it is not in use. However, if the user leaves
the computer open AND the vault unlocked, a physical attacker can
read all the passwords even without knowing the master password.
With OAuth, a physical attacker does not gain any advantage over
a network attacker unless the user stores their SSO password some-
where insecure (like on a post-it note or in a plaintext file). So if
the user is smart, they will not have any extra vulnerability, but at
the same time SSO does not inherently offer any protection against
physical attackers.

5.2 Privacy

Password managers definitely have the advantage over OAuth
where privacy is concerned, because it puts the user in control of
their data. Cloud accounts for password managers are a risk that
puts your data in the hands of someone else, but if you verify that
all decryption and encryption happens client-side, it might be a
trade-off worth taking. On the other hand, OAuth puts all of the
knowledge on the provider’s side - they can track when you login,
from what IP addresses, and what apps you use and what data they
request. Providers can even track you across mobile devices, which
previous cookie-based tracking could not accomplish.

5.3 Ease of Use

For the user, OAuth is easier to use because they don’t have to
change anything. They just use the accounts they already have with
Facebook or Google, with the same amount of logins. Using a pass-
word manager requires users to install something and change their
routine. However, this difference is fairly small - most password
managers are easy to use, and this would not be sticking point for
most users.

5.4 Cost

The cost for each method is placed on different people. In OAuth,
the additional burden of cost is placed on the authentication
provider and application authors. They have to program OAuth and
invest in server capacity to meet the demand of the user, and it
doesn’t cost the user a dime (except in ads). But for password man-
agers, the cost falls to the user. Most password managers have a free
version, so the user doesn’t necessarily have to pay anything. But
for cloud storage or some extra features, many password managers
have a yearly fee. 1Password is the most expensive, at $49.99, but
many are less than $10.

6. RECOMMENDATIONS
6.1 For a Home User

The best solution for a home user is to pick a good password man-
ager (like Dashlane) and use it regularly. This puts all the control
in the user’s hands, and generally results in more secure passwords
being used. Password managers are free (or cheap), so anyone can
use them. OAuth enables too much tracking behavior to be worth it
for a privacy-conscious user.

6.2 For a Small Startup

The initial cost of setting up a SSO solution is high, so for a small
startup, it would be cheaper and easier to invest in an enterprise-
level password manager. While these aren’t free, they are still rel-
atively cheap, and offer professional support, Active Directory in-
tegration, team accounts and more. However, since most password

managers are on a yearly or monthly subscription plan for busi-
nesses, the long-term cost might eventually outstrip that of a SSO
solution, so it depends on the growth rate of the company.

6.3 For a Large Corporation

A large corporation with a lot of internal applications should prob-
ably set up their own SSO authentication. Although it is a steep
curve up front, it is a relatively low-maintenance solution without
recurring costs. It also makes life much easier for employees to
be able to sign into everything at once. If the corporation requires
employees to hold accounts in outside applications, password man-
agers may also be a good additional investment.

7. CONCLUSION

There is currently no 100% satisfactory solution to do the password
problem, but we are making progress. The large market for both au-
thentication implementations and password managers has ensured
that users at least have a choice, and they can take their privacy
and security into their own hands. The problem and its solutions
are both complicated - a lot of time was spent puzzling out the in-
ner workings of protocols and cryptographic schemes just to under-
stand what is going on. The main lesson to be learned here is to take
nothing at face value - think critically about the claims made by
vendors. Password managers are not secure just because their web-
site claims they have “military-grade encryption” any more than
Facebook has your best interests at heart when it pushes its login
services all over the internet.

REFERENCES

Research Now CONSUMER SURVEY: PASSWORD HABITS, (CSID)
(2012)
https://www.csid.com/wp-content/uploads/2012/09/CS
PasswordSurvey_FullReport_FINAL.pdf

Matteo DellAmico et al. Password Strength: An Empirical Analysis,
(InfoCom) (2010)
http://www.eurecom.fr/en/publication/2910/download/rs-publi-2910_1.
pdf

Joe Siegrist LastPass Security Notice, (LastPass) (2015)
https://blog.lastpass.com/2015/06/1astpass- security-notice.html/

Dashlane Security Whitepaper, (Dashlane) (2011)

https://www.dashlane.com/download/Security- Whitepaper-Final-Nov-2011.

pdf

DLi, Zhiwei et al. The Emperors New Password Manager: Security Analysis
of Web-based Password Managers, (Usenix Security) (2014)
http://devd.me/papers/pwdmgr-usenix 14.pdf

D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson. Password Managers:
Attacks and Defenses, (Usenix Security) (2014)
https://crypto.stanford.edu/~dabo/pubs/abstracts/pwdmgrBrowser.html

P. Gasti and K. B. Rasmussen. On The Security of Password Manager
Database Formats, (University of California) (2012)
https://www.cs.ox.ac.uk/files/6487/pwvault.pdf

R. Chatterjee, J. Bonneau, A. Juels, T. Ristenpart. Cracking-Resistant
Password Vaults using Natural Language Encoders, (University of
California) (2012)
http://www.jbonneau.com/doc/CBJR 15-IEEESP-cracking_resistant_
password_vaults.pdf

Sun, S., Beznosov, K. The Devil is in the (Implementation) Details: An Em-
pirical Analysis of OAuth SSO Systems, (CCS) (2012)
http://css.csail.mit.edu/6.858/2013/readings/oauth-sso.pdf

J. Bonneau, C.Herley, P. van Oorschot, F. Stajano The quest to replace pass-
words: a framework for comparative evaluation of Web authentication
schemes, (University of Cambridge) (2012)
http://css.csail.mit.edu/6.858/2013/readings/oauth-sso.pdf

Andrey Labunets OAuth 2.0 and the Road to XSS, (Hack In The Box
Security Conference) (2012)
http://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%
20- %20Andrey %20Labunets %20and%20Egor%20Homakov%20- %
200Auth%202.0%20and%20the %20R0ad%20t0%20XSS.pdf

P.Hu and W. C.Lau OAuth App Impersonation Attack, (BlackHat) (2014)
https://www.blackhat.com/docs/us- 14/materials/
us- 14-Hu-How-To-Leak- A100-Million-Node-Social- Graph- In-Just-One- Week.
pdf

T. Lodderstedt,M. McGloin, P. Hunt OAuth 2.0 Threat Model and Security
Considerations, (IETF) (2013)
https://tools.ietf.org/html/rfc6819#section-2.2

List of OAuth Providers, (Wikipedia) (2015)
https://en.wikipedia.org/wiki/List_of_OAuth_providers

Verizon RISK Team 2013 Data Breach Investigations Report, (Verizon)
(2013)

Third Party Breach, (Tumblr Staff) (2016)
https://staff.tumblr.com/post/144263069415/
we-recently-learned-that-a- third- party-had

Brian Krebs As Scope of 2012 Breach Expands, LinkedIn to Again Reset
Passwords for Some Users, (Brian Krebs) (2016)
http://krebsonsecurity.com/2016/05/as-scope-of-2012-breach-expands-linkedin-to-again-

Amazon Forces Password Resets after Possible Security Breach, (Security
Week) (2015)
http://www.securityweek.com/amazon-forces-password-resets- after- possible-security-bre

Adi Robertson Weak GitHub passwords lead to account security breach,
(The Verge) (2013)
http://www.theverge.com/2013/11/20/5126906/
weak-github-passwords-lead-to-account-security-breach

Selena Larson Instagram restricts API following password breach, will re-
view all apps going forward, (The Daily Dot) (2015)
http://www.dailydot.com/technology/instagram- api-restrictions/

Yahoo email account passwords stolen, (Yahoo!) (2014)
https://www.yahoo.com/news/yahoo-email-account-passwords- stolen-002044026-- financ
html?ref=gs

https://www.csid.com/wp-content/uploads/2012/09/CS_PasswordSurvey_FullReport_FINAL.pdf
https://www.csid.com/wp-content/uploads/2012/09/CS_PasswordSurvey_FullReport_FINAL.pdf
http://www.eurecom.fr/en/publication/2910/download/rs-publi-2910_1.pdf
http://www.eurecom.fr/en/publication/2910/download/rs-publi-2910_1.pdf
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://www.dashlane.com/download/Security-Whitepaper-Final-Nov-2011.pdf
https://www.dashlane.com/download/Security-Whitepaper-Final-Nov-2011.pdf
http://devd.me/papers/pwdmgr-usenix14.pdf
https://crypto.stanford.edu/~dabo/pubs/abstracts/pwdmgrBrowser.html
https://www.cs.ox.ac.uk/files/6487/pwvault.pdf
http://www.jbonneau.com/doc/CBJR15-IEEESP-cracking_resistant_password_vaults.pdf
http://www.jbonneau.com/doc/CBJR15-IEEESP-cracking_resistant_password_vaults.pdf
http://css.csail.mit.edu/6.858/2013/readings/oauth-sso.pdf
http://css.csail.mit.edu/6.858/2013/readings/oauth-sso.pdf
http://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Andrey%20Labunets%20and%20Egor%20Homakov%20-%20OAuth%202.0%20and%20the%20Road%20to%20XSS.pdf
http://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Andrey%20Labunets%20and%20Egor%20Homakov%20-%20OAuth%202.0%20and%20the%20Road%20to%20XSS.pdf
http://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Andrey%20Labunets%20and%20Egor%20Homakov%20-%20OAuth%202.0%20and%20the%20Road%20to%20XSS.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Hu-How-To-Leak-A100-Million-Node-Social-Graph-In-Just-One-Week.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Hu-How-To-Leak-A100-Million-Node-Social-Graph-In-Just-One-Week.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Hu-How-To-Leak-A100-Million-Node-Social-Graph-In-Just-One-Week.pdf
https://tools.ietf.org/html/rfc6819#section-2.2
https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://staff.tumblr.com/post/144263069415/we-recently-learned-that-a-third-party-had
https://staff.tumblr.com/post/144263069415/we-recently-learned-that-a-third-party-had
http://krebsonsecurity.com/2016/05/as-scope-of-2012-breach-expands-linkedin-to-again-reset-passwords-for-some-users/
http://www.securityweek.com/amazon-forces-password-resets-after-possible-security-breach
http://www.theverge.com/2013/11/20/5126906/weak-github-passwords-lead-to-account-security-breach
http://www.theverge.com/2013/11/20/5126906/weak-github-passwords-lead-to-account-security-breach
http://www.dailydot.com/technology/instagram-api-restrictions/

10 .

APPENDIX

A. PASSWORD MANAGER PLATFORMS

Table I. : Password Manager Platforms

Provider 3rd
Desktop | Mobile Browscfr Device | Web Auto Party
Extension | Sync Access Cloud
Backups
Backups
WM,

1Password LW All G,ES.O Yes Yes Yes Yes
Dashlane WM Al All Yes Yes No No
Trend Micro
Password WM All G,EIE Yes Yes Yes No
Manager
Identity w Al GESJIE | Yes No No No
Safe
KeePass All All All No No No Yes
Keeper All All G,ES,IE Yes Yes Yes No
Keychain M I S Yes No Yes No
Access
LastPass All All All Yes Yes Yes No
LogMeOnce WM Al All Yes Yes Yes Yes
MSecure WM All In dev Yes No No Yes
NeedMy None None None No Yes Yes No
Password
PassPack In dev None G,ES.IE Yes Yes No No
Password W All G,EIE Yes No Yes No
Boss
True Key WM Al G,FIE Yes No No No
Password w All GEIEO | No No No Yes
Depot
Password WM Al GESIE | Yes No Yes No
Genie
Roboform All All All Yes Yes No No
SplashID WM All G Yes Yes Yes No
Safe
Sticky WM Al All Yes Yes Yes Yes
Password
Zoho Vault None Al None Yes Yes Yes No

Table II. : Key

Operating Systems Browsers

A = Android L-W = Linux with Wine | W = Windows G = Google Chrome S = Safari
I=i0S In dev = in development | M =Mac OS X | F = Firefox O = Opera
Wp = Windows Phone L = Linux IE = Internet Explorer

B. PASSWORD MANAGER FEATURES

Table III. : Security Features

Secure Password | Automatic | Security Multi-
Keylogger . . AD/ Pro
Password Strength Password Breach Protection Biometrics | Factor LDAP | Support
Generator | Metrics Changes Alerts Auth PP
1Password Yes Yes No Yes Yes fingerprint Yes No Yes
Dashlane Yes Yes Yes Yes No fingerprint Yes No Yes
Trend Micro
Password Yes Yes No No Yes No No No No
Manager
Identity Yes Yes No No Yes No No No Yes
Safe
KeePass Yes Yes No No No No Yes No No
Keeper Yes Yes No No No fingerprint Yes Yes Yes
Keychain Yes Yes No No No fingerprint Yes Yes Yes
Access
LastPass Yes Yes Yes Yes Yes fingerprint Yes Yes Yes
LogMeOnce Yes Yes Yes No Yes face, . Yes Yes Yes
fingerprint
MSecure Yes Yes No No No fingerprint No No No
NeedMy No No No No Yes No No No No
Password
PassPack Yes Yes No No Yes No Yes No No
Password Yes Yes No No No fingerprint Yes No Yes
Boss
face,
True Key Yes No No No No . Yes No Yes
fingerprint
Password Yes Yes No No Yes No Yes Yes Yes
Depot
Password
. Yes Yes No No No No No No No
Genie
Roboform Yes No No No No No Yes No Yes
SE;ZSMD Yes Yes No No Yes fingerprint Yes Yes Yes
Sticky .
Password Yes Yes No No Yes fingerprint Yes No Yes
Zoho Vault Yes No No No No fingerprint Yes Yes Yes

12 .

C. PASSWORD MANAGER CRYPTOGRAPHY

UNK = unknown - this means either the algorithm was performed server side or could not be viewed for other reasons (ie. cost).

Table IV. : Password Manager Cryptographic Algorithms

Key
Keyge.n Salt Iterations | Hash Databas? Size
Algorithm | (bytes) Encryption .
(bits)

1Password PBKDF2 16 100,000 SHA-512 | AES 256
Dashlane PBKDF2 32 10,000 SHA-1 AES 256
Trend Micro
Password PBKDEF2 16 2,000 SHA-256 | AES 256
Manager
Identity
Safe PBKDF2 UNK UNK UNK AES 256
KeePass PBKDF2 16 6,000 SHA-256 | AES 256
Keeper PBKDF2 16 1,000 SHA-256 | AES 256
Keychain PBKDF2 | UNK | 10,000 UNK AES 256
Access
LastPass PBKDF2 32 5,000 SHA-256 | AES 256
LogMeOnce | PBKDF2 32 10,000 SHA-1 AES 256
MSecure PBKDF2 UNK UNK SHA-256 | Blowfish 256
NeedMy UNK UNK | UNK UNK UNK 256
Password
PassPack Custom UNK UNK SHA-256 | AES 256
gi‘)zzword PBKDF2 | UNK | UNK UNK AES 256
True Key PBKDF2 UNK UNK SHA-512 | AES 256
Password PBKDF2 | UNK | UNK UNK AES 256
Depot
Password PBKDF2 | UNK | UNK UNK AES 256
Genie
Roboform PBKDF2 16 1,000 SHA-256 | AES 256
SplashID UNK UNK | UNK UNK AES 256
Safe
Sticky

PBKDF2 16 3,000 SHA-256 | AES 256
Password
Zoho Vault PBKDF2 16 1,000 SHA-256 | AES 256

D. PASSWORD MANAGER WEB APP PROTECTIONS

A summary of some of the measures taken (or not taken).

Table V. : Protections used by web app password managers

HTTPS

TLS
Version

TLS
Key
Size
(bits)

TLS
Cipher
(default)

HTTP
ONLY

Strict-
Transport-
Security

X-Frame
Options

CSRF
Token

X-
XSS-
Protection

Content-
Security-
Policy

1Password

1.2

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

None

None

Dashlane

1.2

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

Same
origin

None

Trend Micro
Password
Manager

112

RSA,
3DES,
EDE,
CBC,
SHA

Deny

No

No

None

Keeper

Yes

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

Yes

Same
origin

Yes

Itself,
Google,
AWS

LastPass

Partial

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

Yes

None

None

LogMeOnce

Partial

1.2

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

Yes

Yes

None

Yes

Very long,
adverts,
’unsafe-eval’

NeedMy
Password

Yes

256

RSA,
AES-256,
CBC,
SHA

No

No

None

No

No

None

PassPack

1.2

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

No

Same
origin

No

No

None

Roboform

Login
only

1.2

128

RSA,
AES-128,
CBC,
SHA

None

No

No

None

SplashID
Safe

Yes

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

Yes

Yes

Deny

Yes

None

Zoho Vault

Yes

128

ECDHE,
RSA,
AES-128,
GCM,
SHA-256

No

Yes

Same
origin

Yes

Non

13

14

E.

PASSWORD MANAGER WEB APP METHODS

This section goes into greater detail about the operation and network traffic of password managers with a web interface. In all cases, these
things happen within a TLS session, so sending something in “’plaintext” means it has no addition encryption other than TLS.

&)

@

3

C)

®)

Q)

@)

®)

®

1Password - A group generator (g) is raised to the modulus power of a salted password hash. This value is sent to the server for
comparison to check the password validity, so the server must store at least this value when the account is created. If the password is
correct, the key is generated using Javascript in the browser with 100,000 iterations of PBKDF2. The server sends the encrypted data,
and the decryption is done client-side with the generated key.

Dashlane - Their login process has two steps - email selection and password entry. Once you select the email, the server preemptively
sends the encrypted data associated with that email. When the master password is entered, the key is generated using 10,000 rounds of
PBKDF2. That key is then tested for decryption. If the decryption fails, the password is wrong. If it succeeds, the data is decrypted and
displayed. No password-related information is ever passed over the network, so it is unlikely that Dashlane servers store any password
hashes.

Trend Micro Password Manager - Trend Micro has a two-step login. You first log into your Trend Micro account, then you enter your
master password. The account password is treated like any normal password, and sent in a hashed version to the server during login.
Then, the server sends back (in a cookie), an encrypted key and initial vector (IV) that it encrypted and stored server-side during the last
session with this account. The master key is generated from the master password using PBKDF2 with 2,000 rounds. The master key is
used to decrypt the key and IV sent by the server (which become a sort of session key), and to encrypt a new key and IV for next time.
The vault data is then sent over - the entire vault is encrypted with the session key that was decrypted by the master key. Sensitive data
(usernames and password) are also encrypted with the master key. The session key decrypts the vault on the client side to display the
main page, and sensitive fields are decrypted on the client side as they are accessed.

LastPass - When the password is entered, the master key is generated with PBKDF2 with 5,000 rounds. The key is then run through one
more round of PBKDF2 and this value is sent to server to confirm the login, so the server stores this value. The username is passed over
TLS in both plaintext and encrypted with the master key. Encrypted vault data is sent after login and decrypted with the master key on
the client side. New entries are encrypted before being sent back to the server.

LogMeOnce - When the password is entered, the master key is generated using 10,000 iterations of PBKDF2, with the username as a
salt. This master key is then sent in plaintext to the server to confirm the login, so it possible that the server stores the keys. The server
sends over the encrypted data, and all decryption and encryption of new records is done client-side.

NeedMyPassword - Everything, including the password, is sent in plaintext to the server. The data received from the server is also
in plaintext. If there is any encryption/decryption beyond TLS, it all happens server side, so the server has access to your data and
passwords.

PassPack - Like Trend Micro, this has both an account password and an encryption password. They have a custom hash function: every
other byte of the SHA-256 hash of the value, starting with the first byte. For the account login, the base64 value of the username is
sent to the server, along with the custom hash of the accountpassword, and the account password appended to itself. For the encryption
password, they send this data, plus the first two bytes of a double-SHA-256 hash of the password, plus the key and a custom salted hash,
all in plaintext. They use a custom key generation algorithm, which is probably not wise: A double-SHA-256 hash of the password with
a salt each time, where the salt is a pre-determined value appended to the password. The server determines if a login is valid by sending
a message index value, so the server stores some if not all of the sent values for verification. The server then sends the encrypted data,
and all decryption is done client-side.

Roboform - On login, the base64 of the username and a 16-byte salt value are sent to the server, where the account is logged in. The
server replies with the encrypted data, and decryption is done client-side. If the decryption fails, the password is judged to be incorrect.

SplashID Safe - Password is passed in plaintext - the server tells the browser if it is correct or not, so it must store some password
information to determine this. The data is similarly passed in plaintext, so any decryption happens server-side, meaning that the server
has access to your data at some point.

(10) Zoho Vault - Like others, this has both an account password and an encryption password. The account password and username are

transmitted in plaintext, so the server stores some password-related information for the account password. When the encryption password
is entered, the server sends an encrypted JSON dict with one value: the timestamp of the last account login. The master key is generated
from the encryption password using PBKDF2 with 1,000 iterations. The master key is used to decrypt the JSON - if it succeeds, the
password is deemed correct, and the server sends the rest of the encrypted vault. Decryption happens client-side in the browser.

F. PASSWORD MANAGER AUTOFILL PRACTICES

Table VI. : Autofill practices in password managers

Different

Modified

CSS

CSS

Default ;I:;P Form iléi.gcomplete iFrame | Field display | opacity gail;golxund
Action Name =None | =0
1Password Click Click Click Click Click Click Click Click None
Dashlane Auto Auto Fill Fill None Fill User Fill Auto
Trend Micro
Password Click None None Click Click Click Click Click Click
Manager
Keeper Click Click Click Click Click Click None None None
Keychain
Access Fill Click-Fill | Fill Fill Fill Fill Fill Fill Fill
(Safari)
LastPass Fill Fill Fill Fill Fill None Fill Fill Fill
LogMeOnce | Auto Auto Auto Auto Auto Auto None None Auto
PassPack Click None Click Click None Click Click Click None
True Key Auto None Fill Fill Fill Fill Fill Fill Auto
Roboform Click None Click Click Click Click Click Click Click
gﬂi‘shm Click-Fill | Click-Fill | Click-Fill | Click-Fill None | Click-Fill | None | None | Click-Fill
Sticky Fill Fill Fill Fill None | Fill None | None | Fill
Password
Firefox Fill Fill Fill Fill Fill Fill Fill Fill Fill
Chrome Fill None Fill Fill Fill Fill User User Fill
Key:

—Auto - auto-fill both fields and auto-submit

—Fill - auto-fill both fields
—User - auto-fill only the username field
—Click - requires the user to click one button, then it fills and submits

—Click-Fill - requires the user to click one button to fill both fields, but does not submit the form

—None - no action taken or available from the password manager

	Introduction
	Single Sign-On (SSO)
	Password Managers
	Two-Factor Authentication
	Attacker Types

	Related Work
	OAuth
	Password Managers

	Single Sign-On (SSO)
	The OAuth Protocol
	OAuth Implementations
	Differences

	OAuth Vulnerabilities
	OAuth Provider Security
	OAuth Privacy
	Tracking

	Other SSO Methods
	SAML
	CAS
	Cosign

	Password Managers
	Cryptography
	Benefits
	Browser Extension Autofill Vulnerabilities
	Web App Issues/Vulnerabilities
	Protecting the Master Password
	Protecting the Data

	General Web Security
	iFrame Embedding

	Browser Password Managers
	Recommended Password Manager

	SSO vs. Password Managers
	Security
	Privacy
	Ease of Use
	Cost

	Recommendations
	For a Home User
	For a Small Startup
	For a Large Corporation

	Conclusion
	Password Manager Platforms
	Password Manager Features
	Password Manager Cryptography
	Password Manager Web App Protections
	Password Manager Web App Methods
	Password Manager Autofill Practices

