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Abstract

Sandia National Laboratories has been conducting research into utilizing radiography, combined with 

automated image processing algorithms, to create a novel method of non-invasive verification. In many 

treaty verification scenarios, inspectors must verify the authenticity or identity of items that contain 

sensitive features. While radiography is a powerful inspection tool, it also reveals a great deal of detail 

about an item that may not be allowed by a verification agreement. Automation of the image processing 

task enables use of an information barrier, giving inspectors confirmation that an inspected item matches 

a previous measurement or agreed template while protecting sensitive information about the item.

Our technique utilizes feature matching in radiographic images of complex items. The SURF (Speeded 

Up Robust Features) method is used to extract features from the images. FLANN (Fast Learning 

Artificial Neural Network) is used in the matching process. The feature list becomes the template. The 

SURF features are somewhat rotation, scale, and translation invariant, which means the reference and 

target images need not be taken from the exact same position for the source and film, making data 

collection easier. A significant discovery is that we can discard the position information of the features 

and still perform the matching adequately. With no position information, geometry cannot be recovered; 

we believe it is impossible to reconstruct the image in this case, creating an irreversible transform that 

creates non-sensitive feature lists, or templates. This method is analogous to using a paper shredder to 

prevent reconstruction of an original while still being able to match features from the individual 

shredded pieces.

Results of these image processing techniques on radiography simulations are promising, showing high 

correlation between features from identical items, even at slightly different measurement angles. Items 

not matching the original have significantly lower correlation with the feature set, enabling an 

automated decision process.

We provide examples and results from complex electro-mechanical systems to demonstrate the 

effectiveness of this technique in the automatic verification of such items, and a path forward to the 

creation of a complete verification system with an information barrier.
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1	Introduction

This paper introduces a new approach for utilizing radiography behind an information barrier to verify 
the authenticity of an item presented for inspection, while keeping the item, and the radiography image 
of that item, shielded from an inspector’s view. In many treaty verification scenarios, inspectors must 
verify the authenticity or identity of items that contain sensitive features. While radiography is a 
powerful inspection tool that can definitively identify an object as matching, it also reveals a great deal 
of detail about an item that may not be allowed by a verification agreement. Automation of the image 
processing task enables use of an information barrier, giving an inspector confirmation that an inspected 
item matches a previous measurement or agreed template while protecting sensitive information about 
the item.

Confirming or validating an object is often done with template matching data from the test object to 
reference data. For this scenario, we assume that the test object can be characterized by internal 
construction, which we wish to examine without dismantling. Imaging with radiography is non-invasive, 
non-contact, relatively fast, and rich in information. It is a good tool for verification of declarations (i.e. 
dismantlement) involving nuclear weapons or any other type of complex electromechanical system. The 
focus of our research is in verifying such a complex item against a previously generated template or 
reference set. Matching radiograph images would be a straight forward verification tool if visual 
inspection is permitted; radiography is commonly used for many non-destructive evaluation tasks. 
However, the geometry information acquired through radiography for treaty verification will likely 
contain highly sensitive information, which can never be revealed to an inspector. Therefore, all image 
processing in such a scenario must occur behind an information barrier, and thus be fully automated. 
Automated image verification tools for such an application have not been demonstrated. 

This paper presents a technique that allows images to be matched through a template made up of 
features detected by open source image processing algorithms. The process to create and match 
templates can be automated, and therefore can be executed behind an information barrier with high 
confidence. Furthermore, we believe that if location information associated with image features is 
discarded, the technique is irreversible: the image cannot be recreated from the template. This method is 
analogous to using a paper shredder to prevent reconstruction of an original while still being able to 
match features from the individual shredded pieces. This results in templates which are non-sensitive.  
No sensitive information needs to be stored, reducing the complexity of the information barrier system 
as well as the procedures for its storage and use.

It is understood that in any actual verification agreement, creation of a template from a reference object 
presents its own challenges, notably the authentication of the original object. This paper does not 
address this challenge, which could potentially be accomplished through other types of more 
comprehensive (longer time frame) measurements or other means to establish provenance.

2	Technique

If a reference radiographic image was used directly as a template, simple image differencing could be 
used to match a test image of an unknown object against a known one for a complete match. However, 
this is really only feasible if the images are highly aligned. It fails quickly with even minor variations 
between the two snapshots. This type of alignment for radiograph requires controlled, fixtured settings, 
which are a particular problem for field gathered radiographs. It is also problematic when long time lags 
occur between the original imaging and later test imaging.

To resolve the problem of alignment we have researched feature detection and matching techniques, 



commonly used in image processing, for application to radiography images. Feature detection and 
matching enable robust comparisons even with fairly unaligned views. 

2.1	Feature	detection

In computer vision, feature detection is a method to reduce the image data to a much smaller set of 
relevant information. This set of features is expressed as a feature vector. There are a number of popular 
methods to detect features, including SIFT (Scale Invariant Feature Transform), SURF (Speeded Up 
Robust Features), FAST (Features from Accelerated Segment Test), BRIEF (Binary Robust Independent 
Elementary Features), ORB (Oriented FAST and Rotated BRIEF), and others [1]. 

A literature search was completed to see which methods have found good use with radiographic images, 
and SIFT and SURF have proven useful [2]. Of note, this type of computer vision, though well studied, 
has been used primarily in visual images; while some work has been published using radiographic 
images, this seems to be exclusively for medical imaging. We found no direct references to feature 
matching in industrial radiography. In our application, SURF and SIFT outperformed all other methods. 
A distinct advantage to SIFT or SURF is by design their features are invariant to translation and rotation. 
This means the reference and target images need not be taken from the exact same position for the 
source and film, making data collection easier. 

Both feature detection methods output, as a result, a list of feature artifacts that come in two parts. The 
first part, called keypoints, contains basic geometry information of the feature: the location, scale and 
orientation. The second part, called keypoint descriptors, is a vector of numbers derived from the 
algorithm, using local gradient data combined with a set of histograms processed at various orientations. 
Both SIFT and SURF produce 128 element feature vectors (See [3] for an explanation of SIFT). It is 
important to note that a feature vector is not simply a small section of the image, or an image patch.

2.2	Feature	Matching

Our process compares a current radiographic image, called the test image, against a previous image, 
called a reference image. The reference image(s) are taken in advance, presumably in a controlled 
situation. The test image is taken at the time where confirmation or verification is needed, presumably in 
the field at a later time. There may be limited access to the object for the test image (it may be stored in 
a container), or difficulty in taking an image at a precise orientation or alignment. In this case, the 
reference set needs to be inclusive of the possible space of orientations to be expected. The goal then is 
to find the closest reference image, and look at the quality of the match to determine if the test object 
matches the object that produced the reference images. Figure 1 shows an example. 

Figure	1.	Test	and	reference	imaging	directions	around	sample	target.



Two feature matching methods were implemented. The first method, which we call “one-to-one”, 
compares features from the test image to features from each reference image independently. Each 
feature from the test image is compared against every feature of the reference image. This comparison is 
referred to as the feature distance. Features are said to match if the distance between the feature vectors 
is small. The smaller the feature distance the stronger the match. The reference image that produces the 
minimum aggregate feature distance is the best match to the test image. 

A second method for matching features, which we call “one-to-many”, compares each feature vector 
from the test image to all the features from all of the reference images. The minimum feature distance is 
determined for each test image feature. The minimum feature distances are binned by the reference 
image from which they were derived, producing a histogram of the minimum feature distances versus 
reference image. The reference image with the largest number of minimum feature distances is the best 
match to the test image. The aggregate minimum feature distance for all the test image features provides 
a metric of the strength of the match.

Our code for the feature detection and feature matching uses the OpenCV toolkit [4Error! Reference 
source not found., which contains implementations of these algorithms in code libraries, to build the 
software prototype. FLANN (Fast Learning Artificial Neural Network) was used as the matching 
algorithm [4]. It calculates the feature distance as a vector Euclidean distance of the feature keypoint	
descriptors. Either method described above will produce a best match reference image to the test image. 
These algorithms always produce a best match whether the match is good or not; i.e. a local minimum. 
For this reason, the aggregate feature distance must be below a threshold to be considered a valid match.

2.3 Case	Study

This case study examines the sensitivity of the image matching algorithm to ten imaging parameters: six
position parameters (x, y, z rotation and x, y, z translation), two exposure parameters (energy and dwell 
time), and two image plane parameters (noise and focus). Each parameter was tested independently. The 
study was conducted using the solid model of a notional electronic timer assembly and simulated 
radiography images. Figure 2 shows the model as well as two radiographic images of the sample target 
object. The object has approximate dimensions of 10 x 4 x 2 cm. 

The study used the Sandia SimXray tool from the XrayToolKit (XTK) [6] package to generate simulated 
radiographs for testing and generation of reference sets. The simulator can mimic several X-Ray 
sources, as well as films likely to be used in the field. The X-Ray source is a Betatron2, with a nominal 
energy of 2000 KeV and dwell time of 1000. The film is NexRay MMX with an image size of 35 by 42 
cm and 2024 by 2443 pixels. Other nominal parameters include a 2 m standoff distance of the source 
and a 0.2 m standoff distance of the film from the center of model. 

Figure 2. Sample radiograph of electronic timer model from front and from top.



Figure 3 shows an example of a test to reference image match. The images seen in the background are 
the test image on the left, and one of many reference images on the right. The test image would be a 
recent image of a target item, in this case the electronic timer model seen above. The reference image is 
of one the stored reference images of that model. These are not the same image; they were taken at 
different orientations. The yellow circles are highlighted features that were detected in each image (in 
this case by the SURF method). The blue lines are the pairs of features that matched. Note the upper 
image pair has few matches, while the lower pair has many matches.

Figure	3. Features	and	matches	in	test	to	reference	images

In this sensitivity study, we have one test image and many reference images, each of the same object but 
from a different position or other parameter change. The test image was evaluated against the reference 
image set using both the one-to-many and the one-to-one methods.

The one-to-many method tends to produce a sharper indication of the best match image while the one-
to-one method provides a better indication of the sensitivity of the image match to the study parameter. 
The SURF algorithm was used for all feature extraction. The geometry elements (keypoints) to all 
feature vectors were discarded prior to performing any matching. Our results are presented below.

Rotation about X, Y, and Z Axis - The reference images were generated at every 1 degree about the 
each axis. The test image was taken at a rotation of 45.5 degrees. Figure 4a and 4b show the results for 
rotation about the Z axis for one-to-many and one-to-one matching. Figure 4a shows a strong preference 
for the reference images adjacent to the test image orientation. Figure 4b shows a strong preference for 
the same reference images but also indicates the reference images several degrees away from the 
optimum on each side would still be better matches to the test image compared to anything further away. 
The results for rotation about the Y axis are very similar the Z axis. Since the SURF feature extraction 
algorithm is somewhat rotation invariant, the results for rotation about the optical axis of the imaging 
system (rotation about the X axis) show a broad consistently low feature distance (good match) across 
all of the reference images without a clear best match image preference (see figures 4c and 4d). 



Figure	4a.	Rotation	about	Z,	one-to-many	match.							 Figure	4b.	Rotation	about	Z,	one-to-one	match.

Figure	4c.	Rotation	about	X,	one-to-many	match.								Figure	4d.	Rotation	about	X,	one-to-one	match.

Translation along X, Y, and Z Axis - The reference images were generated at every 0.005 meters from 
an offset along the indicated axis from -0.15 to 0.15 meters. The test image was taken at an offset of 
0.057 meters along the test axis. Figures 5a and 5b show the results for translation along the Z axis for 
one-to-many and one-to-one matching. Again the one-to-many method shows a strong preference for the 
reference images adjacent to the test image orientation. Figure 5b shows a strong preference for the 
same reference images but also indicates the reference images several centimeters away from the 
optimum on each side would still be better matches to the test image over anything further away. The 
results for translation about the Y axis are very similar the Z axis. Translation along the optical axis of 
the imaging system produces a zoom or scaling effect in the image. The SURF algorithm is scale 
invariant. The results for translation along the X axis are similar those for rotation about the same axis, 
with one-to-one results showing a broad consistently low feature distance (good match) across all of the 
reference images. There is a somewhat stronger preference for the nearest reference images than in the 
rotation case. 

		

Figure	5a.	Translation	in	Z,	one-to-many	match.		 				Figure	5b.	Translation	in	Z,	one-to-one	match.

Energy and Dwell Time (Exposure) – For the energy test reference images were generated in 50 keV
increments, from 100 to 4,000 keV. The test image was generated at 2,062 keV. We saw very little 
impact on image matching (aggregate feature distances) from 1400 to 3000keV (see figures 6a and 6b). 
The source energy level should be controllable to a much tighter tolerance than this in a real system.



The reference images for the dwell time test were generated in 50 second increments, from 200 to 4,000 
seconds. The test image was taken at 1,062 seconds. One-to-many and one-to-one results for Dwell 
Time tests are shown in Figures 6c and 6d respectively. The one-to-one results in Figure 6d indicate a 
broad minimum in aggregate feature distance between 800 and 1300 seconds of dwell time. In practice
the Dwell Time should be controllable to a much tighter tolerance than this.

  

Figure	6a.	Energy,	one-to-many	match. 			Figure	6b.	Energy,	one-to-one	match.

		

Figure	6c.	Dwell	Time,	one-to-many	match. 			Figure	6d.	Dwell	Time,	one-to-one	match.

Noise and Focus – The Noise and Focus tests were handled differently than the previous parameters. 
For noise, reference images were generated by adding an increasing uniformly distributed random noise 
value to the test image. In this case, the noise range is increased by one integer value per step. 200 steps 
were taken for the reference set. The one-to-many and one-to-one match results are shown in Figure 7a 
and 7b respectively. The matching algorithm appears to be tolerant of noise out to about 22 or 23 steps
or a noise level of about 4 ½ bits.

Figure	7a.	Noise, one-to-many	match. 																						Figure	7b.	Noise,	one-to-one	match.

Focus is similar to the noise problem. The reference images are generated from the probe image by 
adding an increasing amount of Gaussian blur. At each step the blur kernel size is increased to the next 



odd square kernel size, i.e. 1x1, 3x3, 5x5, etc. 100 steps were taken for the reference set. Results of the 
Focus study are presented in Figures 8a and 8b. It appears that for this case the matching algorithm can 
tolerate about 5 or 6 steps of blur (9x9 or 11x11 kernel size). This is a significant amount of blur 
especially considering that the test object only spans a few hundred pixels in each dimension. In our test 
we were comparing an unblurred test image to blurred reference images so we are really measuring the 
effect of the difference in blur between test and reference image. In practice the blur in a radiograph is 
determined by the source to object to film distances and should be controllable to limit the difference in 
blur from test to reference image.

		

Figure	8a.	Focus,	one-to-many	match. Figure	8b.	Focus,	one-to-one	match.

3	Information	Barrier

Sandia National Labs has significant experience working with information barriers in verification 
applications. The TRIS and TRADS systems involved the protection of sensitive information both for 
storage and processing behind and information barrier [7][8][9]. Design of these systems required 
addressing red/black separation issues as well as hardware and software authentication. These systems 
processed fairly limited one-dimensional spectral data using compact matching algorithms and simple 
hardware. It is assumed that both the radiographic images of a reference object and the images taken for 
verification contain sensitive information that an inspector may not access. The storage and processing 
of 2D radiographic imagery data complicates both the hardware and software requirements within the 
information barrier significantly.

In the verification techniques described in this paper, both the reference images and the test image used 
for verification are reduced to feature vector sets. This reduces the volume of data required to represent 
the images and reduces the possibility of casual unauthorized observation of the data. The algorithms 
used to both extract the feature vectors and match feature sets are open source and will be transparent to 
all treaty partners. This again reduces the complexity of the information barrier structure and validation 
process.

The SIFT/SURF feature extraction algorithms produce separable geometry and non-geometry feature 
vector elements: the keypoints (geometry), and the feature keypoint descriptors (non-geometry). We 
have demonstrated that we can accurately match images without using the geometry elements of the 
feature vector. We hypothesize and are in the process of proving that if the geometry elements of the 
SIFT/SURF feature vectors are discarded, these feature extraction algorithms constitute an irreversible 
transform from the image space to the feature vector space. Thus the original image and its sensitive 
geometry cannot be reconstructed from the feature vector set. A literature search revealed there has been 
some work [10][11] on reconstructing images from SIFT/SURF feature vector sets. Both methods 



referenced relied on the geometry data to accomplish their results. It is debatable that the results 
achieved would reveal accurate geometry or sensitive information. We have found no information 
suggesting that reconstruction would be possible without the geometry data. If this is true, it would make 
the feature vector data non-sensitive and would allow the storage of both reference template data and 
test image feature data, as well as the feature matching processing, to take place outside the information 
barrier. The information barrier system could be reduced to a system that captured a sensitive 
radiographic image and extracted and exported non-sensitive feature vectors. No image or other data 
storage, other than volatile memory used for processing, would reside inside the information barrier. 
Issues of how to move the information from inside to outside the information barrier have been 
addressed in previously developed systems such as TRIS and TRADS. The automated processing and 
reduced storage requirements of the feature vector matching approach is well suited for an information 
barrier implementation.

4	Conclusion

We have successfully used radiography images with a feature matching method to identify a test object 
against a reference object. The image comparison was accomplished using SURF feature detection data 
as the template. Once the radiograph is taken, the task of creating the test feature set and matching it 
against a reference template set can be completely automated. Therefore, there is no need to save the 
radiographic images or present them to an inspector; thus the applicability to an information barrier, 
because the processing can happen without user input or visibility into the actual data. We believe this 
new method of radiography image comparison could be of use for verification of sensitive items which 
must be shielded from visual inspection. 

A significant discovery is that we can discard the image position information part of the feature 
detection and still perform the matching adequately to identify the closest reference image to the target 
image. With no position information, geometry cannot be recovered; in this case we believe it is 
impossible to reconstruct the image, creating an irreversible transform that produces non-sensitive 
templates consisting of feature lists. This reduces the processing of sensitive data to the extraction of
features from a temporary radiographic image and eliminates the need to store sensitive images or 
templates, enabling complete transparency of the feature matching process. 

The data shown above was generated using a simulated radiography system, with the input being a CAD 
model of a notional electronic timer. Results of these image processing techniques on radiography 
simulations are promising, showing high correlation between features from identical objects, even at 
slightly different measurement angles. Objects not matching the original have significantly lower 
correlation with the feature set, enabling an automated decision process. 

We have also matched real radiography images against our CAD model based reference sets and 
verified good performance. This is important, since it may be difficult to obtain full reference sets by 
real-world radiography due to cost, safety, or security constraints. Instead, reference feature sets can be 
constructed through simulation only using CAD models of the real world objects. Building reference 
feature sets from simulated radiography based on CAD models could be provide an alternative to taking 
large numbers of radiographic images to generate reference feature sets. 

We have also analyzed the sensitivity of feature matching for radiography images that are not an exact 
match. We looked at the positional variables; rotation about the Y and Z axes (elevation and azimuth), 
and translation about X, Y, and Z axes. We found that translation is fairly insensitive, meaning we can 
position the object within about 10 cm without much degradation. Rotation is much more sensitive, but 



as can be seen from Figure 4 above, one or two degrees of rotation has little effect on feature correlation, 
and good correlation can be found even with up to 10 degrees of rotation difference between test and 
reference images. We also tested other radiography variables: energy, dwell-time (exposure), focus, and 
image noise. These are all fairly insensitive to change, and can reasonably be expected to be controlled 
in the setup of the radiography system.

There are several other applications or extensions that may be areas for future work. Application as a 
unique identifier for chain-of-custody purposes could potentially identify unique manufacturing 
differences rather than the global similarities of type. Another application could be to verify a range of 
different object types by substituting template sets. If there is a need to identify the type of object, all the 
necessary templates could be installed on the same system. Finally, it may be possible to automate 
feature recognition for diagnostics or emergency response. Identifying missing/removed or 
damaged/displaced components in an object might be accomplished by including geometry information 
and identifying non-matching regions compared to a reference. 
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