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GDP fusion capsules

• GDP is one of the possible ICF ablator 
materials

• Imploded using a series of convergent 
shocks

• Initial shock at approximately 3 Mbar
– Just above complete dissociation
– 10% error bars too large

• VASP has a good track record with 
hydrocarbon material properties

GDP fusion capsule for NIF
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Use density functional theory (DFT) calculations 
to simulate glow discharge polymer.

• GDP is one of the possible ICF ablator 
materials

• First-principles simulations DFT
– VASP – plane-wave code w PAW core-functions
– Use of DFT codes simulating warm dense matter

• M. P. Desjarlais Phys. Rev. B 68, 064204(2003)
– Great care in convergence

• A. E. Mattsson et. al. Modeling and Simulation 
in Material Science and Engineering 13, R1 
(2005)

• Assemble reference system
– 272 Hydrogen, 200 Carbon
– Equilibrate at constant temperature and volume.
– Equilibrated for 3000+fs at 0.1 to 0.5 fs
– AM05 potential
– Standard deviation of energy and pressure <1%
– Block averaging to reduce correlation
– Atom positions courtesy of Sebastien Hamel 

(LLNL)

Quantum molecular 
dynamics (QMD) simulations 
give thermo-physical 
properties
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Molecular dynamics simulations to converge to 
a pressure and energy

• Typically tens of ps

• Simulation Size
– Larger number of atoms usually allow us to 

equilibrate in fewer time steps but take 
longer and more processors per time step

– Higher probability of seeing stochastic 
events such as dissociation or melt at the 
correct density and temperature.

– Smaller simulations become viable after 
melt.

• Large oscillations in pressure and 
energy but the mean will equilibrate 
to less than 1%.  Often we try for 
<0.5% or less

• The mean pressure and energy are 
used to calculate the Hugoniot.
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Shock compression is a way to investigate thermo-
physical properties of matter at extreme pressures

• Conservation of mass, energy, and 
momentum lead to the Rankine-Hugoniot
condition for the initial (1) and final state (2)

• E - internal energy

• P - pressure

• v – specific volume

• With high accuracy measure and/ or 
calculate thermo-physical properties

2 E2  E1   P2  P1  1  2 
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Use interpolation between two simulations to 
get actual Hugoniot value

• Run 2 or more simulations at each 
volume/density. 

• One with temperature such that 
energy/pressure are below the 
Hugoniot relation 

• Second simulation with the 
temperature too high

• Interpolate between for actual 
Hugoniot point

• If close, extrapolation is is viable 
(must be checked on a case-by-case 
basis).

• Small density increases to avoid too 
much instantaneous compression.

2 E2  E1   P2  P1  1  2 
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Photonic Doppler Velocimetry (PDV) measurement of 
impact & shock velocities

PDV mixes Doppler shifted 
target light with reference light
• Infrared light (1550 nm) 

transparent through GDP
• Velocity changes correspond to 

beat frequency shifts
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Backscatter Probe
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For a successful preheat, 
the scattered laser light 
at the target is 
preferentially scattered

from the prepulse vs. the main-
pulse indicating that the laser entry 
window is ablated away by the 
prepulse, thereby reducing the 
scatter of the main-pulse by the 
window. The design of the preheat 
laser pulse-shape appears to be 
successful. 

The SVS based ZBL backscatter diagnostic is a simple yet effective 
measurement of laser preheat conditions for MagLIF related shots.
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Streaked Pyrometry is an essential tool to measure the Temperature 
of GDP and other DMP samples and verify/support EOS calculations.  

• The shock velocity in both the front and back quartz 
windows is measured by VISAR and PDV to be 21.5 km/s.

• Dividing the Front/Back quartz window emission yields the 
Transmission through the GDP & Aerogel layers and 
Fresnel interface reflections.

• The corresponding temperature is 41,000K.*
*P.M. Celliers et.al., PRL 104, 184503 (2010)

• The amplitude of the VISAR signal indicates that the GDP 
reflectivity and therefore the emissivity is similar to quartz .

• Correcting for the increased transmission as the shock wave 
propagates through the GDP yields the Spectral Radiance 
of the GDP which can be fit to a Planck Grey Body function 
yielding temperature: T = 26.5 ±3 kK in this case.

Glow Discharge Polymer (GDP) is used in the production of ICF capsules. 
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VASP QMD simulations compared to 
experimental data

• VASP has good agreement with LLNL data at 
relevant pressure

• The large error bars on the VISAR data are from 
samples too thick to see through (250 micron)

• Thinner samples (180 micron) both VISAR and PDV 
can see through

• LLNL/VASP differ from Z data by 6% in density or 
25% in pressure

• Streaked pyrometry indicates 26kK while VASP 
shows 15kK at 3Mbar

• Analysis of remaining GDP samples (by weight)
– Baked/Pyro=C 85%, H 10%, N 0.9%, O2 4%
– UnBaked=C 69%, H 8%, N 0.25%, O2 24%
– VASP=C 89.7%, H 10.3%

• Using the above stoichiometry at 26kK, pressures 
are between 2.7 to 3.3 Mbar

• Still investigating possible reasons for discrepancy

Barrios data taken from 
Knudson and Desjarlais, 
PRB 88, 184107 (2013)
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VASP QMD simulations compared to 
experimental data

• VASP has good agreement with LLNL 
data at relevant pressure

• The large error bars on the VISAR data 
are from samples too thick to see 
through (250 micron)

• Thinner samples (180 micron) both 
VISAR and PDV can see through

• LLNL/VASP differ from Z data by 6% in 
density and 25% in pressure

• Z data has 2% error bars in density 
(primarily from reference density of 
1.03 +/-0.02)

• Incorrect reference structure

• Adsorption of other elements (water)

• Both causing initial density to be very 
different.

Barrios data taken from 
Knudson and Desjarlais, 
PRB 88, 184107 (2013)
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GDP with germanium dopant

• Ge dopant at 0%, 0.6%, and 1%

• Density at 1.05 g/cc and 1.13 g/cc

• In some cases, substituted Ge for 
carbon and others just randomly 
placed Ge in the simulations

• Method of Ge placement made 
minor difference

• At 1.05 g/cc, Ge significantly 
softens Hugoniot

• Keeping initial volume and adding 
germanium such that density 
increased to 1.13 g/cc shows 
compression ratio is similar but 
different enough to warrant a new 
EOS
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Inflection in the Hugoniot is dissociation

Dissociation
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Confirm shoulder in Hugoniot is from 
dissociation or melt by tracking “bonds”

• Set bond lengths
– Found in reference simulation
– If using experimental data, 

add 5% to 10% for atom 
vibration

• Atoms stay within bond distance 
for t (5 carbon vibrations ~90fs)

• Simulation long enough for 
atoms to move apart if not 
bonded

• Run for 10s of picoseconds to get 
good statistics in transient 
regime

• Because of the variability of 
transient species, tend to only 
plot marker species
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Conclusions

• Summary
– Equilibrate simulation to steady state
– Methods to calculate Hugoniot
– Compare to experimental data

• Good match to lower pressure data
• Z error bars much too large

– Compare to other simulations with germanium dopant
• Germanium softens the Hugoniot
• Need a new EOS for each dopant level

– The inflection in the Hugoniot from dissociation
– Did not analyze dissociation for doped simulations

• Future Work
– Finish analyzing current Z experimental data
– Improve experimental techniques (PdV at 1532nm)
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