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GDP fusion capsules

* GDP is one of the possible ICF ablator
materials

* Imploded using a series of convergent
shocks
* Initial shock at approximately 3 Mbar

— Just above complete dissociation
— 10% error bars too large

* VASP has a good track record with
hydrocarbon material properties

GDP fusion capsule for NIF
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Use density functional theory (DFT) calculations
to simulate glow discharge polymer.

* GDP is one of the possible ICF ablator

materials
* First-principles simulations DFT

— VASP - plane-wave code w PAW core-functions
— Use of DFT codes simulating warm dense matter
* M. P. Desjarlais Phys. Rev. B 68, 064204(2003)

— Great care in convergence

* A. E. Mattsson et. al. Modeling and Simulation
in Material Science and Engineering 13, R1

(2005)

* Assemble reference system
— 272 Hydrogen, 200 Carbon

— Equilibrate at constant temperature and volume.

— Equilibrated for 3000+fs at 0.1 to 0.5 fs
— AMO5 potential

— Standard deviation of energy and pressure <1%

— Block averaging to reduce correlation

— Atom positions courtesy of Sebastien Hamel

(LLNL)

Quantum molecular
dynamics (QMD) simulations

give thermo-physical
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Molecular dynamics simulations to converge to
a pressure and energy

» Typically tens of ps

« Simulation Size

— Larger number of atoms usually allow us to
equilibrate in fewer time steps but take
longer and more processors per time step

— Higher probability of seeing stochastic Poec
events such as dissociation or melt at the
correct density and temperature.

— Smaller simulations become viable after
melt.
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* Large oscillations in pressure and 120
energy but the mean will equilibrate 4600 6600 2000
to less than 1%. Often we try for time (fs)
<0.5% or less

 The mean pressure and energy are
used to calculate the Hugoniot.
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Shock compression is a way to investigate thermo-
physical properties of matter at extreme pressures

* (Conservation of mass, energy, and
momentum lead to the Rankine-Hugoniot
condition for the initial (1) and final state (2)

 E-internal energy
* P -pressure

e v -—specific volume

2E,—E)=(P,+P)v,-v,)

* With high accuracy measure and/ or
calculate thermo-physical properties
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Use interpolation between two simulations to
get actual Hugoniot value

* Run 2 or more simulations at each 3500 ' | ' | ' B
volume/density. 2000 :
. [ | T < Hugoniot(T)
* One with temperature such that . A
2500 & T = Hugoniot(T) 0
energy/pressure are below the 9 s T e
Hugoniot relation £ 2000 I
o
* Second simulation with the 2 1500 4 ‘
temperature too high & R
1000
* Interpolate between for actual N u
Hugoniot point 500 y b “
@ 8
* If close, extrapolation is is viable oL _ , _ , _ _
12 14 16 18 20 22 24
(must be checked on a case-by-case , .
Density (g/cm’)

basis).

* Small density increases to avoid too 2(E2 — El) = (P2 + PI)(UI —02)

much instantaneous compression.




Photonic Doppler Velocimetry (PDV) measurement of

impact & shock velocities
PDV spectrogram
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The SVS based ZBL backscatter diagnostic is a simple yet effective
measurement of laser preheat conditions for MagLIF related shots.
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transmission

Streaked Pyrometry is an essential tool to measure the Temperature
of GDP and other DMP samples and verify/support EOS calculations.

Glow Discharge Polymer (GDP) is used in the production of ICF capsules.

» The shock velocity in both the front and back quartz

Z2750 SVS1 Film Density: (Quartz-GDP-Aerogel-Quartz) windows is measured by VISAR and PDV to be 21.5 km/s.
+ Dividing the Front/Back quartz window emission yields the
! Front Quartz Transmission through the GDP & Aerogel layers and
~ : GDP Fresnel interface reflections.
apr 3 .
< R Aerogel » The corresponding temperature is 41,000K.*
i e Statel) g\ *P.M. Celliers et.al., PRL 104, 184503 (2010)
Mz £ State2 - artz + The amplitude of the VISAR signal indicates that the GDP
= State3 reflectivity and therefore the emissivity is similar to quartz .

 Correcting for the increased transmission as the shock wave
propagates through the GDP yields the Spectral Radiance
of the GDP which can be fit to a Planck Grey Body function
yielding temperature: T = 26.5+3 kK in this case.
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VASP QMD simulations compared to
experimental data

VASP has good agreement with LLNL data at

1400
relevant pressure

The large error bars on the VISAR data are from 1200
samples too thick to see through (250 micron)

Thinner samples (180 micron) both VISAR and PDV 1000

can see through %Tf 400
LLNL/VASP differ from Z data by 6% in density or g
25% in pressure 2 600
Streaked pyrometry indicates 26kK while VASP &£
shows 15kK at 3Mbar 400
Analysis of remaining GDP samples (by weight) 200

— Baked/Pyro=C 85%, H 10%, N 0.9%, O, 4%
— UnBaked=C 69%, H 8%, N 0.25%, O, 24% 0
— VASP=C 89.7%, H 10.3%

Using the above stoichiometry at 26kK, pressures
are between 2.7 to 3.3 Mbar

Still investigating possible reasons for discrepancy
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VASP QMD simulations compared to
experimental data

* VASP has good agreement with LLNL

data at relevant pressure 1400 B Barrios (Knudson—Desjariais quariz siandard) R
S Vasp

* The large error bars on the VISAR data 1200} 4 E?\f‘fﬁé?ﬁ‘?“ -
are from samples too thick to see o .
through (250 micron) 5 === s

* Thinner samples (180 micron) both % 800 :m - :
VISAR and PDV can see through E 600} £ f P . KWy

* LLNL/VASP differ from Z data by 6% in . m ) _!:*#— ' o
density and 25% in pressure e A

* Z data has 2% error bars in density > vee® ¥
(primarily from reference density of o ’2‘_'()' 35 30 35 20
1.03 +/-0.02) Density (g/cm’)

* Incorrect reference structure

» Adsorption of other elements (water) Barrios data taken from

* Both causing initial density to be very Knudson and Desjarlais,
different. PRB 88, 184107 (2013)
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Pressure (GPa)

GDP with germanium dopant

1400
= o
* Ge dopant at 0%, 0.6%, and 1% 1200 “.
] GDP 0% Ge py=1.05
* Density at 1.05 g/cc and 1.13 g/cc o GDPOG% Gepelid g
. A GDP 1% Ge py=1.05 Lo
* In some cases, substituted Ge for z ®  GDPI%Gepelis .
. O 800 "L
carbon and others just randomly ‘g .
placed Ge in the simulations 2 600 - ¢
& o R °
* Method of Ge placement made 400 . s
A
minor difference 200 LI
L 4
1400 = gapnn?® R S W
A 2.0 2.5 3.0 35 40
1200r u GDP 0% Ge py=1.05 ¢ Density (g/cm3)
. GDP 0.6% Ge py=1.13 L e _ege
1000} e . 4 * At 1.05 g/cc, G.e significantly
200l PY GDP 1% Ge py=1.13 ‘..A softens Hug0n|0t
sool . * Keeping initial volume and adding
- germanium such that density
400} o’
$. increased to 1.13 g/cc shows
u A . . . . .
200 . ., compression ratio is similar but
2 .
T T LLLL different enough to warrant.a’new
?.O 1.5 20 2.5 30 35

Compression ( £)
Po

EOS

/‘ @)



Inflection in the Hugoniot is dissociation
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Confirm shoulder in Hugoniot is from
dissociation or melt by tracking “bonds”

* Set bond lengths
— Found in reference simulation
— If using experimental data,
add 5% to 10% for atom
vibration

e Atoms stay within bond distance

tion

©
—

for At (5 carbon vibrations ~90fs) 2

* Simulation long enough for
atoms to move apart if not
bonded

* Run for 10s of picoseconds to get

good statistics in transient
regime

* Because of the variability of
transient species, tend to only
plot marker species
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Conclusions

* Summary
— Equilibrate simulation to steady state
— Methods to calculate Hugoniot
— Compare to experimental data
* Good match to lower pressure data
» Zerror bars much too large
— Compare to other simulations with germanium dopant
* Germanium softens the Hugoniot
* Need a new EOS for each dopant level
— The inflection in the Hugoniot from dissociation
— Did not analyze dissociation for doped simulations
* Future Work
— Finish analyzing current Z experimental data
— Improve experimental techniques (PdV at 1532nm)
* Acknowledgements
— Sebastien Hamel and Loren Benedict for the GDP atom positions and insights
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— Los Alamos National Labs computing
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