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Contacts to nanomaterials are pervasive
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F. Léonard and A.A. Talin, Nature Nanotechnology (2011)




Contacts are critical for nanodevices

Seidel et al, Nano Lett. (2005)

For nano-channel devices:
* contacts are a significant physical portion of the device

* contact resistance can dominate over channel resistance




Challenges and Opportunities

Characterizing nanocontacts
New contact materials

Theory and modeling
Electrical measurements
Optoelectronic measurements
Contacts to arrays
Understanding and controlling doping
Transparent contacts
High-frequency behavior
Thermal dissipation

Phase behavior

Higher—level integration

F. Léonard and A.A. Talin, Nature Nanotechnology (2011)



Today:

e Ab initio modeling of contacts to topological insulators

 Mesoscale modeling of contacts in CNT devices
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Topological Insulators
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Metallic surface states Spin-momentum locking

Need strong spin-orbit coupling

Materials: Bi,Se;, BiSb, Bi,Te;,...

Ando, J. Phys. Soc. Jpn



Important features of contacts
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Approach

DFT (GGA)
PAW pseudopotentials
Spin-orbit coupling

Van der Waals interactions
(Grimme’s method)

Structure relaxed

6 metal layers, 6 Bi,Se, layers




Strong, n-type charge-transfer doping for ALL metals
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» Strong electronegativity of Bi,Te; dominates over the metal workfunction

» Charge-transfer doping extends to several layers

b difficult to observe Tl states in transport



No tunnel barriers for most metals
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Strength of electronic interaction
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» As expected, graphene binds weakly to Bi,Se,




Strength of electronic interaction
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Au: weak interaction (d states well below Dirac point)
PD, Pt, Ni: strong interactions (d states near Dirac point)



E-E. (eV)

Spin-momentum locking
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» Graphene and Au maintain spin-momentum locking



Spin-momentum locking
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» Spin-momentum locking destroyed by interaction with metal!




Gate Modulation of Electrical Contacts in
Carbon Nanotube Devices

Aron Cummings and Francois Léonard
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CNTFETs with ultrathin channels have now been realized:
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Seidel et al, Nano Lett. (2005) Franklin et al, Nano Lett. (2012)

Contacts

Electronic transport

Electronic structure

Device geometry



Amazing experimental observation:
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Surprising, because short-channel effects should be
important at these dimensions:

HfO, HfO, Ilo nm

Gate

Current

Gate voltage



Previous modeling work has shown that a (supposedly)
better design still shows strong short-channel effects:
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Léonard and Stewart, Nanotechnology (2006).

Why is experimental scaling so much better?



Modeling approach: self-consistent NEGF

1. Solve Poisson’s equation in device geometry to
obtain electrostatic potential

2. Use NEGF to obtain charge on CNT using tight-binding

3. Calculate current with NEGF

Léonard and Stewart, Nanotechnology (2006).
Léonard, Nanotechnology (2006).
Cummings and Léonard, Appl. Phys. Lett. (2012).



Contact parametrization
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Cuniberti et al, PRL (2006).
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Embedded contact
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How does it work?
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Embedded contact
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Impact on device performance

Contact modulation gives
superior channel scaling:

Scaling with oxide thickness
also improved:
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Cummings and Léonard, ACS Nano (2012).



Implications for device design: gate overlap
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Outlook

* Device studies based on gate modulation of contacts
* Non-equilibrium transport (e.g. current saturation)
* Including many-body effects in device simulations

* Contacts (structure, electronic properties, transport)

This work is supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories. Sandia National Laboratories is a multi-

program laboratory managed and operated by Sandia Corporation, a wholly
@n} owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of @n}
Energy’s National Nuclear Security Administration under contract DE-ACO04-
94AL85000.




Fields are able to penetrate cavity because of field enhancement
due to discontinuity in dielectric constants
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Quantum vs classical capacitance
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Subthreshold swing for FinFET
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