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Outline () i

" |ntroduce concentrated solar water splitting concept.

= How does STC H, compare to other solar-based technologies

= Sandia’s approach to establishing technology benchmarks.
= Reactor design and operation
= Material requirements
= QOpportunities for standard approaches

= Key benchmarks that impact solar-to-fuel efficiency.

= Temperature separation (AT)
= 0O, reduction pressure (pg)
= Heat recovery effectiveness (e and &)

= Summary and concluding remarks.
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STC H, vs. Alternative Technologies 1)

STC offers a simpler technology than alternatives

Theoretical and higher theoretical efficiency.

vs. DOE Target
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Efficiency Drives Reactor Development
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= Many different reactor designs have been proposed.
= Material models required to evaluate reactor performance.

= Thermodynamics, kinetics, transport, durability, etc.




Key Design Concepts for High Efficiency ()

CO, splitting Demonstrated at ~10kW,,,

SO Concamration, EMicanay (%)

Continuous on-sun operation
Direct solar absorption

Temperature and product separation

Heat recovery between Tz and T,

J. E. Miller et al., SAND2012-5658 (2012)
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Particle Bed Reactor that Maximizes Efficiency ([@J&z.

Key improvements: TR chambers

= Ultra-low reduction pressure (0.1-10Pa)

= Decreased solids heat recovery requirement _—

returm

= Decreased pump work requirement . I _\&%; i s
. . . . h e
= Non-monolithic reactive oxide ey | ) o " a

pressure separation
by packed bed

= H.H,0

= Reaction kinetics decoupled from reactor mechanics

e

Cascading T S
Specific design advantages: Pressure Tus =173K
. s 22 Moo = Pree
= Small reactive particles (~100um). Receiver
: Reactor
= Only particles are thermally cycled.

= Only one high T moving part, a metal tube. “IEEML =
. H,O splitting &g
* |ndependent component optimization. | e
~3kWy,

Design compatible with a MW-scale plant




Sandia’s Theoretical Approach )=

- team oxide
LHV, \ #, LHY, P stea _
_| Lo 1 = Loy p, = heating heating
7 H, a
BAL h o An '
PTH:’/'IZ*rd*tW*A*PS_I)md 45 1
¥ pr [Pa] Ce0,, LHV basis
Q= QTR T QSH T QAUX 0 110 T:g=1500°C
= % £5=50%
All inclusive efficiency metric = 30% £g=50% (>1000°C)
& 254 £6=97% (<1000°C)
= Collection losses (P). s}
Pra) o 5 % —
= Concentrator and re-radiation. £ 15% —
. . 10
= Oxide thermal reduction (Qz). ¥ AT = 1723K- Ty
[ | 1 1 OEE:::::::::::::::::::::
Oxide heating (Qgy). 0 100 200 300 400 500
= Steam heating (O ) T AT K]
T, th I
= Pump work : —
P (Q 4 UX) pPrr= O, reduction pressure
m Electrical/mechanical work (QAUX)' es= solid heat recovery effectiveness

eg= gas heat recovery effectiveness 3




Benchmarks for Redox Active Materials () e
SLMA=8r, ,La,Mn, Al O, perovskite

» Moderate Torp ( AHTR & ASTR ) A. H. McDaniel ef al., Energy Environ. Sci. 6, 2424-2428 (2013)

= Large, reversible oxygen deficiency () oroperty  SLMA IDEAL CeO,

= Fast redox rates matched to solar flux Tus 900°C  600-800°C 500°C

= High WS potential (AH.z & AS;; ) Tiw  1350°C SLMA 1550°C

= Stable and durable oxide 8 0.25 SLMA 0.05

= Earth abundant and easy to produce [HzO/Hz 200/1 CeO, 11 J
“Rateys  ~0.04 s CeO, ~0.01 s
*AH(S);s | 250-320  350-400 400-500

Ideal material IS NOT unobtainium *AS(8)z | 100-130 ~CeO, 150-300

* Rate=pseudo first order, AH(8)=kJ/mol O, AS(8)=J/K mol O

= |deal material properties bounded by known compounds.

= Still a vast material space

= Desire a deeper understanding of material behavior.

= Fundamental research through Basic Energy Sciences
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Opportunities for Establishing Standard @
Approaches

= Standard system boundary for analysis.

= Solar collection and receiver

= Thermochemical reactor @A@)

= Balance of plant (i.e., separations)

= Standard conversion metrics for work to heat
equivalent. ;
= Determining the (Q ) term

= Currency = energy/mole H,

Lo 1 Y S s BT

= Standard use of material properties.

= Sufficiently detailed map of P,,-0-T phase space (Qz)

= Knowledge of heat capacity (QOgy)
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The “ATemperature > 0” Benchmark ()

45 7
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= Temperature swing process.  2CGrw

= Convert heat to chemical energy

= Largest possible AT may notthe  ° - T T(K)
most efficient operating point. ws TR
Temperature separation key to efficient Carnot process
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The “ATemperature = 0” Benchmark () s

MO, - MO, +%Uz (1) TR —
= Pressure swing process. MO, +6-H.O—>MO.+6-H, (2) WS —
= Convert mechanical work to 5
chemical energy d'HEG_"EGE +d-H, (3) NET---
= Zero efficiency from expensive,
ultra-high temperature heat _ -
8 P AGyys=0 AGR=0
T [T ==
— ws _ o —
nCarnot_ _T _0 ‘-""'-.__/
TR ﬂ'GRKN -
= Less efficient under all practical

conditions.

— % % % %
77STH T 77 thermal 77 electrical nmechanical 77 chemical << nthermal 77 chemcial




Material Affects “AT~,- > 0” Benchmark e
OPT
45 : 45 1
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ATqpr (Ce0,) << ATpr (SLMA).
= CeO, limited by oxide heating due to large AH;zand small o.
= SLMA limited by steam heating due to small AH.

Search for advanced materials underway
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The “O, Reduction Pressure (p;)” Benchmark @&z,

45
; =1 s [Pa]: _(IEeO?I, Iagvcbasis
= B = TrR=1500°
prr=1Pa | :%ﬂ | | £s=50%
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A 5 | | £c=97% (<1000°C)
£ 25 | | .
T
A |
10 £
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= Efficiency strongly dependent on O, partial pressure.

" Lower p; Yields greater 0 at all reduction temperatures

Achieve high STH efficiency at low p;g 1
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Low p-; is Challenging at Large Scale (&)

single chamber "
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= Not possible to achieve low O, partial pressure in a single
chamber with high efficiency.

Multiple cascading pressure chambers achieves ultra-low pr
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Material Affects “p,;” Benchmark =

8 &
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Solar Efficiency 1 [3a]
= T
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AT K]

= Difficult to achieve ultimate DOE STH target using CeO,.

Search for advanced materials underway
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The “Heat Recovery Effectiveness” Benchmark () =,

35%

Lines: Design-point efficiency
Symbols: Annual average efficiency
Gﬂh;ﬁ:'ﬂﬁﬂ Wim2DNI; 30 MPH wind

30%

constant
NsTH

(2]
&

Solar Efficiency

0 10 20 30 40 a0 &0 70 80 80 100
Nominal Recuperator Efficiency [%]

= Efficiency strongly depends on recuperator effectiveness.

= Heat recovery compensates for poor pumping and vice versa

Achieve high STH efficiency at high recuperator effectiveness .
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Summary and Concluding Remarks ()

= STH efficiency guides R&D.

" MNey>20% to be commercially viable

= Established “high efficiency” reactor design benchmarks

= Temperature separation (AT,1>0)
" Pressure separation (ultra-low pg, 1-10Pa)
= Efficient heat recuperation (g5 and £;>75%)

= QOpportunities exists to standardize metrics and protocols

= Systems analysis
= Material characterization
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Novel and Scalable Particle-Based Solar-Driven W)
Thermochemical Reactor
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The “ATemperature = 0”
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= Pressure swing process, not temperature swing.
= Convert mechanical work to chemical work
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= Zero efficiency from expensive, ultra-high temperature heat

= Less efficient under all practical conditions.

— % % % %
77STH T 77 thermal 77 electrical nmechanical 77 chemical << nthermal 77 chemcial
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Methods for Measuring Redox Act|V|ty (&)

oMs
I \

inlet e — X to pump
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Material heating

P ipm)
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rates >10°C/s g it [ : Ty
§ '-r:'-ll.-t_ o 1] 1; u;l W o ieh
LRSS — Zirconia
SiC furnace fial
T = 1600 °C

= Kinetic measurements.
= Stagnation flow reactor (SFR) with 500 W CW NIR laser for heating

= Modulated beam mass spectrometer

= Analysis using idealized flow model (CSTR).

= Resolve rate limiting mechanisms and develop kinetic models
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Evaluation of popular material systems &=

Fe?*/Fe3* redox system: PROPERTY CERIA | \FERRTE | oEa
= Deep reduction at 1400 °C. Redox Kinetics FAST FAST
= High redox capacity (A5>0.1). Capacity (A5) LowW HIGH HIGH
= Slow H,O oxidation kinetics. [ @Feducton | TOF Sl M
H,O/H, @ Oxidation LOW LOW

= YSZ, ZrO,, Al,O; matrix needed to Durability HIGH HIGH | HIGH
prevent sintering. Earth Abundance | LOWI HIGH HIGH

Ce3*/Ce** redox system: watfer-spllitting _CeOz reduc_:tion

10° r 1500 S ak
= Shallow reduction at 1500 °C. D e, s £ lmics S/
. 3 I ° 3 ' 7 Cst
= Low redox capacity (Ad<0.05). E . SO - T A 7
. . . . o ] 5.0r
= Fast H,0 oxidation kinetics. z il N
. . ° E sl b7 145
= Durable under high heating rates. .| 22" | & wm|
L ] o
800 10I00 12I00 14I00 =1 I:I.l""r 2 46 10 @ 4 EiCl:.'l I
oxidation temperature (K) tirme {5}
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SFR Used to Characterize and Screen Several W)
Redox Materials o
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Kinetics and mechanism of sclar-thermothemical H;
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= Supported mixed-metal ferrites.
= CoFe,0,/AlLO,
= CoFe,0,/ ZrO,
. Fe3O4/Y-Zr02 Emirenmental Science
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= Perovskites. i s s A/ J\.

= Srla;, Mn Al 0O, (SLMA) I L6 Tome Tt s
= (Ca, La, Sr)A(Al, Ce, Fe, Mn, Ti, Zr)®O,
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