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Background ) s,

= |s small-strain measurement reliable?

= Young’'s modulus for metals or brittle
materials

= |sthere a dominant uncertainty?
= System alignment

— incident
—— Reflected |
1+R =

= Wave dispersion | A
. W
= Indentation e
— Punching correction (K. Safa et. Al.) \f\/\ .
= Early stress equilibrium
* Human error (data reduction methods) T P
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Objective ) .

= Discuss uncertainties in the data reduction process to help
explain the difficulty in measuring the Young’s modulus
= Stress wave dispersion
= Early stress equilibrium
= Elastic indentation

= Utilize finite element analytical models to help identify the
dominant source of error

= Perform corrections on experimental data




Numerical Simulations ) i,

= Abaqus/Explicit
= CAX4R elements

= Four-node elements with reduced integration
= Axisymmetric
= Reduced integration with hourglass control

= Contact
= No friction

= Penalty-based mechanical constraint
— Scaled to minimize interpenetration

= Linearly elastic steel bars
= E, .. =30x103ksi

" v, =0.3

" C,, =200267in/s

= Specimen: 304L Steel

= Elastic, perfectly-plastic stress-strain
response for the simulated specimen
(ideal response)
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= Modulus of elasticity is significantly lower than the
theoretical (Input Stress/Strain) ;
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Young's Modulus Investigation
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Engineering Strain
Use contact forces between the specimen and the bars with displacements at various points on the specimen to
calculate the stress-strain curves
The mean of all four stress-strain curves match very well with the target stress-strain curve (except the
oscillations) compared to the stress-strain curve developed from strain gage locations on the bar
Meaning: There is a mechanism between the specimen/bar interface (incident and transmission side) and the

strain gage location causing the error in the Young’s modulus 7
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Bar-Specimen Deflectlon

Contact surface profiles. Incident
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FE simulations determined that axial
displacements increase throughout the
duration of the experiment (especially at
early strains), introducing added strain into
the conventional Kolsky bar stress-strain
calculations

Look at bar/specimen interfaces
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Contact surface profiles. Transmitted
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Displacement Correction

K. Safa & G. Gary. “Displacement
Correction for Punching at a
Dynamically Loaded Bar End.”
International Journal of Impact
Engineering (2010), Vol. 37, Pg.
371-384
=  Provide 3-D displacement
correction for local punching due
to axial loads at the end of the bar
= Punching: axisymmetric
deformation of the bar when the
diameter of the specimen is smaller
than that of the bar
= First-order correction of the
displacement obtained through
the Kolsky bar 1-D wave analysis
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Summary of main results for SHPB

We consider a classical SHPB apparatus where input and output bars are identical with
diameter D and with p, © and E the density, Poisson ratio and Young’s modulus,
respectively, of their material. The geometrical characteristics of the specimen are d, [, and
S, corresponding to its diameter, length and cross sectional area, respectively.

INPUT BAR OUTPUT BAR

N \
b

)
/

| @ o o

At any time throughout the experiment, the strain of the sample is obtained as

€(t) = esupa(t) = €punen.(t)

where
s pen(t)S.
ls
e esupp(t) and osypp(t) are the strain and stress, respectively, obtained by

. ﬁmnrh‘(t) — 21\’1,

standard SHPB formulas.

K 16 1 —v? ( d )
® Saakot o M
I3 e "D
Iy(x) =

Tabulated results for the function H, () are given in the table underneath.
Values for 0.5 < x < 1 are obtained by linear interpolation.

X 010 | 015 ] 020 | 025 | 030 | 035 | 040 | 045 | 050 | 0.60 | 0.70 | 080 | 0.90

1.00

HP(X) 1.765 | 1648 | 1.531 | 1.416 | 1.301 | 1.188 | 1.076 | 0.967 | 0.860 | 0.688 | 0.516 | 0.344 | 0.172




Displacement Correction Only ).
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= FE simulation using the closed form displacement correction by
Safa et. Al.

= Young’'s modulus improves a little, but does not match the target

stress-strain curve
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Add Pulse Shaping

= Experimentally
minimizes stress wave
dispersion

= Slow rise in incident
pulse enables early
stress equilibrium and
deform at nearly
constant strain rates

= Shown to minimize
oscillations in stress-
strain curves
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Displacement Correction + Pulse  [@E=.
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Experimental Application ) B

Stress-Strain 304L (X) @ 500 5!
T T T

= C300 steel, 0.75 in. diameter bars e s |
= Striker: 12 or 24 in. m e
= |ncident: 144 in.
*= Transmission: 72 in. -
= Dual pulse shapers i
= 4140/4142 Steel
. 304L @ 500 s
= Copper pulse shaper
= Both pulse shaping and displacement w0t
correction assist in recovering a more
reasonable Young’s modulus ot
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Conclusion/Path Forward =

= Pulse shaping
= Minimizes stress wave dispersion and enables stress equilibrium

= Helps increase the accuracy in measuring the Young’s modulus from a
stress-strain curve

= Displacement correction for punching

= Decreases the added strain due to elastic punching on the incident and
transmission bar

" Correction Uses

= Both pulse shaping and punching correction were used to determine the
intrinsic mechanical behavior of 304L stainless steel Kolsky bar
experiments

= Materials: Hard vs. Soft

= Additional uncertainties
= Filtering
= “Starting point” for reflected pulse and transmission pulse

14
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The End
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