

# Nanoparticle Diffusion in a Polymer Matrix

**Gary S. Grest**

Sandia National Laboratories

Center for Integrated Nanotechnologies

Albuquerque, NM



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

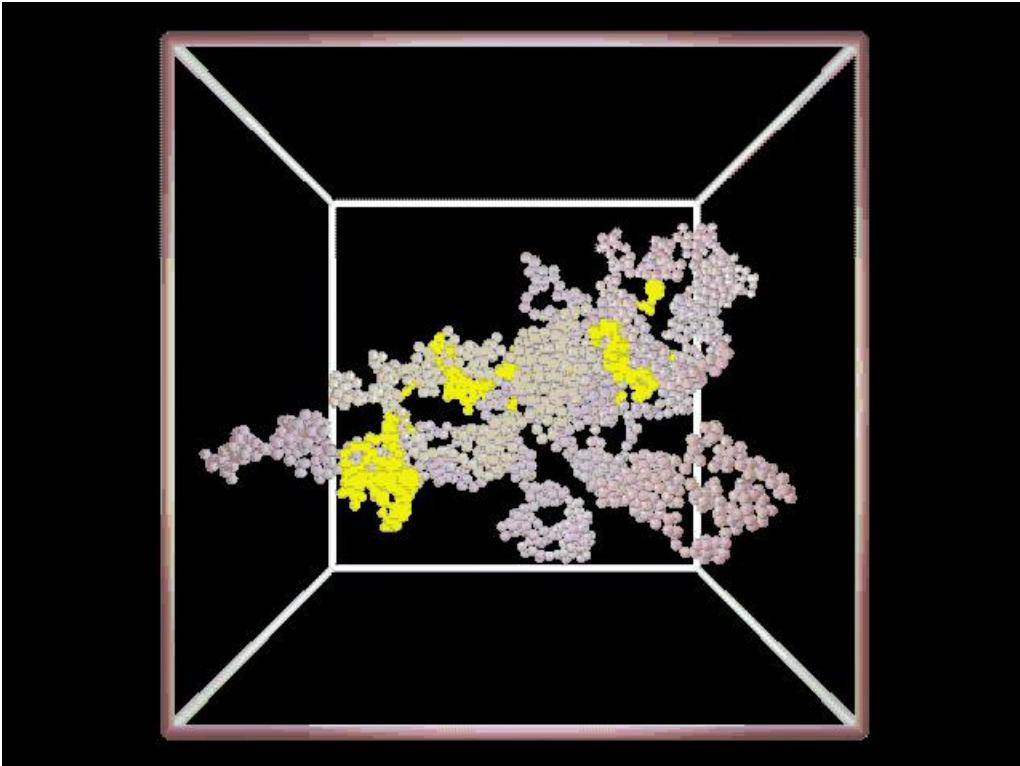


# Outline

- Unique Properties of Entangled Polymers
- Computational Challenges
- Dynamics of Linear Polymers
- Dynamics of Ring Polymers
- Polymer Nanocomposites
- Future Directions

# Why are Polymers Interesting?

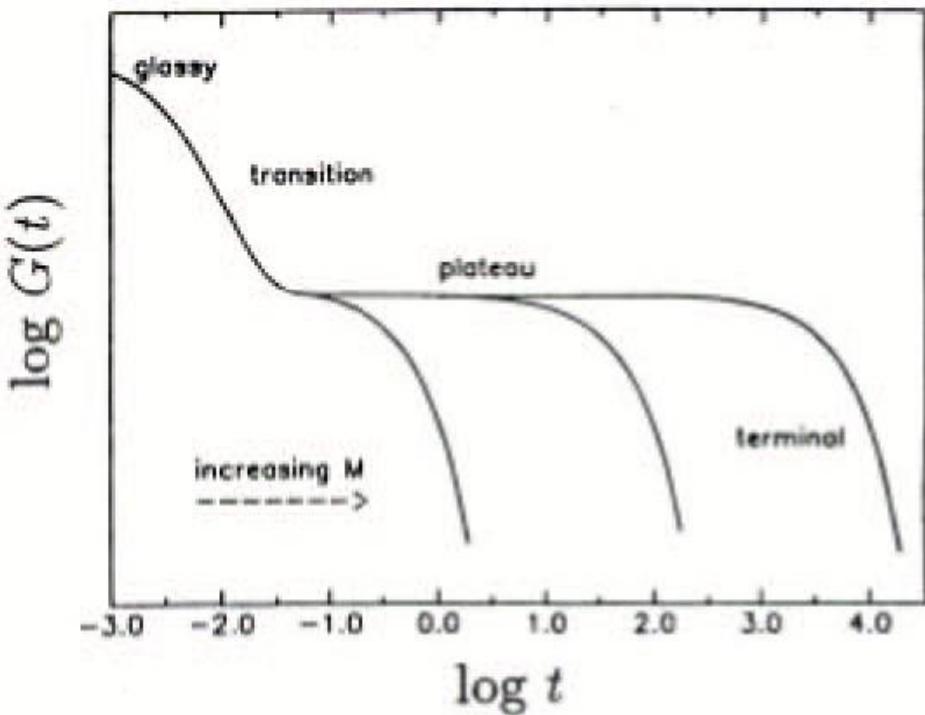
- Polymers can simultaneously be hard and soft
  - Unique Viscoelastic Behavior



- Motion of a polymer chain is subject to complicated topological constraints

# Entangled Polymer Liquids

## Viscoelastic Response



## Stress Relaxation after strain

- **Macroscopic**

- Intermediate frequency, time polymer melt acts as a solid
- Long time, low frequency polymer acts as a liquid

- **Microscopic**

- Gaussian coils,  $R \sim N^{1/2}$
- Stress is due to entropy loss of stretched chains
- Polymers as "entropic springs"
- Stress relaxation due to Brownian motion of topologically constrained chains

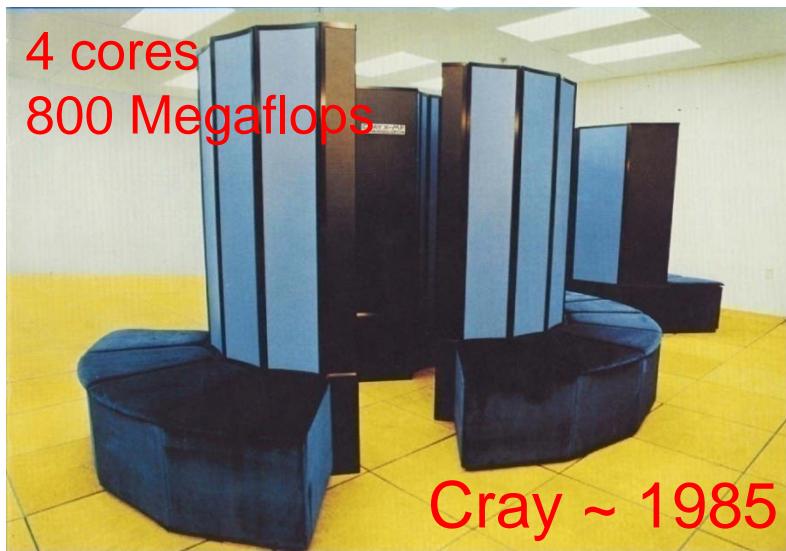
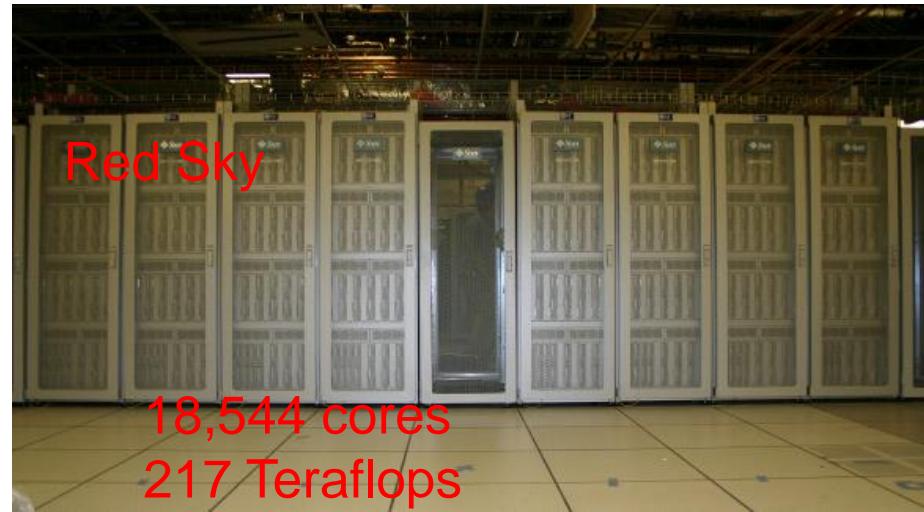
# Computational Challenges

- Longest relaxation time  $\tau \sim N^3$
- Chains are Gaussian coils –  $R \sim N^{1/2}$ 
  - Number of chains must increase as  $R^3 \sim N^{3/2}$  so polymer chains do not see themselves through periodic boundary conditions
- Double chain length – cpu required increases by at least a factor of  $2^{4.5} \sim 23$ 
  - 1-2 month simulation becomes 2-4 years
- Number of processors limited:  $\sim 500-1000$  particles/processor

# Computational Challenges

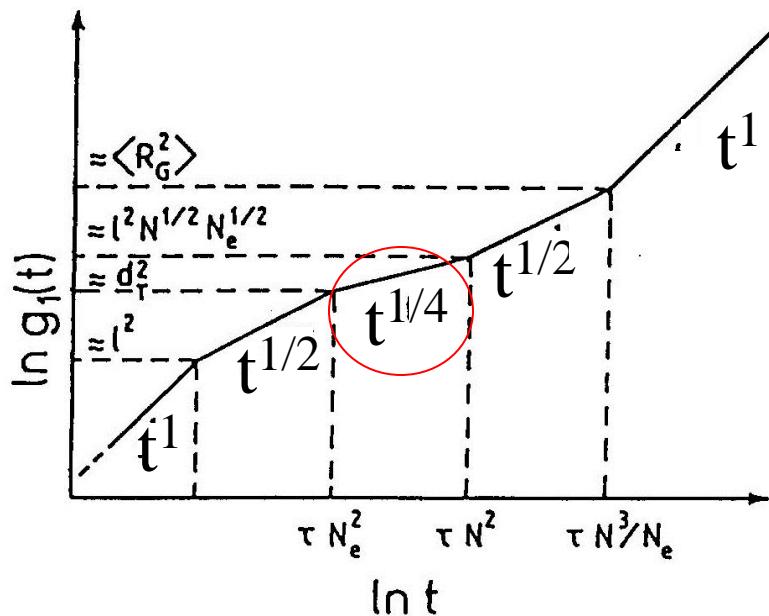
- Longest relaxation time  $\tau \sim N^3$
- Chains are Gaussian coils –  $R \sim N^{1/2}$ 
  - Number of chains must increase as  $R^3 \sim N^{3/2}$  so polymer chains do not see themselves through periodic boundary conditions
- Double chain length – cpu required increases by at least a factor of  $2^{4.5} \sim 23$ 
  - 1-2 month simulation becomes 2-4 years
- Number of processors limited:  $\sim 1000$  particles/processor
- Software/hardware advances have been significant

# Toys for the Simulator



# Polymer Diffusion

- Simple Liquids
  - $D \sim M^{-1}$ ,  $\eta \sim M$
- Short Polymer Chains ( $M < M_e$ )
  - Longest relaxation time  $\tau_R \sim M^2$
  - Intermediate  $t^{1/2}$  time regime in mean square displacement
  - $D \sim M^{-1}$ ,  $\eta \sim M$
- Long Polymer Chains ( $M > M_e$ ) - Reptation



$$\begin{aligned}D &\sim M^{-2} \\ \eta &\sim M^3 \\ \tau_d &\sim M^3\end{aligned}$$

Characteristic signature of reptation – intermediate  $t^{1/4}$  regime

# Bead-Spring Model

- Short range - excluded volume interaction

$$U_{\text{LJ}}(r) = \begin{cases} 4\epsilon \left\{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 + \frac{1}{4} \right\} & r \leq r_c \\ 0 & r \geq r_c \end{cases}$$

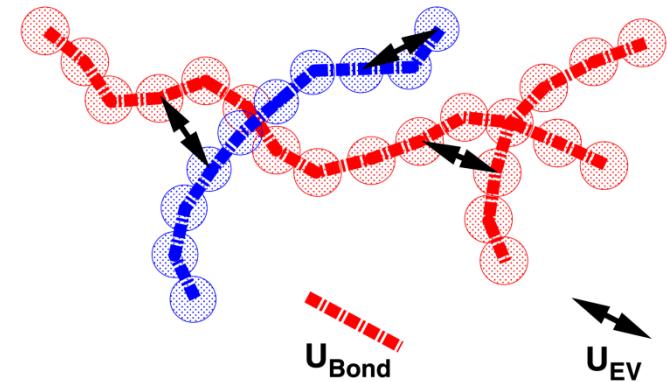
- Bonded interaction - FENE spring

$$U_{\text{FENE}}(r) = \begin{cases} -0.5kR_0^2 \ln(1 - (r/R_0)^2) & r \leq R_0 \\ \infty & r > R_0 \end{cases} \quad k=30\epsilon/\sigma^2, R_0=1.5\sigma$$

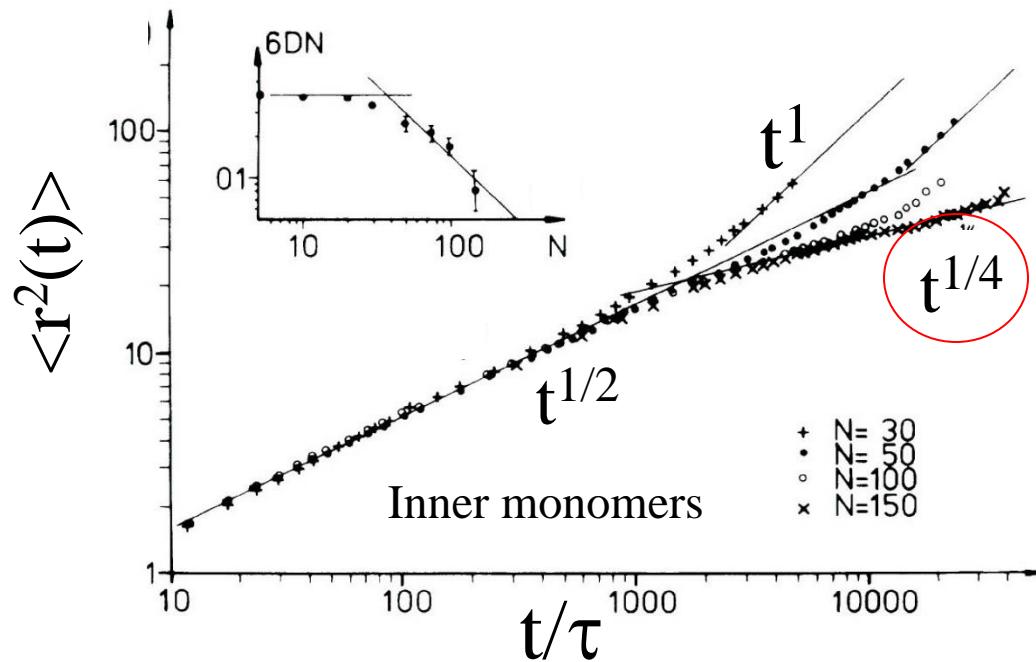
- Energy barrier prohibits chains from cutting through each other
  - topology conserved

$$m_i \frac{d^2 \vec{r}_i}{dt^2} = -\vec{\nabla} \cdot U_i - m_i \Gamma \frac{d\vec{r}_i}{dt} + \vec{W}_i(t)$$

Time step  $\Delta t \sim 0.01\tau$ ,  $\tau=\sigma(m/\epsilon)^{1/2}$



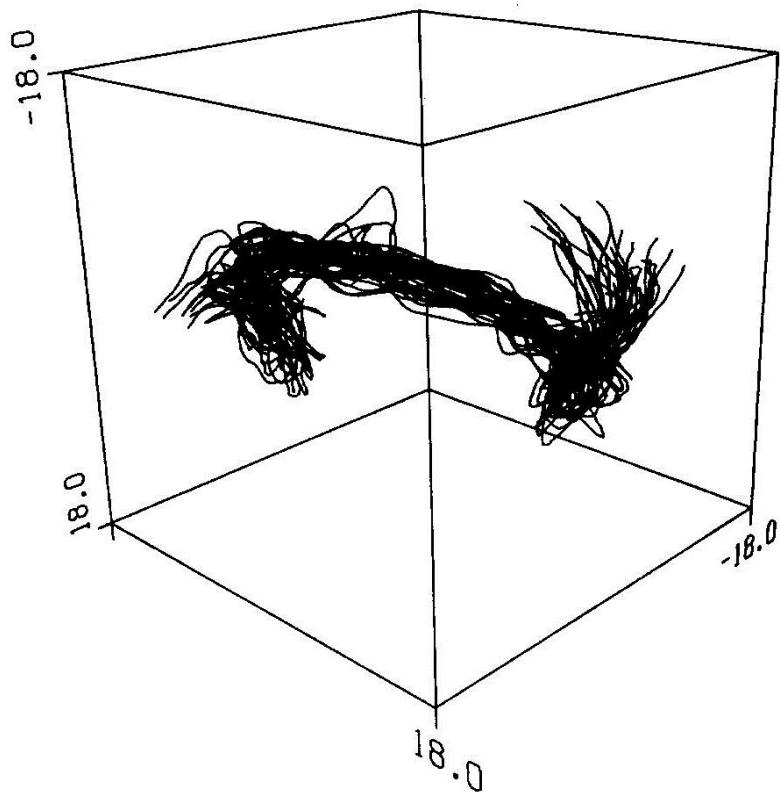
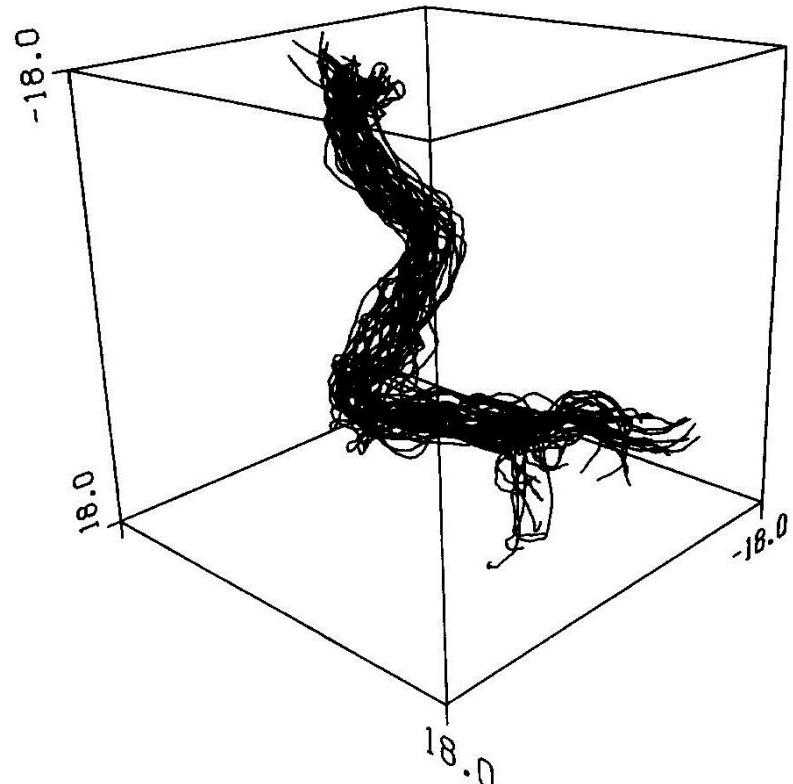
# Polymers do Reptate!



- $t^{1/4}$  reptation regime for  $N > 100$
- First direct evidence from simulation or experiment

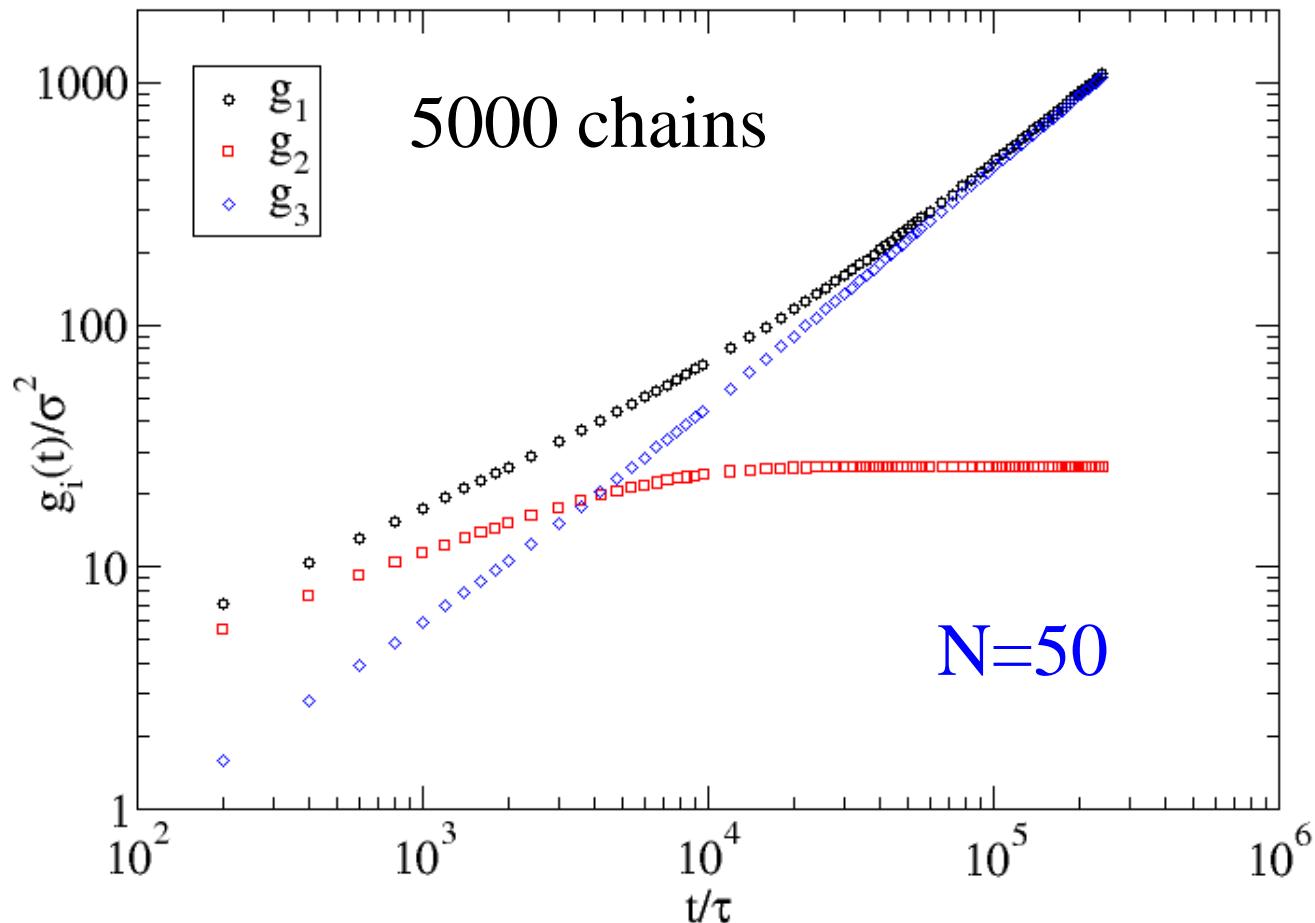
# Polymer Chain Confined to Tube

- Coarse grained chain



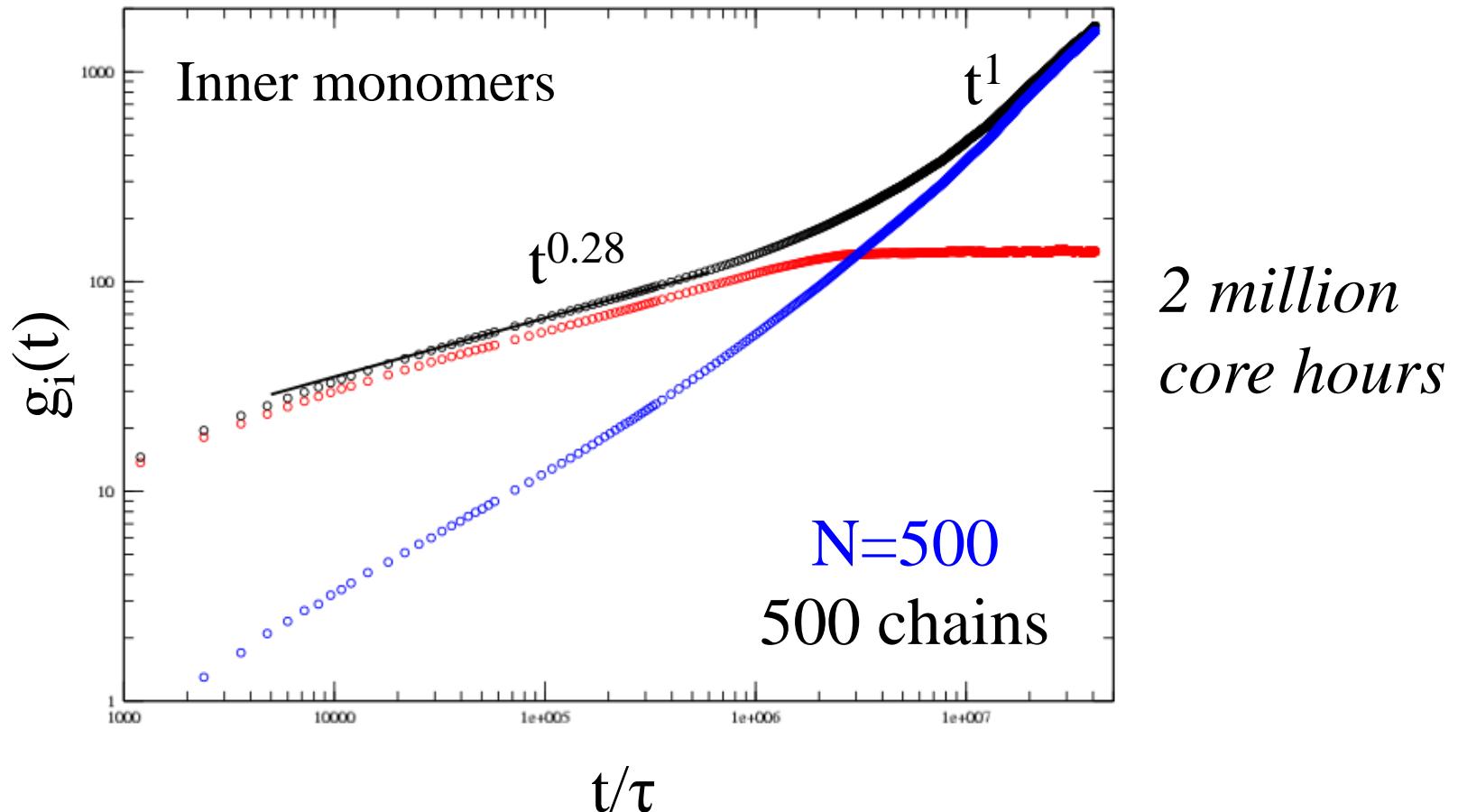
$N=400$  – 20 plots, 600  $\tau$  apart

# Motion of Unentangled Polymer



- Once polymer move their own size, unentangled polymers move like normal liquids

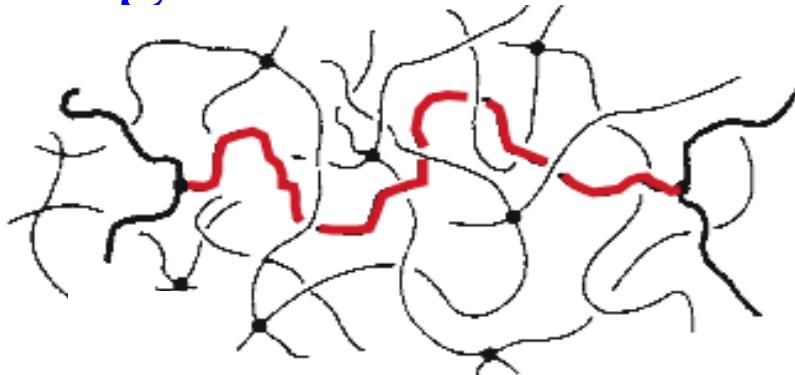
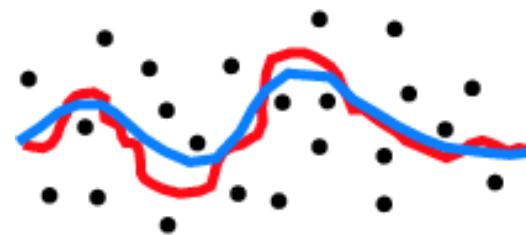
# Motion of Entangled Polymer



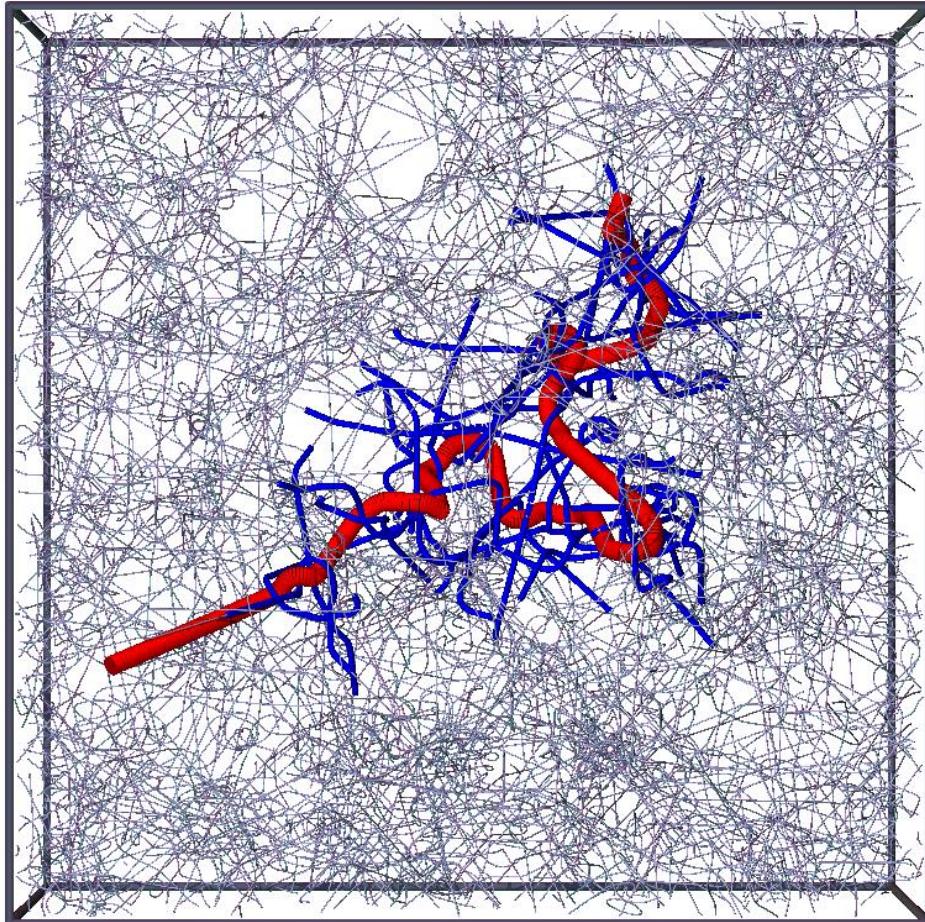
- $t^{1/4}$  motion is clearly seen for inner monomers
- Second  $t^{1/2}$  region still unresolved

# Topological Approach to Identify Entanglements

- Microscopic conformation
- Shortest path into which a chain can contract with fixed endpoints and without crossing obstacles
- Tube axis = primitive path
- Need a topological analysis which can follow motion of chain



# Primitive Path Analysis



- Primitive paths of a cluster of entangled chains

- Shorter Contour Length

$$L_{pp} = N b_{pp} < L$$

- Larger Kuhn Length

$$a_{pp} > l_k$$

- Same spatial extent

$$a_{pp} L_{pp} = R^2 = l_k L$$

- Entanglement Length

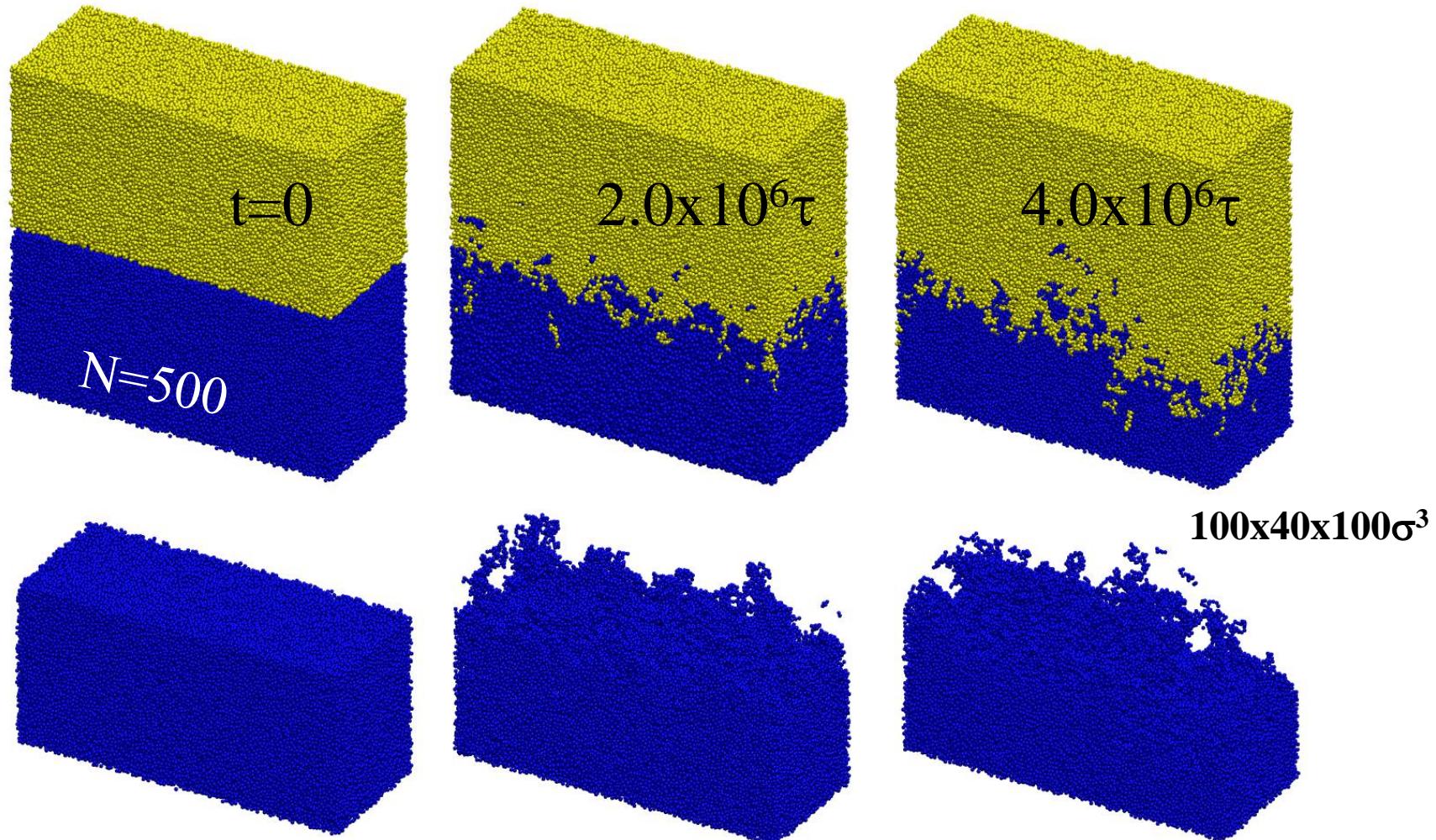
$$N_e = a_{pp} / b_{pp}$$

- Packing Length

$$p = 1 / \rho_{chain} R^2$$

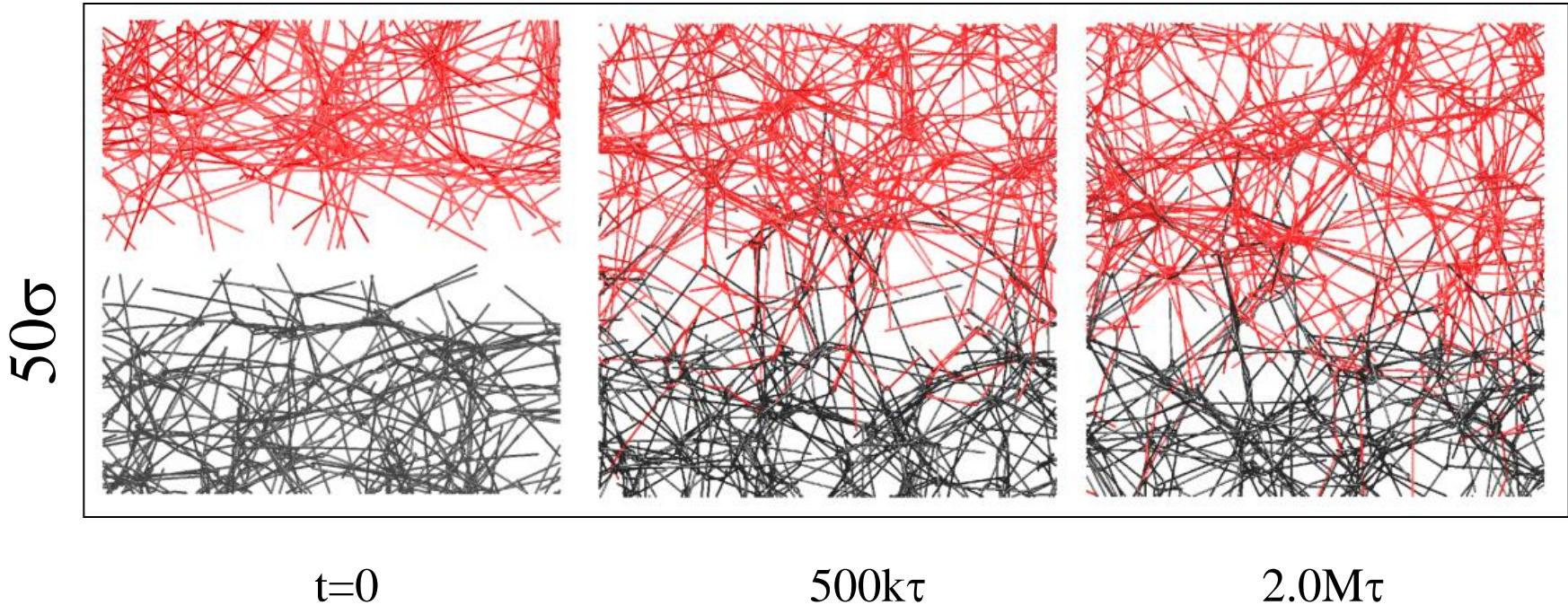
# Self-Healing of Polymer Films

- Development of Entanglements Across an Interface



# Entanglements at Interface

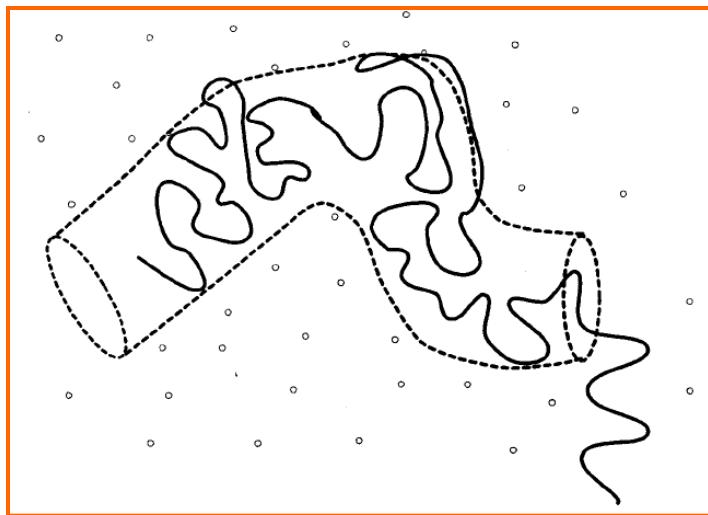
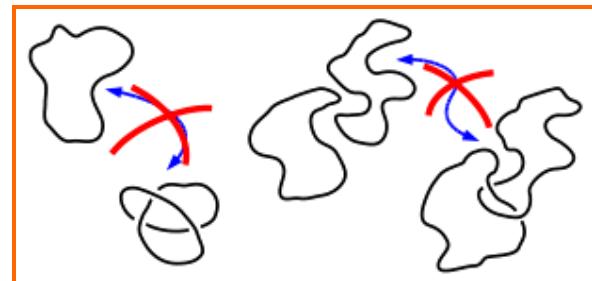
- Primitive Path Analysis



- Interfacial Entanglements form between chains from opposite sides
- Bulk response is fully recovered when the density of entanglements at the interface reaches the bulk value

# Dynamics of Ring Polymers

- As chain size increases, linear polymers entangle and are forced to move ('reptate') along their contours
- Branched polymers relax via a hierarchy of modes from dangling ends moving inward
- Remaining mystery: How do ring polymers relax without beginning or end?



# Configurations of Ring Polymers

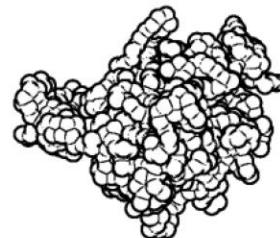
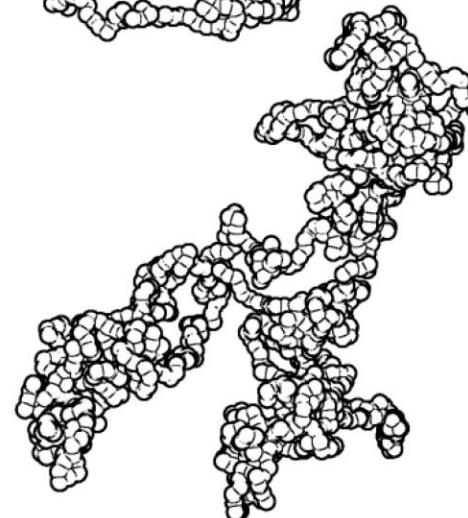
(a)  $N = 100$



(b)  $N = 400$

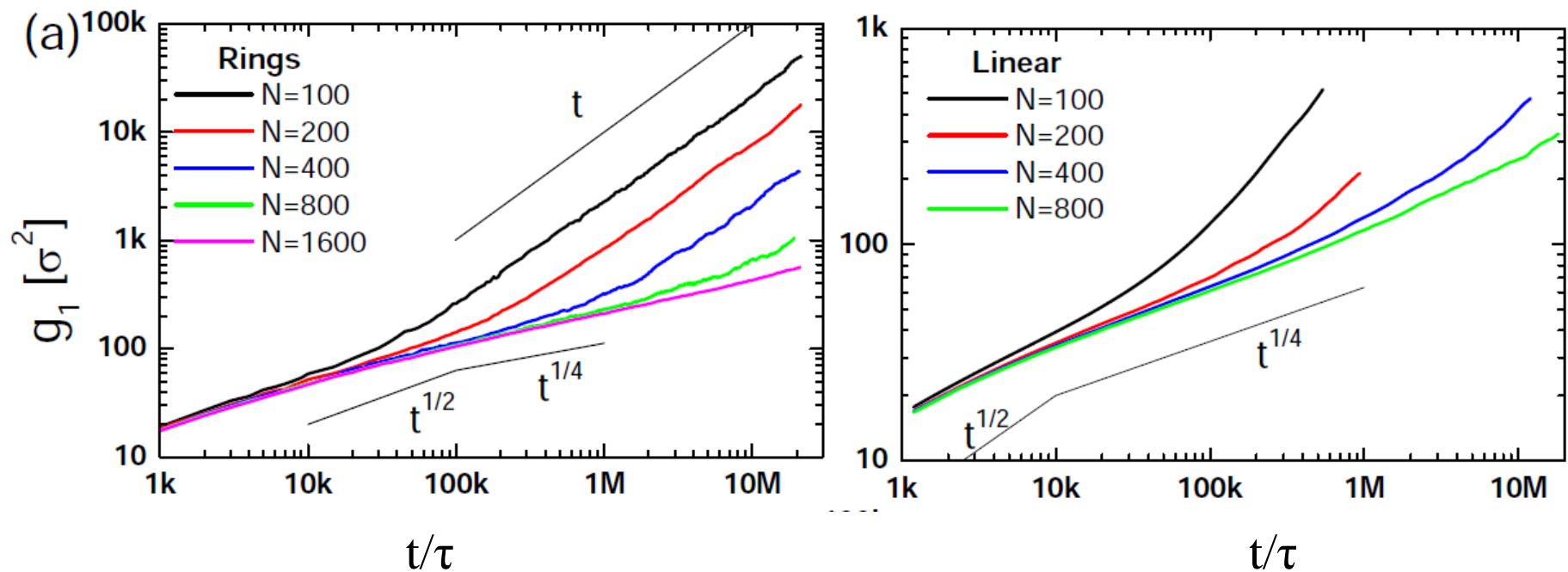


(c)  $N = 1600$



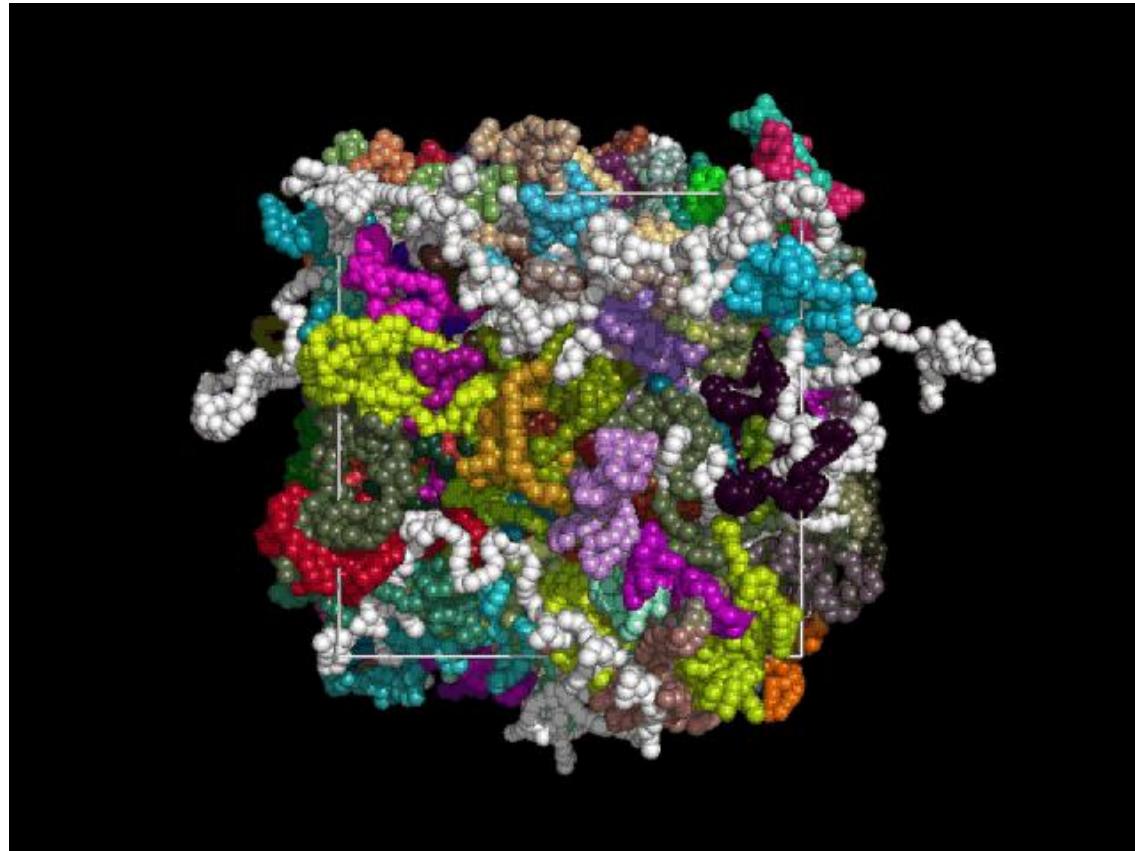
- Rings more compact, less entangled than linear chains
- Radius of Gyration  $R_g^2 \sim N^{2/3}$  for rings  
 $\sim N$  for linear

# Dynamics of Ring Polymers



- Ring polymers move much faster than linear chains
- Longest relaxation time  $\tau \sim N^2$  for rings,  $N^3$  for linear chains

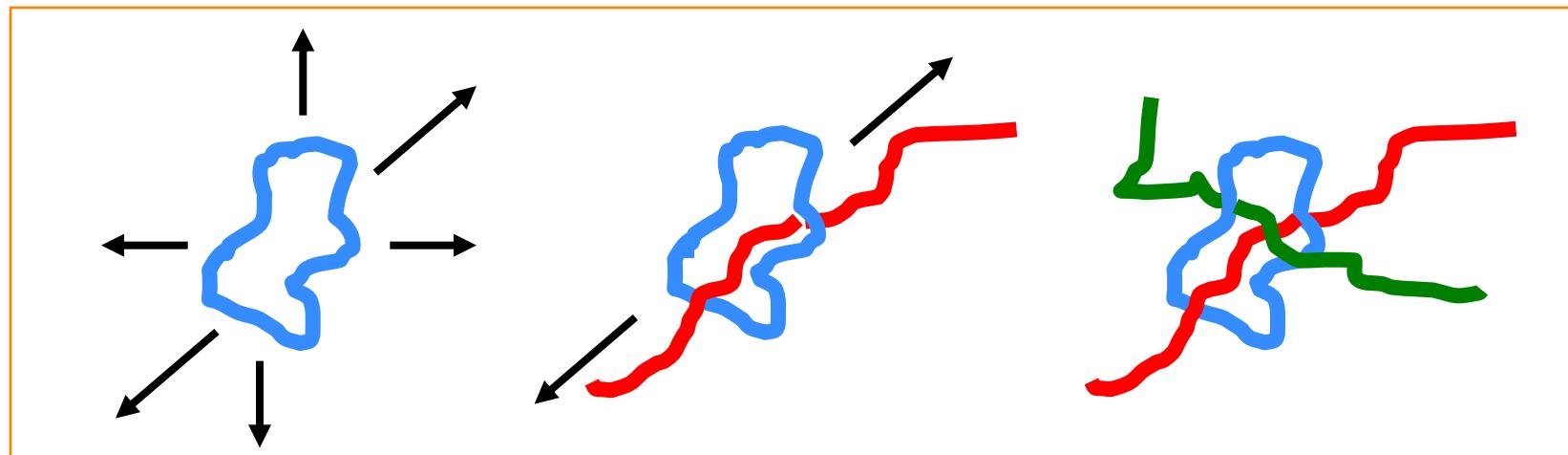
# Mixture of Ring and Linear Polymers



$N = 200, M_{\text{rings}} = 200, M_{\text{linear}} = 26$        $t = 0 \tau$

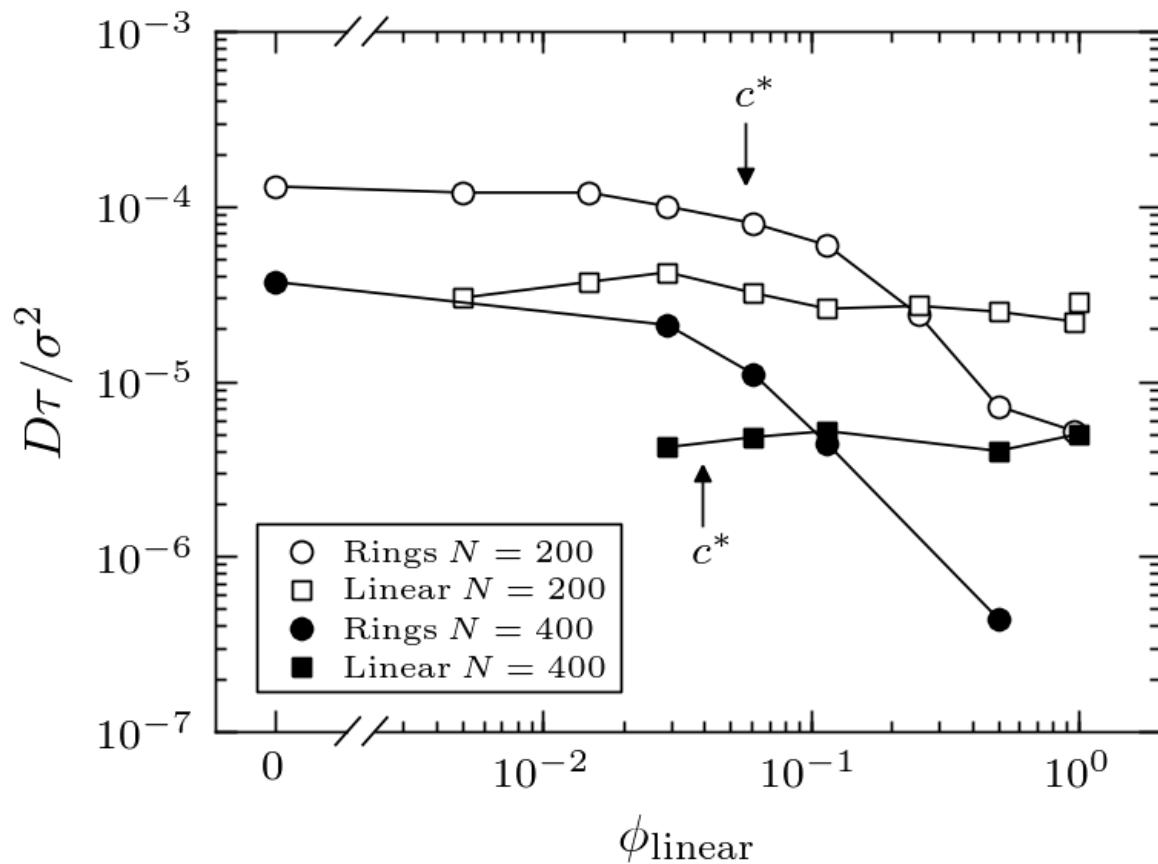
# Constrained Motion of Rings in Linear Melt

- Threading causes rings to diffuse more slowly



- Threaded rings can only diffuse along the contour of the linear chain
- Time for constraint release scales as  $N^{3.4}$

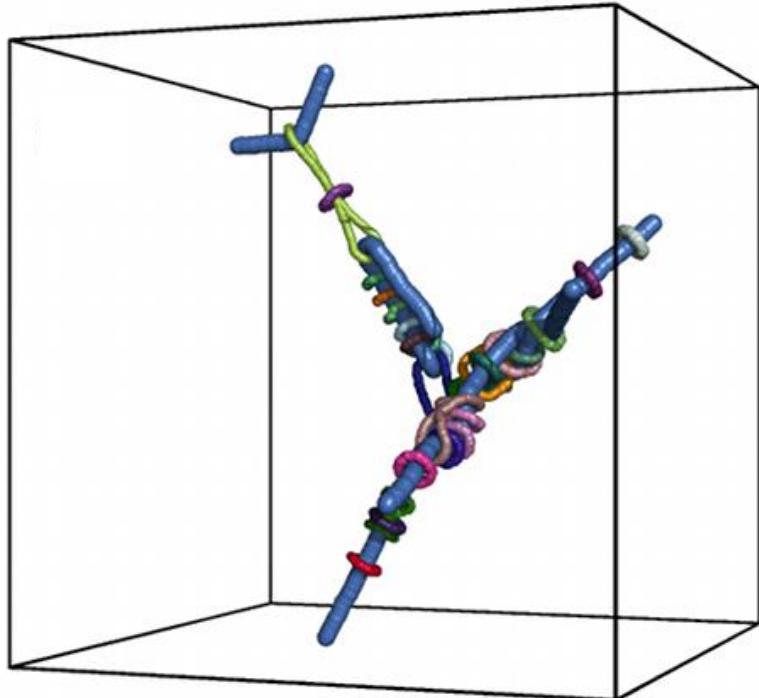
# Dynamics of Ring/Linear Blends



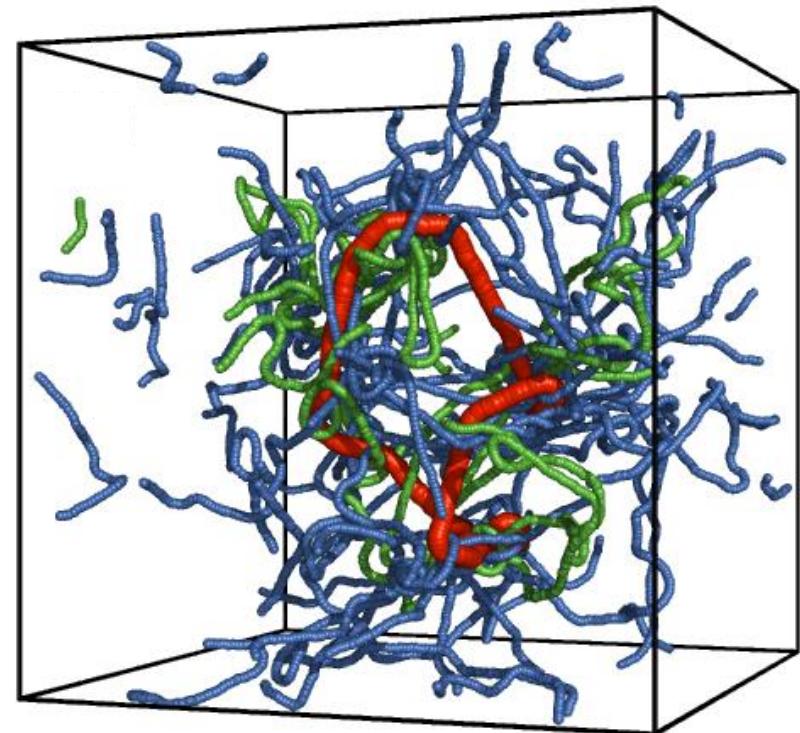
- $D_{\text{ring}}$  decreases dramatically when threaded by multiple linear chains ( $\phi_{\text{linear}} > 0.1$ )
- $D_{\text{linear}}$  is approximately independent of  $\phi_{\text{linear}}$

# Primitive Path Analysis

$N=400$

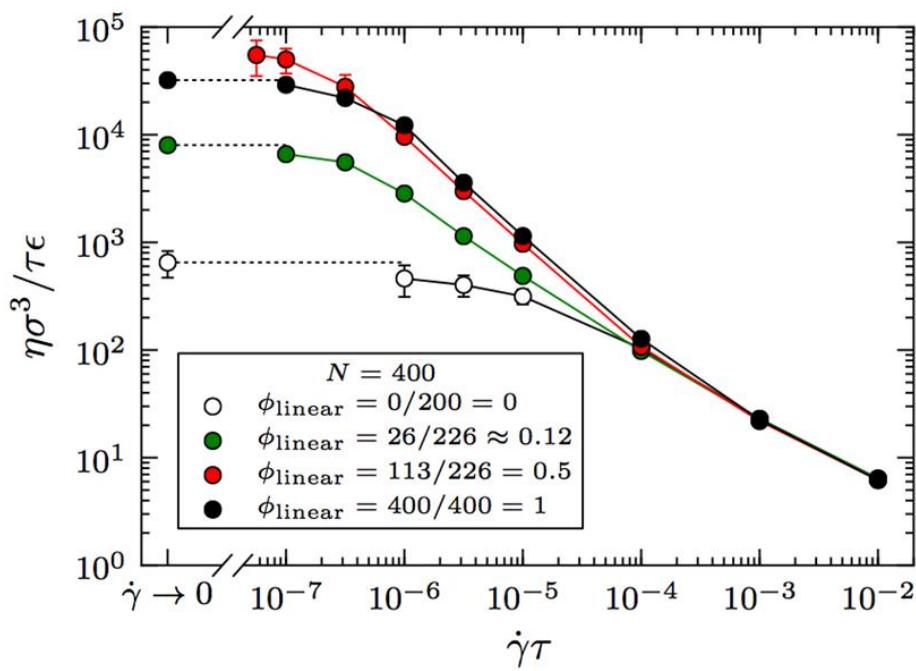
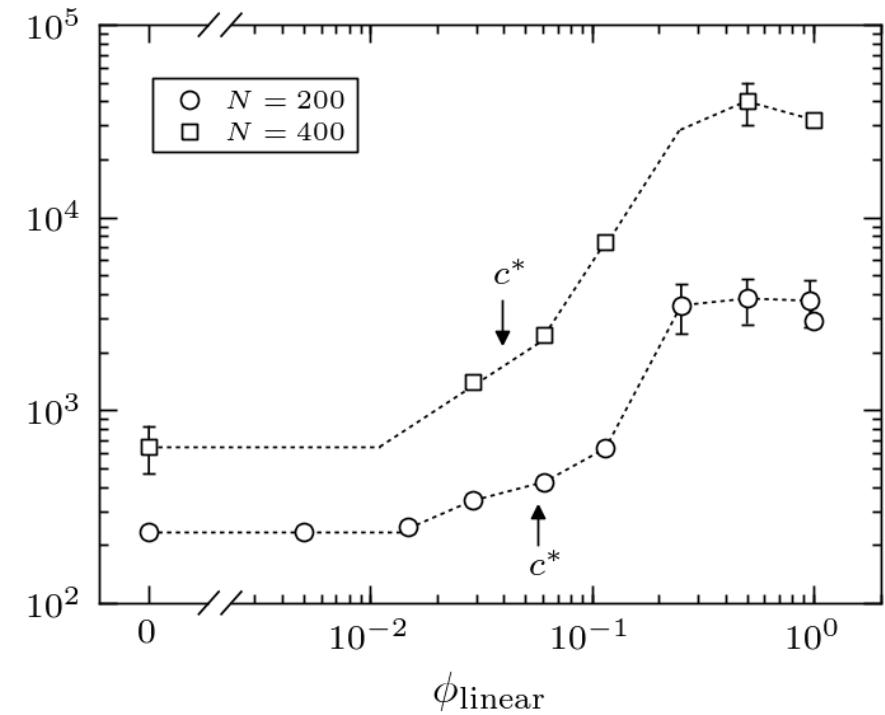


$$\phi_{\text{linear}} = 3/203 \sim 0.015$$



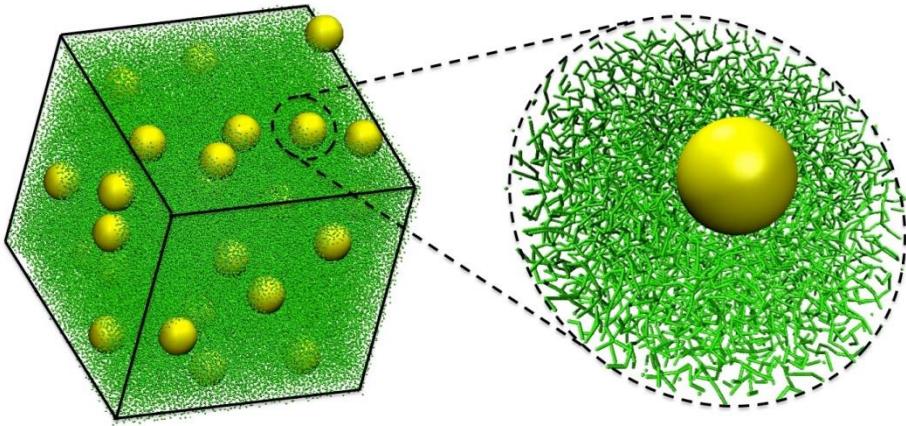
$$\phi_{\text{linear}} = 113/226 = 0.5$$

# Viscosity of Ring/linear Blends

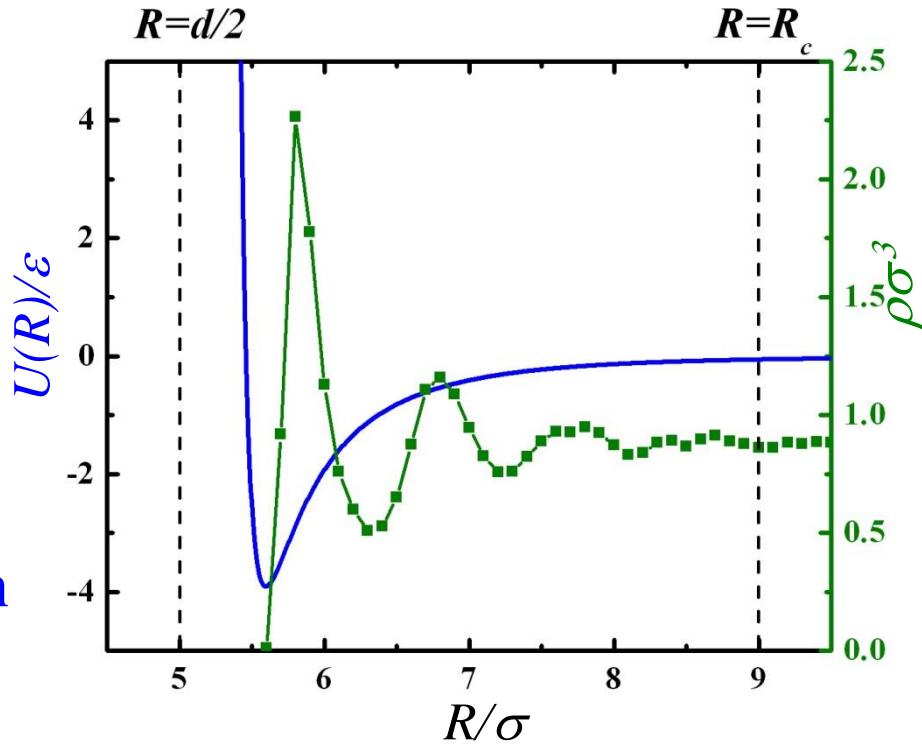


- Onset concentration of  $\phi_{\text{linear}} \approx 0.01$
- Peak in viscosity for  $\phi_{\text{linear}} \approx 0.5$

# Diffusion of Nanoparticles in Polymers

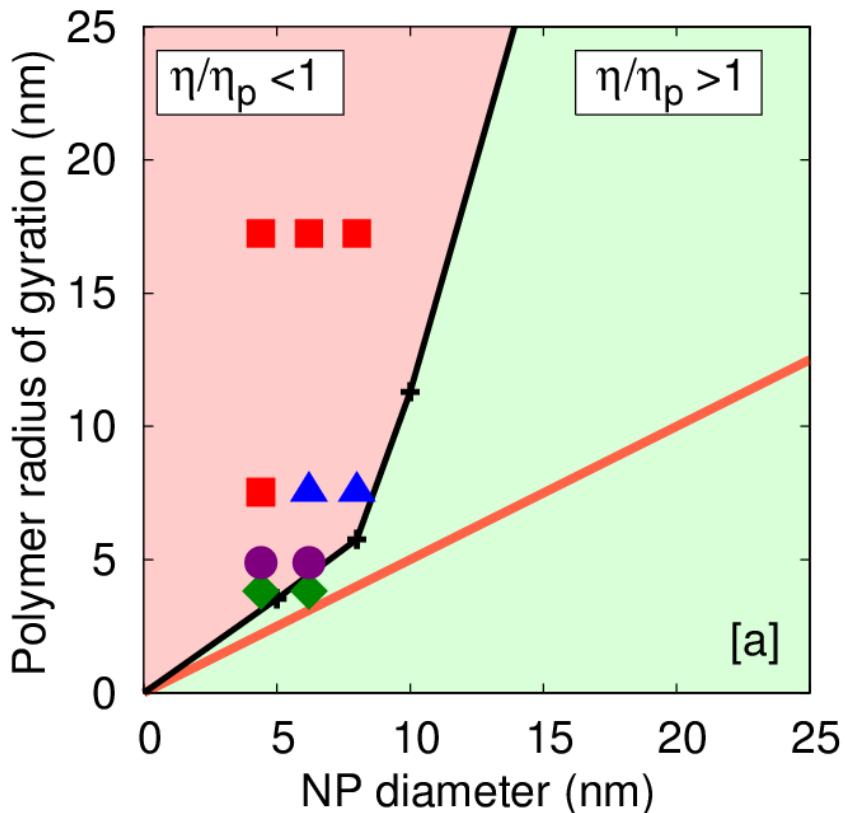


Athermal NP-NP Interaction  
Attractive NP-Polymer Interaction  
for Miscibility



- Weakly interacting mixtures of nanoparticles (NPs) and ring/linear polymers
- NPs of diameter  $d$  are well dispersed at  $\phi_{NP} \sim 0.1$

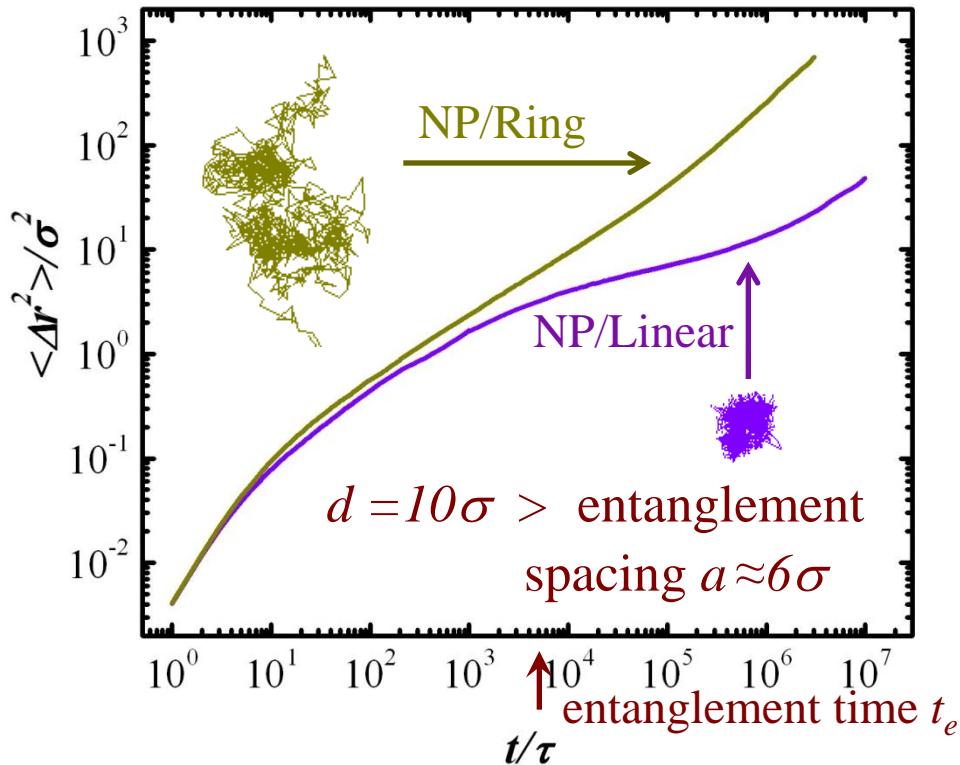
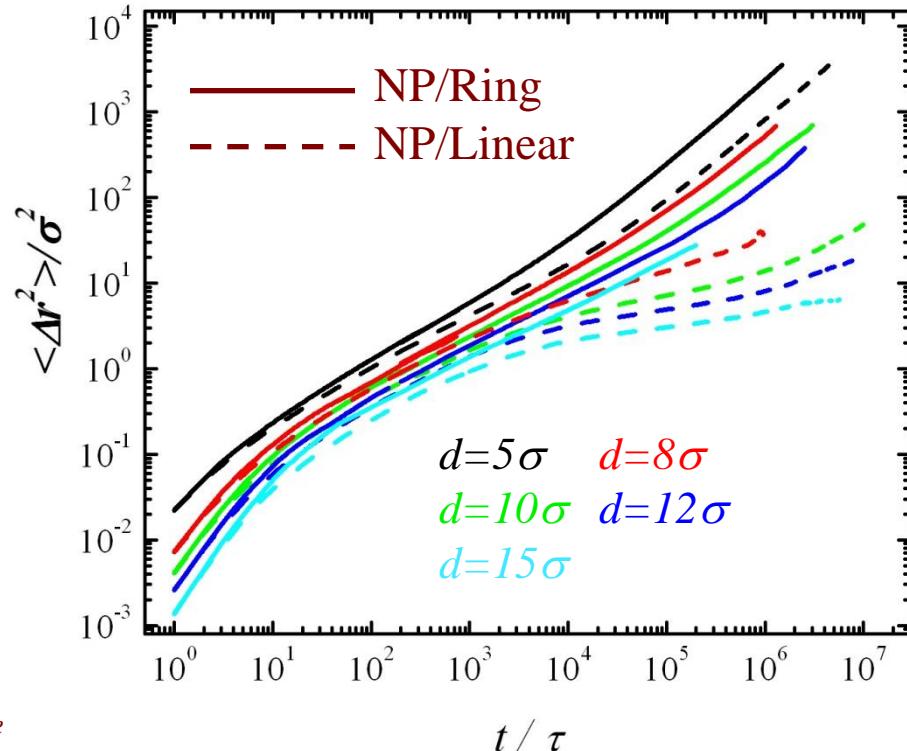
# Viscosity of Polymer Nanocomposites



- Small, neutral NPs act akin to plasticizers
  - reduce the viscosity of polymer melt
- Effect persists for particles whose sizes are as large as chain size or entanglement mesh size
  - Overcome by making the chain-NP interactions significantly attractive

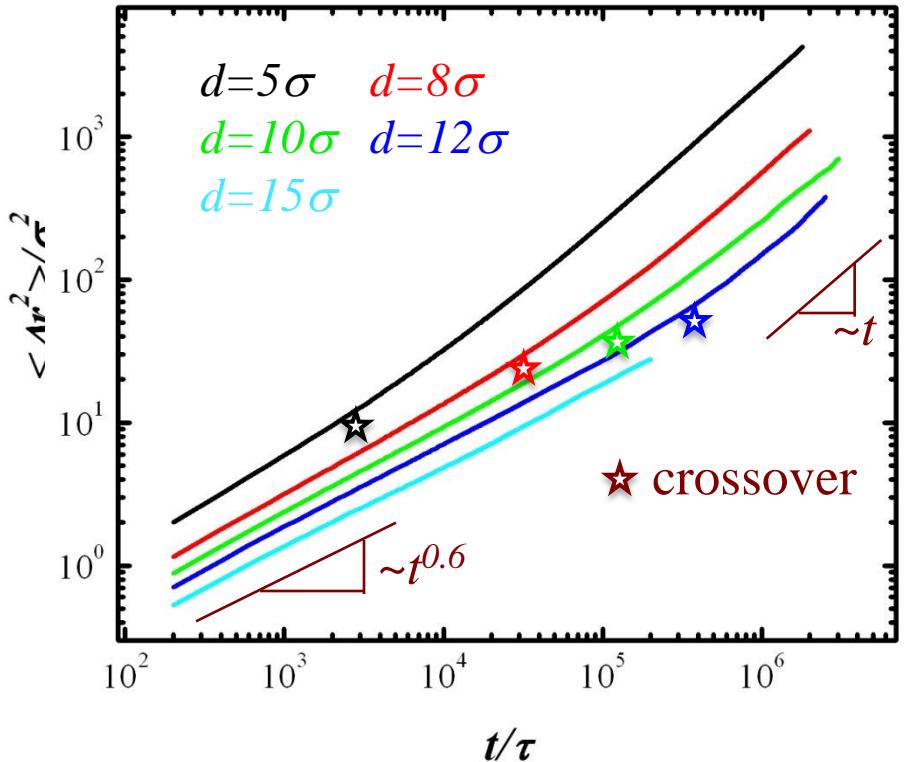
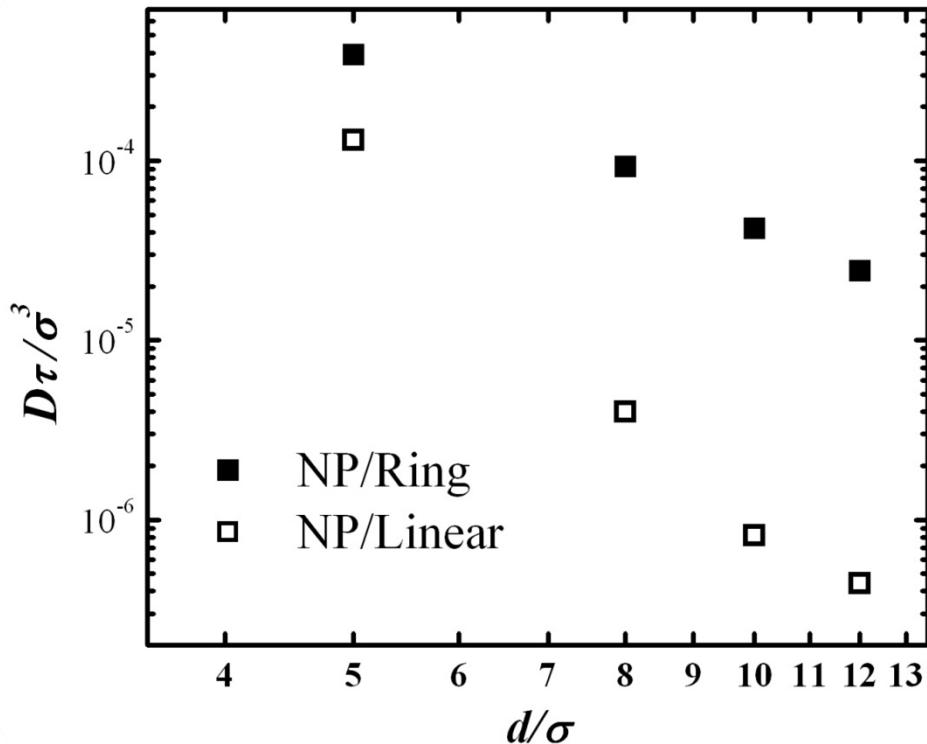
A. Tuteja et al., Macromolecules 38, 8000 (2005)  
J. Kalathi, PRL 109, 198301 (2012)

# Mean-Squared Displacement of NPs



- $t_0 < t < t_e$ , sub-diffusive motion due to coupling with dynamics of the subsections of polymer chains
- $t > t_e$ , before Fickian diffusion, motion of NPs with  $d > a$ 
  - Trapped by the entanglement mesh in linear polymers
  - Remains subdiffusive in rings, no entanglement mesh

# Fickian Diffusion of Nanoparticles



- Crossover occurs as NP motion couples with coherent motion of chain subsections of size  $R_g \sim d$
- Rings:  $D \sim d^{-3.2}$ , theory predicts  $D \sim d^{-4.5}$
- Linear:  $D \sim d^{-4.5}$ , theory predicts  $d^{-3}$
- Crossover to Stokes-Einstein  $d > 20\sigma$

# Highlights

- Simulations identified for the first time the reptation motion of polymers
- Followed entanglements of polymer using Primitive Path Analysis to predict macroscopic properties
- Ring polymers move much faster than linear chains
  - Relaxation time  $\sim N^2$  for rings
- Threading causes rings to diffuse very slowly in ring/linear mixtures
- Small nanoparticles act as diluent, decrease viscosity

# Future Directions

- Outlook for computer modeling is exciting
  - Faster, cheaper computers
  - Efficient parallel MD codes
- Larger Systems, Longer Chains, Longer Times
- Smaller strain, shear rates
  - Viscosity
  - Relaxation after shear
- Constraint Release - Polydispersity
- Semidilute polymers – explicit solvent
- Primitive Path Dynamics – Melts/Networks
- Branched Polymers, Stars, ....

# Acknowledgements

## Collaborations:

- **K. Kremer** (Max Planck, Mainz)
- M Pütz, S. K. Sukumaran, J. Halverson (Max Planck, Mainz)
- A. Grosberg (New York University)
- R. Everaers, X.-Z. Hou, N. Uchida (Universite de Lyon)
- C. Svaneborg (University of Aarhus)
- T. Ge and M. Rubinstein (University of North Carolina)
- S. Kumar and J. Kalathi (Columbia University)
- K. Schweizer and U. Yamamoto (University of Illinois)

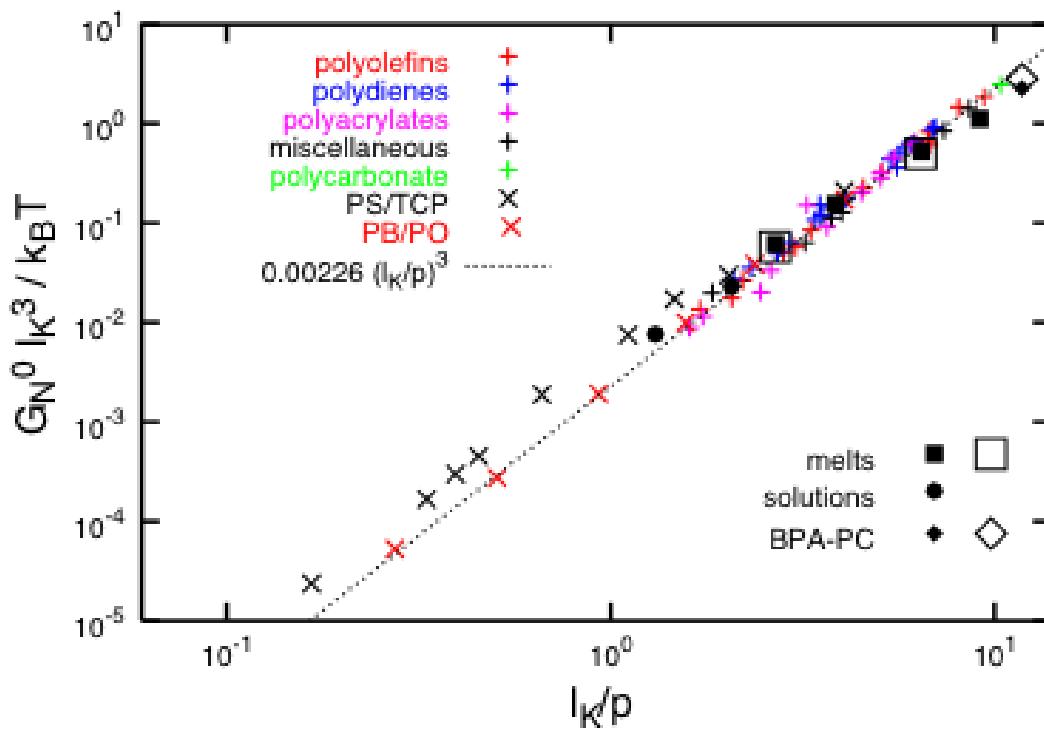
## Funding:

- Center for Integrated Nanotechnologies (CINT)
- DOE (BES)

## Computer Resources:

- Advanced Scientific Computing Research (ASCR) Leadership Computing Challenge (ALCC) at the National Energy Research Scientific Computing Center (NERSC)
- Sandia National Laboratories

# Predicting the Plateau Modulus from PPA



$$G_N^0 = 0.00226 k_B T / p^3$$

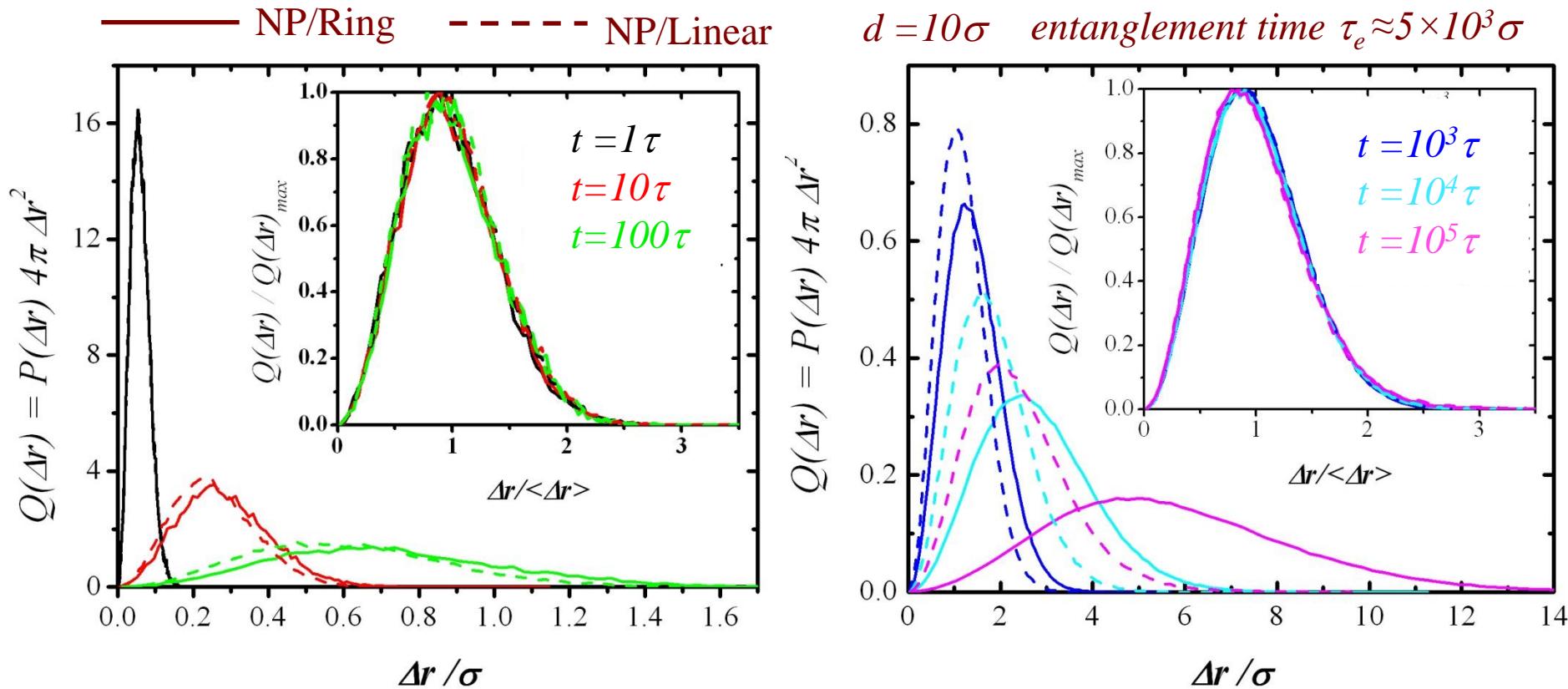
L. Fetters *et al.*, J. Polym. Sci B: Polym. Phys. 37, 1023 (1999)

$$G_N^0 = \frac{4}{5} \frac{k_B T}{a_{pp}^2 p}$$

- Parameter free prediction for plateau modulus

Extended to solutions of semi-flexible polymers –  
N. Uchida *et al.*, JCP 128, 044902 (2008)

# Probability Distribution of NP Displacement



- Nearly Gaussian distribution of NP displacement
- Entanglement mesh reduces the mean displacement for linear chains but does not change the distribution
- No evidence of NP hopping