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Why are Polymers Interesting?

 Polymers can simultaneously be hard and soft
—Unique Viscoelastic Behavior

» Motion of a polymer
chain Is subject to
complicated topological
constraints




log G(t)

Entangled Polymer Liquids

» Macroscopic
Viscoelastic Response — Intermediate frequency, time
TR il R s polymer melt acts as a solid
— Long time, low frequency
 tranaition polymer acts as a liquid
Microscopic
— Gaussian coils, R ~ N2

— Stress Is due to entropy loss of
stretched chains

S S W Y WS — Polymers as "entropic springs"
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Computational Challenges

« Longest relaxation time T~ N3

e Chains are Gaussian coils — R ~ N1/2

— Number of chains must increase as R3 ~ N32so polymer chains
do not to see themselves through periodic boundary conditions

* Double chain length — cpu required increases by at least a
factor of 24°~ 23

— 1-2 month simulation becomes 2-4 years

* Number of processors limited: ~500-1000
particles/processor




Computational Challenges

« Longest relaxation time T~ N3

e Chains are Gaussian coils — R ~ N1/2

— Number of chains must increase as R3 ~ N32so polymer chains
do not to see themselves through periodic boundary conditions

* Double chain length — cpu required increases by at least a
factor of 24°~ 23

— 1-2 month simulation becomes 2-4 years

* Number of processors limited: ~1000 particles/processor

» Software/hardware advances have been significant




Toys for the Simulator




Polymer Diffusion

« Simple Liquids
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» Short Polymer Chains (M < M,)

In g4t)

— Longest relaxation time 1z ~ M?
— Intermediate t¥2 time regime in mean square displacement
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Bead-Spring Model

e Short range - excluded volume
Interaction
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» Bonded interaction - FENE spring
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k=30¢/6?, R,=1.50

 Energy barrier prohibits chains from cutting through each other
— topology conserved
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Polymers do Reptate!
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e t1/4 reptation regime for N > 100
* First direct evidence from simulation or experiment

Kremer et al., PRL 61, 566 (1988); Kremer and Grest, JCP 92, 5088 (1990)




Polymer Chain Confined to Tube

» Coarse grained chain
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N=400 — 20 plots, 600 t apart




Motion of Unentangled Polymer
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» Once polymer move their own size, unentangled polymers
move like normal liquids




Motion of Entangled Polymer
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« tI/4 motion is clearly seen for inner monomers

« Second tY2 region still unresolved




Topological Approach to Idenify
Entanglements

} ™,
« Microscopic %ﬁf\?ﬁ\z@
conformation y"’ é{&{/ /-

« Shortest path into
which a chain can
contract with fixed
endpoints and without
crossing obstables

- Tube axis = primitive path %

* Need a topological analysis which can follow
motion of chain




Primitive Path Analysis

» Shorter Contour Length
Lpp= Nbp, < L
e Larger Kuhn Length
%op >_Ik
« Same spatial extent
gl = RZ=1 L

 Entanglement Length
Ne = a,,/bp,

» Packing Length
P= 1/pchainR2

* Primitive paths of a cluster of entangled chains




100x40x10003

F. Pierce et al , EPL 95, 46001 (2011)

Self-Healing of Polymer Films
» Development of Entanglements Across an Interface



Entanglements at Interface
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Interfacial Entanglements form between chains from opposite sides
*Bulk response 1s fully recovered when the density of entanglements
at the interface reaches the bulk value

T. Ge et al, PRE 90, 012602 (2014)



Dynamics of Ring Polymers

* As chain size increases, linear polymers entangle
and are forced to move (‘reptate’) along their contours
 Branched polymers relax via a hierarchy of modes
from dangling ends moving inward

« Remaining mystery: How do ring polymers relax
without beginning or end?

@g} @é‘%@ﬁ




Configurations of Ring Polymers

(@) N =100

£

(b) N = 400

 Rings more compact, less entangled than linear chains
- Radius of Gyration R,? ~ N2 for rings
~N for linear
J. Halverson et al. J. Chem. Phys. 134, 204904 (2011)




Dynamics of Ring Polymers

H 100 ¢

| Ll 1 11 | |- 10

'10 L1 111 | L1

1k 10k 100k 1M 10M 1k 10k 100k 1M 10M
t/t t/t

* Ring polymers move much faster than linear chains

* Longest relaxation time t ~ N2 for rings, N3 for linear
chains

J. Halverson et al. J. Chem. Phys. 134, 204905 (2011)




Mixture of Ring and Linear Polymers

N = 200, Myings = 200, Miinear = 26 t=07

J. Halverson et al, PRL108, 038301(2012)




Constrained Motion of Rings in Linear Melt

« Threading causes rings to diffuse more slowly

R

*Threaded rings can only diffuse along the contour of the linear chain

«Time for constraint release scales as N34




Dynamics of Ring/Linear Blends
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* D,i,y decreases dramatically when threaded by multiple linear
chains ((Plinear >O'1)
* Dyieqr IS approximately independent of ¢,




Primitive Path Analysis

N=400

e

Byinesr = 3/203 ~ 0.015 Byines = 113/226 = 0.5




Viscosity of Ring/linear Blends
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* Onset concentration of ;e = 0.01

* Peak 1n viscosity for ¢, = 0.5




Diffusion of Nanoparticles in Polymers
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« Weakly interacting mixtures of nanoparticles (NPs)
and ring/linear polymers
* NPs of diameter d are well dispersed at @\~ 0.1




Polymer radius of gyration (nm)

Viscosity of Polymer Nanocomposites
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« Small, neutral NPs act akin to
plasticizers

-reduce the viscosity of

polymer melt
» Effect persists for particles whose
sizes are as large as chain size or
entanglement mesh size
e Overcome by making the chain-
NP interactions significantly
attractive

A. Tuteja et al., Macromolecules 38, 8000 (2005)

J. Kalathi, PRL 109, 198301 (2012)




Mean-Squared Displacement of NPs
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NP/Ring
----- NP/Linear

A

d =100 > entanglement
spacing a~6o

10" 10" 10° 10" A0* 10° 10° 10’ 10" 100 100 100 10° 100 10° 10
entanglement time t,
t/z' t/T

e t, <t <t,, sub-diffusive motion due to coupling with
dynamics of the subsections of polymer chains
* t >t , before Fickian diffusion, motion of NPs with d >a
- Trapped by the entanglement mesh in linear polymers
- Remains subdiffusive in rings, no entanglement mesh

T. Ge et al, in prep (2015)
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Fickian Diffusion of Nanoparticles
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» Crossover occurs as NP motion couples with coherent motion
of chain subsections of size R ~ d

 Rings: D ~d=2, theory predicts D ~ d4°

e Linear: D~ d>, theory predicts d-3

» Crossover to Stokes-Einstein d>20c




Highlights

* Simulations identified for the first time the reptation motion
of polymers

* Followed entanglements of polymer using Primitive Path
Analysis to predict macroscopic properties

 Ring polymers move much faster than linear chains
— Relaxation time ~ N2 for rings

 Threading causes rings to diffuse very slowly in ring/linear
mixtures

« Small nanoparticles act as diluent, decrease viscosity




Future Directions

 Outlook for computer modeling is exciting
— Faster, cheaper computers
— Efficient parallel MD codes
» Larger Systems, Longer Chains, Longer Times
« Smaller strain, shear rates
— Viscosity
— Relaxation after shear
 Constraint Release - Polydispersity
« Semidilute polymers — explicit solvent
 Primitive Path Dynamics — Melts/Networks
* Branched Polymers, Stars, ....
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Predicting the Plateau Modulus from PPA
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 Parameter free prediction for plateau modulus

Extended to solutions of semi-flexible polymers —
N. Uchida et al., JCP 128, 044902 (2008)




Probability Distribution of NP Displacement
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 Nearly Gaussian distribution of NP displacement
 Entanglement mesh reduces the mean displacement for linear

chians but does not change the distribution
* No evidence of NP hopping




