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Abstract. Memory failures in future extreme scale applications is a significant
concern in the high-performance computing community and has attracted much
research attention. We contend in this paper that using application checkpoint
data to detect memory failures has potential benefits and is preferable to exam-
ining application memory. To support this approach, we describe the application
of machine learning techniques to evaluate the veracity of checkpoint data. Our
preliminary results indicate that supervised decision tree machine learning ap-
proaches can effectively detect corruption in restart files, suggesting that future
extreme-scale applications and systems may benefit from incorporating such ap-
proaches in order to cope with memory failures.

1 Introduction

Fault-tolerance has been identified as a major challenge for exascale-class systems. As
systems grow in scale and complexity, failures become increasingly likely. Due to the
plateauing of CPU clock rates, a system 1,000x more powerful than today’s petas-
cale systems will likely need 1,000x more components to deliver this increased per-
formance [1]]. This increase in component count will likely lead to a commensurate
increase in the system’s failure rate. This is compounded by the fact that shrinking tran-
sistor feature sizes and near-threshold voltage logic needed to address energy concerns
may further increase the hardware failure rates. Given these dire predictions and the
dynamics of fault-tolerance techniques, significant effort has been and is being devoted
to improving system resilience.

The current de facto standard for fault-tolerance on high-performance computing
(HPC) systems is coordinated checkpoint/restart. The success of checkpoint/restart on
current systems depends on two assumptions: 1) failures are not commonplace; and
2) systems receive notification of failures, i.e., silent data corruption is rare. While
these assumptions hold on today’s systems, whether they will continue to hold on next-
generation extreme-scale systems is unclear.

* Sandia National Laboratories is a multi-program laboratory managed and operated by San-
dia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.



Silent data corruption (i.e., undetected bit flips) are of particular concern for fu-
ture systems, and are not mitigated using checkpoint/restart. These undetected bit flip
are such a concern that application- and algorithmic-based fault tolerance methods has
become an active research area [2H5]]. These methods, which are tailored to the com-
putational characteristics of specific applications, are guaranteed to deliver a correct
answer even in the presence of failures in application memory. These methods typically
work by 1.) encoding redundant data into the problem such that data from failed nodes
can be recomputed [2-4]], or 2.) exploiting an algorithm-specific relationship between
the parallel application and its individual data chunks. Data lost due to a failure impacts
the result by possibly increasing the error of the solution or by running the surviving
nodes for longer until the problem has converged. Therefore, the number of nodes lost
determines the application time-to-solution or the error associated with the solution [5]].
A key feature of these methods is that they typically must protect the entire memory
footprint for the application, which can be substantial.

In contrast to current algorithmic methods, we propose using application check-
points, rather than the application’s entire memory footprint, to detect errors. In partic-
ular, we propose using them to detect silent data corruption in HPC applications. This
position has a number of advantages over more traditional application-based methods.
For example:

— Current extreme-scale algorithms already use checkpointing for fault-tolerance,
and will therefore require little modification to take advantage of this method.

— By definition checkpoints represent the critical state of the application. The entire
memory footprint can be regenerated from this critical state.

— Checkpoints are typically much smaller than the application’s memory footprint
and therefore will likely require lower overheads to protect.

— Errors that occur but do not eventually impact checkpoint data are ignored as they
do not impact the applications critical state.

— Error detection methods may have lower overheads than the detection and correc-
tion mechanisms found in algorithmic approaches.

— Checkpoint verification can run in parallel with application computation, not inter-
fering with application progress.

— Checkpoint data is widely used as input for downstream tasks such as analytics and
visualization. Making checkpoints a basis of fault-detection efforts also protects the
operation of such downstream computations.

We therefore make the following contributions in this paper:

— We introduce an application-independent strategy of verifying application check-
points as proxies for application memory corruption.

— We describe the application of particular unsupervised and supervised machine
learning methods to the problem of verifying checkpoint data.

— Using checkpoints from an execution of a well-known simulation, we examine
the clustering and prediction accuracy of our chosen methods. While unsupervised
clustering does not appear to distinguish corrupted data well, we found that a super-
vised learning method trained on bit-level errors can classify corrupted checkpoints
with reasonable accuracy.



2 Checkpointing on Current Systems

Checkpoint/restart is the most widely studied and deployed set of techniques for han-
dling failure in large-scale high-performance computing (HPC) systems. The basic idea
is that applications can mitigate the cost of recovering from failure by periodically sav-
ing their critical state, a checkpoint, to some form of storage that is likely to survive the
failure. Upon failure, the last known good checkpoint is retrieved from stable storage,
loaded into memory, and computation resumes.

Checkpoints contain the critical data of an HPC application—the data needed to fully
recreate the state of the application after a failure. They are typically highly optimized
and considerably smaller than the runtime memory footprint of the application. For ex-
ample, Table [I] shows the per-process memory footprint for two key production appli-
cations, CTH and LAMMPS. LAMMPS is a molecular dynamics code [|6] from Sandia
National Labs and CTH is a shock physics code [7] also from Sandia. Each of these
applications are key US Department of Energy DOE applications which run for long
periods of time in production modes and exhibit a range of different communication
structures. From this table, we see that these application-based checkpoints are signifi-
cantly smaller than the entire memory footprint. The CTH checkpoints are roughly 5%
of the application’s memory footprint. The LAMMPS checkpoints are approximately
19% of the memory footprint for this LAMMPS problem, EAM.E]

Application Memory Footprint| APP Checkpoint Size| CKPT % of Footprint

(MB) (MB) (%)
CTH 583 26.1 4.5%
LAMMPS (EAM) 3,256 608.0 18.7%

Table 1. Per-process memory footprint and application-based checkpoint sizes for two key pro-
duction workloads, CTH and LAMMPS. The memory footprint represents the average across the
lifetime of the application. The application checkpoint (APP Checkpoint) is the average across
all checkpoints and nodes. The final column is the percent the memory footprint the checkpoint
occupies.

Because application checkpoints capture the critical state of an application but are a
small fraction of the size of the application’s entire memory footprint, it is our position
that checkpoints can be effectively and efficiently exploited to protect against silent data
corruption in the memory of HPC applications. The fact that they contain the critical
state of the application means that we can identify any errors that would corrupt the
solution produced by the application. The fact that checkpoints are so much smaller
than the application’s memory footprint means that the overhead of examining them
to identify the effects of data corruption will likely be much lower than if we were to
consider all of application memory directly.

3 This is the largest checkpoint over tested LAMMPS inputs (EAM, LJ, SNAP, CHAIN,
RHODO). The average checkpoint size is considerably smaller—7%.



3 Approach: Using Checkpoints as Failure Detectors

We identify two types of checkpoint corruption: (i) indirect corruption; and (ii) direct
corruption. Indirect corruption occurs when a silent error in application memory is cap-
tured and preserved in a checkpoint. In this case, if we detect that a checkpoint has been
corrupted it indicates that the application has been corrupted and may produce an un-
trustworthy result. As a result, recovery requires restarting the application either from
a known-good checkpoint or from the beginning. Direct corruption occurs when the
checkpoint itself is corrupted without affecting the state of the application. Although
the application is unaffected, if a failure occurs before the next checkpoint is taken,
restoring the state of the application from the checkpoint would allow the corruption to
propagate into the application’s memory. Recovery in this case could be accomplished
by either re-checkpointing the application or rolling back to an earlier known-good
checkpoint.

Automatic classification using selected machine learning techniques can help us
determine whether a checkpoint contains one or more errors. By training a supervised
learning classifier using known-good checkpoints along with ones that include known
errors, newly-generated checkpoints can be identified as valid or not. This identification
carries a degree of certainty which will vary according to the learning method chosen,
the semantics of the checkpoints themselves (necessarily an application-dependent fac-
tor), and the amount and variety of checkpoints used for training data.

Choice of features for training data is an interesting issue in this case. Checkpoint
metadata or provenance information can contribute meaningfully. For example, a check-
point size which differs from expectations might be a sign of a truncation. Also, a partic-
ular node with known memory issues or other significant maintenance history might be
represented as additional features in a potential model. Determining features based on
the checkpoint data itself will likely prove more complicated. Assigning features based
on checkpoint data semantics is most straightforward but is necessarily application-
specific; however, this would allow for considerable reduction of feature dimensionality
by eliminating highly-correlated data. More generic approaches such as considering raw
bit patterns in the output are possible, but present undifferentiated feature ranges and
will likely pose scalability issues; consider that checkpoint files with sizes measured in
hundreds of megabytes are not uncommon. Also, the choice of learning method is de-
pendent on how checkpoint data and metadata are mapped into a feature space: decision
trees or Bayesian methods may work better with heterogeneous data while support vec-
tor machines are more appropriate for data which can be scaled into a common numeric
range.

Ideally, such a classification step would be performed immediately upon checkpoint
generation. However, it may not be feasible for an application to perform classification
itself at each checkpoint without seriously degrading solve time. If in situ classification
is not possible, it may be possible to maintain in-band detection by providing a com-
munication channel whereby an application can be notified when a previous checkpoint
has been determined invalid. It may be possible to accomplish classification within an
acceptable checkpoint interval through the use of co-processors such as GPGPUs or re-
served processor cores or machine nodes. This is similar to how analytics are performed
in so-called “in-transit” solutions, where classification tasks would be treated as another



type of data analysis. This would provide feasibility advantages in that perturbation ef-
fects are typically already addressed to varying degrees in these environments, and also
in that such approaches are already using checkpoint data as input to visualization and
analysis tasks. If classification cannot be performed in a checkpoint interval, an out-of-
band method, potentially requiring the retention of checkpoint data for lengths of time
greater than a checkpoint interval, will be required.

4 Using learning approaches to classify checkpoints

To explore the possible application of ML approaches to checkpoint error detection, we
conducted a series of experiments which we detail in this section.

4.1 Application checkpoint description

For this work, we consider errors in the aforementioned LAMMPS production molec-
ular dynamics application. From LAMMPS, we consider the SNAP potential. SNAP
is a computationally intensive, quantum accurate potential that uses the same kernel
as GAP [8]. This potential was chosen for a number of reasons: 1) this represents an
important scalable workload used at extreme-scale, and 2) due to the small number of
atoms, checkpoints are exceedingly small-92 bytes per MPI process. These 92 byte
checkpoints allow us to investigate the efficacy of our position while not having to
worry about performance overheads.

4.2 Modeling checkpoint data

We chose for our investigation to treat the 128,000 92-byte restart files from LAMMPS
as samples of 92 one-byte features. This choice disregards potentially useful informa-
tion that might be derived from the files. For example, an examination of the logical
structure of the restart files would result in fewer features per sample, as each restart
file is a serialization of a C++ application object using data types which are multiple
bytes in length. Using the logical structure of the restart file could also give an indication
of how features should be weighted when applying different ML methods.

Despite these considerations, we believe our approach still provides useful insight.
We are most concerned with the detection of single-bit errors, which should be better
isolated using a larger number of single-byte features. Also, as different applications
write different information in their checkpoints, exploiting the structure of the restart
files is necessarily an application-dependent modeling approach that would need to be
repeated for other applications. This information can also be difficult to acquire if access
to the source code for the application in question is unavailable. Our approach provides
a way of looking at checkpoints with arbitrary structure.

We synthesized corrupted restart files with different scales of errors. To represent
silent data corruption or “bit-flips”, we introduced errors by flipping one, two, or three
bits in a single restart file. This was done by choosing a byte at random in the restart
file, and then choosing a random bit within that byte to invert; multiple bit flips were
done by repeating this process. We synthesized larger-scale errors by choosing either



one byte or three bytes at random and substituting a random bit pattern. This patterns
are consistent with the errors patterns found on current systems [9].
Weuse the scikit—1learn [10] Python toolkit for our experiments. scikit—-learn con-
tains implementations of many different ML algorithms, allowing implementation changes
with relatively little overhead. Several other toolkits of this kind exist, most notably the
Weka class library [11]]. While performance of the classification algorithms was not a
primary concern in this work, attempting online or near-line classification might require
parallelized or more performant approaches for applications with larger restart files.

4.3 Choosing an ML technique

Although we expect there are correlations between files written out as part of a group
checkpoint, they may not necessarily relate to whether errors occur within any single
file. For simplicity we consider each checkpoint file as an i.i.d. sample of potential error.
Because each byte is a feature, the space we are considering here is not contiguous, and
in fact certain byte values for certain features will probably never arise for a checkpoint
value, and should be construed as erroneous. This makes a high dimensional solution
space of good regions marked by large voids, or bad regions, where there is no plausible
observation. Our expectation here is very much a non-linear relationship among the
features, observations into the solution space, and the likelihoods of a bit error occurring
in any given file. Based on this, we consider both a k-means clustering [12] and CART
a tree classifier, provided by scikit-learn, as appropriate first passes to capture those
regions and the relationship between them and detected errors, the results of which are
discussed further on.

Moving beyond these initial attempts to capture the space, several possibilities ex-
ist for exploration in future work. Unsupervised approaches, self-organizing maps or
growing neural gas [13]], may provide better information about the layout or structure
of the file space, especially to understand whether and where these void regions lay
between the good. In particular k-means clustering provides an opportunity to explore
proximity measures beyond Euclidean distance and determine if there is a better com-
parison between points in the high dimensional space. With exploration of the features
themselves, including imposing structure from the definition of the file, we may find
additional correlations in the features allowing some reduction from raw byte counts,
such as bag-of-words or Latent Dirichlet Allocation [[14] used in text. Following Ren-
nie et al. [[15]], we may find good results using Naive Bayes with more information rich
features.

4.4 Unsupervised learning: clustering with k-means

We first investigated an unsupervised learning method, k-means clustering [16]. Our
goal here was to explore whether explicit labeling is a necessity for this set of data. We
used the scikit—-learn KMeans module to perform clustering. The input samples
were the set of uncorrupted restart files combined with a set of corrupted restart files
with a specific error type as described above, and we used 100 as K. We conducted
three separate clustering tests, with the results displayed in Fig. [I| These figures stack
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Fig. 1. K-means clustering results. The X-axis is cluster index, and the Y-axis is the number of
samples in each cluster.

the histogram of the uncorrupted clusters on the bottom with the corrupted clusters
histogram on top.

If clustering is to be effective at distinguishing restart file corruption, we would
expect to see a majority of the samples corresponding to corrupted restart files collected
in a subset of the clusters, and similarly for those samples corresponding to uncorrupted
restart files. The figure shows that, instead, both sets of samples are relatively uniformly
distributed across the set of clusters. Note also that the general uniform shape does
not change as the scale of error changes across the subfigures. Similar results hold for
K = 10,50, 200, 300, not presented here due to space constraints. Our approach here
is straightforward, without any significant tuning of the clustering algorithm. However,
for the purposes of our exploration, an unsupervised learning approach does not seem
to be effective in distinguishing restart files with errors. We therefore turn our attention
to explicitly labeled samples and a supervised method.

4.5 Supervised learning with decision tree methods

As detailed above, we chose a decision tree-based method as a test case for supervised
learning on our checkpoint data. As with the unsupervised K-means experiments, we
treat each 92-byte restart file as a sample with 92 features, namely the constituent bytes
of the file. We first trained a separate decision-tree classifier on each type of our syn-
thetically corrupted data (1,2,3-bit and 1,3-byte). For this experiment, we trained each
classifier on the entire set of uncorrupted restart files (labeled as good inputs) and on
the type-specific set of corrupted files (labeled as bad inputs). We then evaluated the
prediction accuracy on the entire set of bad files. Since the classifier had already built a
model using the bad samples, we expected high accuracy as this experiment served as
a best-case trial of the decision tree method on these inputs.

These results are presented in Fig. 2] Each point on each plot is the prediction accu-
racy for the restart files, across all nodes at each timestep for which corrupted data was
synthesized (if a restart file was written by a node at a timestep in the uncorrupted data,
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Fig. 2. Prediction accuracy of each classifier on the same type of error, across all ranks and
timesteps of the set of restart files.

we synthesized a file with each type of data corruption). The data indicates that the
bit-scale-trained classifiers have better accuracy detecting bit-scale errors than do the
byte-scale classifiers on byte-scale errors. The 2-bit and 3-bit classifiers in particular
are able to correctly classify the corrupted files with high accuracy.

In order to get a more general idea of the ability of the different classifiers to cor-
rectly identify multiple types of corrupted data, we then conducted an Mz N com-
parison where we measured the prediction accuracy of each classifier on each type of
our synthetic corrupted data. In this trial we also include classifiers trained using the
AdaBoost ensemble method [17]] for an example of an additional supervised learning
method. Additionally, for this experiment we separated the corrupted data into train-
ing and testing sets, only running the prediction on the testing set of error data. Fig.
displays the results of this experiment. All save one of the classifiers performed best at
identifying restart files with at most 3 inverted bits. The notable exception in this case
was the classifier trained on 3 random bytes, which exhibited poor prediction perfor-
mance on every type of corrupted data tested. In addition, the prediction accuracy of all
the classifiers suffered when tested against the higher scale (1-byte and 3-byte) errors.
While our experiments were not intended to conclusively explain all behaviors of the set
of classifiers, we hypothesize that increasing the scale of errors essentially introduces
noise into the feature set, complicating accurate prediction.

Finally, although our experiments were not designed to comprehensively measure
performance, we measured relative execution time of the different classifiers for the
MaxN comparison. Presented in Fig. |4} our results show that the AdaBoost ensemble
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Fig. 3. Prediction accuracy of each classifier against the test set of each type of random errors
(1-3 bit, 1 and 3 byte)

classifiers took considerably longer than the single decision tree classifiers for each type
of data corruption we examined. When considered against the results of Fig.|3| it seems
clear that a large cost in prediction execution time for the AdaBoost classifiers produces
no advantage in predictive accuracy. It is dangerous to generalize from this result, as it
reflects dependencies on our test data as well as a lack of tuning of the training methods
for the classifiers. However, for future applications of these types of learning meth-
ods for automatic classification of restart files, these types of investigations may prove
useful.

5 Related work

To the best of our knowledge, we are unaware of any existing work which addresses
silent data corruption in HPC application by ensuring the veracity of checkpoints. That
being said, resilience methods which ensure progress in failures, both detected and
undetected is diverse and popular. In this section, we briefly outline some of the more
closely related studies and contrast them with our work.

Checkpointing: The most prevalent method of defensive fault-tolerance mitigation
in modern applications, coordinated checkpointing periodically writes global applica-
tion or system state to stable storage [18]. Consistent application state snapshots are
enforced through global barrier synchronization. When a process fails, all application
processes can then be restarted from a known-good, globally consistent state. Algorith-
mic approaches borrowed from the distributed computing domain [[19] allow applica-
tions to generate consistent checkpoints without using barriers, avoiding increasingly
expensive global synchronization.
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Coordination and limited bandwidth to the stable storage typically used to store
checkpoints have given rise to uncoordinated or asynchronous checkpointing [[18}20-
22|). In these systems, nodes do not synchronize or coordinated in any way when they
checkpoint, but they also keep a log of their sent messages on stable storage. Nodes
restoring from local asynchronous checkpoints can then reconstruct a local state consis-
tent with the application global state by replaying inbound messages from other nodes
(using their logs).

These checkpointing methods provide no facilities for dealing with SDC in the ap-
plication. Therefore, protection requires algorithmic- or application-based mechanisms
to ensure these failures are detected and/or properly dealt with.

Algorithmic-based fault tolerance: Algorithmic-based Fault Tolerance Mecha-
nisms are based on notion of designing algorithms that are capable of ignoring errors
while delivering a correct answer, or are capable correcting errors using techniques such
as redundant data or computation. Algorithmic-specific data redundancy methods work
by encoding additional data into the problem such that data from failed nodes can be
recomputed. In addition, the algorithm is modified to update the encoding as computa-
tion progresses [2H4]. In contrast, computation redundancy relies on algorithm-specific
relationship between the parallel application and its individual data chunks. If data is
lost due to a failure, this impacts the result by possibly increasing the margin of error or
by running the surviving nodes for longer until the problem has converged [5}23]].

Machine learning for anomaly detection: A great deal of research has used ma-
chine learning techniques for different kinds of anomaly detection and classification. Li
et al. used 1-gram and naive Bayes methods to identify different file types [24]. Others
have considered anomaly detection in the context of: malware behavior analysis [25],
network intrusion detection [26]], and internet traffic classification [27]]. To our knowl-
edge, these techniques have not yet been applied to checkpoint/restart artifacts.



6 Conclusion

Preserving the reliability of future extreme scale applications will require new ap-
proaches for ensuring the veracity of the computation performed. We contend that vali-
dating checkpoint data is a more feasible approach than examining application memory
footprints. In this initial study, we have described how checkpoint data can be leveraged
to detect errors in application memory that are captured in a checkpoint. As a proof of
concept, we investigated the usefulness of machine learning methods for automatically
detecting checkpoint corruption.

Our initial results indicate that supervised learning approaches may be preferable to
clustering for detection of checkpoint corruption. In particular, we determined that de-
cision trees show promise for detecting small errors (as many as 3 inverted bits out of a
92-byte checkpoint) with reasonable accuracy. Based on these results, we are pursuing
additional refinements to our machine learning techniques to improve its performance
and to account for a broader range of failure modalities. More generally, we hope that
these results prompt more investigation of machine learning approaches. Many machine
learning alternatives exist, with different abilities to tune for accuracy and different per-
formance characteristics, and much of the promise of this approach is yet unexplored.
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