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ABSTRACT

Extensive Structural Health Monitoring (SHM) studies have highlighted the
ability of various sensors to detect common flaws found in composite and metal
structures with sensitivities that meet or exceed current damage detection
requirements. Reliable SHM systems can automatically process data, assess
structural condition, and signal the need for human intervention. While ad-hoc
efforts to introduce SHM into routine aircraft maintenance practices are valuable in
leading the way for more widespread SHM use, there is a significant need for
formal SHM certification efforts to exercise and define the process of producing
routine use of SHM solutions. SHM certification must address the full spectrum of
issues ranging from design to performance and deployment to continued
airworthiness. Currently, there are no guidelines for SHM system designers or
agreed-upon procedures for quantifying the performance of SHM systems. The
FAA Airworthiness Assurance Center (AANC) at Sandia Labs, in conjunction with
Boeing, Delta Air Lines, Structural Monitoring Systems and Anodyne Electronic
Manufacturing, is conducting a study to develop and carry out a certification
process for SHM. By conducting a focused assessment of a particular aircraft
application, all aspects of SHM integration are being addressed. While it is
important to recognize the unique validation and verification tasks that arise from
distinct differences between SHM and nondestructive inspection (NDI) deployment
and flaw detection, it should be recognized that some portions of the methodology
needed to determine NDI performance can be adapted to the validation of SHM
systems. In this study, statistical methods were applied to laboratory and flight test
data to derive Probability of Detection (POD) values for SHM sensors in a fashion
that agrees with current NDI requirements.
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INTRODUCTION

Multi-site fatigue damage and hidden cracks in hard-to-reach locations are
among the major flaws encountered in today’s extensive array of aging structures
and mechanical assemblies. The costs associated with the increasing maintenance
and surveillance needs of aging structures are rising. The application of Structural
Health Monitoring (SHM) systems using distributed sensor networks can reduce
these costs by facilitating rapid and global assessments of structural integrity.
These systems also allow for condition-based maintenance practices to be
substituted for the current time- or cycle-based maintenance approach thus
optimizing maintenance labor. Other advantages of on-board distributed sensor
systems are that they can eliminate costly, and potentially damaging, disassembly,
improve sensitivity by producing optimum placement of sensors with minimized
human factors concerns in deployment and decrease maintenance costs by
eliminating more time-consuming manual inspections. Through the use of in-situ
sensors, it is possible to quickly, routinely, and remotely monitor the integrity of a
structure in service [1]. This requires the use of reliable structural health
monitoring systems that can automatically process data, assess structural condition,
and signal the need for specific maintenance actions.

Current aircraft maintenance operations require personnel entry into normally-
inaccessible or hazardous areas to perform mandated, nondestructive inspections.
To gain access for these inspections, structure must be removed, sealant must be
removed and restored, fuel cells must be vented to a safe condition, or other
disassembly processes must be completed. These processes are not only time
consuming but they provide the opportunity to induce damage to the structure. The
use of in-situ sensors for monitoring the condition of aircraft structure, coupled with
remote interrogation, can be employed to overcome a myriad of inspection
impediments stemming from accessibility limitations, complex geometries, and the
location and depth of hidden damage. Furthermore, prevention of unexpected flaw
growth and structural failure could be improved if on-board health monitoring
systems are used to more regularly assess structural integrity [2, 3]. The ease of
monitoring an entire network of distributed sensors means that structural health
assessments can occur more often, allowing operators to be even more vigilant with
respect to flaw onset.

Comparative Vacuum Monitoring (CVM) is a simple pneumatic sensor
technology developed to detect the onset of cracks. CVM sensors are permanently
installed to monitor critical regions of a structure. The CVM sensor is based on the
principle that a steady state vacuum, maintained within a small volume, is sensitive
to any leakage [4]. A crack in the material beneath the sensor will allow leakage
resulting in detection via a rise in the monitored pressure. Figure 1 shows top-view
and side-view schematics of the self-adhesive, elastomeric sensors with fine
channels etched on the adhesive face along with a sensor being tested in a lap joint
panel. When the sensors are adhered to the structure under test, the fine channels
and the structure itself form a manifold of galleries alternately at low vacuum and
atmospheric pressure. Vacuum monitoring is applied to small galleries that are



placed adjacent to the set of galleries maintained at atmospheric pressure. Ifa flaw
is not present, the low vacuum remains stable at the base value. If a flaw develops,
air will flow from the atmospheric galleries through the flaw to the vacuum
galleries. When a crack develops, it forms a leakage path between the atmospheric
and vacuum galleries, producing a measurable change in the vacuum level. This
change is detected by the CVM monitoring system shown in Figure 2. It is
important to note that the sensor detects surface breaking cracks once they interact
with the vacuum galleries.
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Figure 1: Schematics Depicting Operation of CVM Sensor and Polymer Sensor
Mounted on the Outer Surface of a Riveted Lap Joint
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Figure 2: Crack Detection Monitoring with CVM System and
Pressure Response Used to Indicate the Presence of a Crack

PERFORMANCE TESTING OF CVM SENSORS

The goal of this project is to produce sufficient data and to conduct the proper
interface with regulatory agencies to certifty CVM sensor technology for specific
aircraft applications. Towards that end, probability of flaw detection assessments
were coupled with on-aircraft flight tests to study the performance, deployment, and
long-term operation of CVM sensors on aircraft. Statistical methods using one-



sided tolerance intervals were employed to derive Probability of Detection (POD)
levels for SHM sensors. The result is a series of flaw detection curves that can be
used to propose CVM sensors for aircraft crack detection. The test specimens were
wing box fittings from the Boeing 737 which was the chosen CVM application
from Delta’s fleet. Figure 3 shows the details of the wing box fitting application
and installation of CVM sensors for the flight test program. Fatigue tests were
completed on the wing box fittings using flight load spectrums (see Fig. 4) while
the vacuum pressures within the various sensor galleries were simultaneously
recorded. A fatigue crack was propagated until it engaged one of the vacuum
galleries such that crack detection was achieved and the sensor indicated the
presence of a crack by its inability to maintain a vacuum.
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Figure 3: Wing Box Fitting Application and Installation of CVM Sensors on
Delta Air Lines Aircraft for Flight Tests

In order to properly consider the effects of crack closure in an unloaded
condition (i.e. during sensor monitoring), a crack was deemed to be detected when a
permanent alarm was produced and the CVM sensor did not maintain a vacuum
even if the fatigue stress was reduced to zero. Figure 5 shows the fatigue test set-up
used to grow cracks and a close-up photo of a fatigue crack as it engages the first
vacuum gallery of a CVM sensor. Crack detection lengths ranged from 0.145” to
0.245” in length for the wing box fitting application. The crack detection lengths
correspond to permanent alarm levels for cracks engaging CVM sensors and the
structure in an unloaded condition.



In addition to the lab-based certification tests, a series of 68 sensors were
mounted on wing box fittings in seven different B-737 aircraft in the Delta Air
Lines fleet. All sensors have been monitored every 90 days for the past 15 months,
producing over 400 sensor response data points. These flight tests demonstrated the
successful, long-term operation of the CVM sensors in actual operating
environments. This environmental durability study compliments the laboratory
flaw detection testing described below as part of an overall CVM certification
effort.

Figure 4: B-737 Wing Box Fitting with CVM Sensor Installed and
Test Set-Up to Produce Fatigue Crack Growth Along Rivet Row

Figure 5: Overall Set-Up for Monitoring Crack Growth with CVM Sensor System and
Close-Up Showing Fatigue Crack Crossing into CVM Sensor

DATA ANALYSIS USING ONE-SIDED TOLERANCE INTERVALS

Some portions of the methodology needed to quantify NDI performance can be
adapted to the validation of SHM systems. However, it is important to recognize



the unique validation and verification tasks that arise from distinct differences
between SHM and NDI deployment and flaw detection. SHM reliability
calculations will depend greatly on the complexity of the structure and geometry of
the flaw profile. For example, corrosion damage has a widely-varying flaw shape,
both in the surface dimensions and in the changing depth. Contrast this with a
fatigue crack that grows in a known propagation path such that the damage scenario
can be described in a single parameter: crack length. In this latter case, the
simplicity of such a one-dimensional entity allows for a more direct calculation of
the reliability of the SHM system detecting such damage. The Probability of
Detection for a fixed sensor detecting a crack which is propagating in a known
direction in the vicinity of the sensor can be determined using the One-Sided
Tolerance Interval (OSTI) approach. The OSTI estimates the upper bound which
should contain a certain percentage of all measurements in the population with a
specified confidence. Since it is based on a sample of the entire population (n data
points), the confidence is less than 100%. Thus, the OSTI is greatly affected by two
proportions: 1) the percent coverage which is the percent of the population that falls
within the specified range (normally chosen as 90%), and 2) the degree of
confidence desired (normally chosen as 95%)).

Because of physical, time or cost constraints, it is often impractical to inspect an
entire population. Instead, a small sample of the total population is tested and the
data is used to gauge how well the entire population conforms to specifications. In
traditional statistical process control, a significant number of data points are
required in order to get a reasonably accurate estimate of process capability. This is
because capability is usually calculated to cover a fixed multiple standard
deviations. But this percentage only holds true for larger sample sizes; that is,
greater than 50. As the sample size decreases, there is greater uncertainty in
knowing the true location of the mean and the true magnitude of the population
variance. Therefore, the estimate of the range of values encompassing a given
percentage of the population must necessarily increase to compensate. In order to
maintain a reasonably accurate estimate of the capability of a process for smaller
sample sizes, it is necessary to adjust the number of multiple sample standard
deviations used to define the region covering the desired proportion of the
population distribution with a given confidence. An OSTI can be used for this

purpose.

The data captured is that of the flaw length at the time for which the CVM
provided sustainable detection. With these assumptions there exists a distribution
on the flaw lengths at which detection is first made. In this context, the probability
of detection for a given flaw length is just the proportion of the flaws that have a
detectable length less than that given length. That is, the reliability analysis
becomes one of characterizing the distribution of flaw lengths and the cumulative
distribution function is analogous to a Probability of Detection (POD) curve.
Assuming that the distribution of flaws is such that the logarithm of the lengths has
a Gaussian distribution, it is possible to calculate a one sided tolerance bound for
various percentile flaw sizes. To calculate a one sided tolerance bound, it is
necessary to find factors K,,, to determine the confidence y such that at least a
proportion (o)) of the distribution will be less than X + (K, y )S where X and § are



estimators of the mean and the standard deviation computed from a random sample
of size n. There may also be situations where the process capability is measured
relative to a single-sided limit. These situations arise when a product characteristic
need only meet a minimum specification limit or remain below a maximum
specification limit. In this case, the desired POD value is the maximum crack
length associated with the 90% POD level so the one-sided tolerance interval is
used. The K factor for an OSTI can be obtained from standard statistical tables.

From this reliability analysis a cumulative distribution function is produced to
provide the maximum likelihood estimation (POD). This stems from the one-sided
tolerance bound for the flaw of interest using the equation:

T popo, 95y = X + (K ny.0)(S) (1)

Where,

T = Tolerance interval for crack length corresponding to 90% POD with a
95% confidence

X = Mean of detection lengths

K = Probability factor (~ sample size and confidence level desired)

S = Standard deviation of detection lengths

n = Sample size

a = Detection level

y = Confidence level

The formula in equation (1) is set-up to produce the upper bound for the tolerance
interval which represents the actual POD value.

In order to ensure the validity of a log-normal, or Gaussian, distribution on the
flaw lengths, the data should plot linearly on a semi-log scale and the data should be
clustered near the 50™ percentile. The assumption of normality can also be tested
by applying the Anderson-Darling test [5]. The Anderson-Darling test yields a P-
value that can be compared to the chosen significance level to determine whether or
not the assumption of normality should be rejected. The significance level, a, is
chosen to be 0.05. Any value of P less than a = 0.5 indicates that there is sufficient
evidence to reject the assumption of normality. A normal probability plot was
created using Minitabg statistical software. Figure 6 shows two plots of sample
CVM crack detection data which indicates that a log-normal distribution is a correct
assumption. In addition, the Anderson-Darling test returns the required value of P
>0.05.

With the same parameters described above, the maximum likelihood estimate
describing the upper bound or optimal performance on the Probability of Detection
for the OSTI approach can be calculated as:

1
POD(Max Likelihood Est) = — EXP
x5y 2n

(—(ME:{] - X)z)
252 2



Data acquired from CVM fatigue tests were used to calculate the 90% POD level
for CVM crack detection on 0.1” thick 2024-T3 aluminum structure subjected to
tension-tension fatigue loading. Table I summarizes the crack detection data and
shows the calculated quantities for equation (1) in the log transform. Twelve data
points (bare surface) and ten data points (primer surface) were used in lieu of the 51
or greater that are required in conventional POD calculations. Due to the limited
number of data points, the reliability calculations induce a penalty by increasing the
magnitude of the K (probability) factor. As a result, while most of the crack
detection levels were less than 0.015”, the overall POD value (95% confidence
level) for CVM crack detection was calculated from equation (1) as 0.023”. The K
values correspond to the desired y (confidence level) of 95%. This POD curve,
representing the 95% confidence level, is plotted in Figure 7. The maximum
likelihood estimated POD function, representing the optimum performance for
CVM crack detection, was calculated from equation (2) and is plotted alongside the
95% confidence bound. As the number of data points increases, the K value will
decrease and the POD numbers could also decrease. In this particular instance, it
was desired to achieve crack detection before the crack reached 0.1” in length so
this goal was achieved. In over 150 fatigue tests conducted using CVM sensors
there were no false calls produced by the sensors in any of the tests.
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Figure 6: Plots of CVM Crack Detection Data where Linear Plots Show that the
Data Does Not Follow a Normal Distribution (linear scale) but
Does Adhere to a Log-Normal Distribution (semi-log scale)

TABLE I: CVM CRACK DETECTION VALUES FROM 0.1” THICK ALUMINUM PLATE

CVM Crack Detection Data (0.040” th) Statistic Estimates on Log Scale
Bare Metal Over Primer Statistic Over Bare metal | Over Primer

Flaw size (inch) | Log (flaw size) || Flaw size (inch) | Log (flaw size) Nieal_l , -2.1566 -2.1679

0.003 252 0.002 270 Stnd deviation 0.40889 0.22809
2 -2 .

i _— o 212 POD Detection Levels
0030 152 0009 203 (¥ =95%, n =12 for bare, n=10 for primer)
0.009 -2.08 0.004 -2.40 Detection K oose X+ &, S Flaw size in inch
0.005 230 0.006 3.23 level (log scale) v sizeln inches
O‘UUj '3‘40 0.010 '3'00 (- bare primer bare | primer | bare primer
0.002 -2.70 0.069 -2.05 0.75 1366 | 1465 -1.598 | -1.834 | 0025 0015
0.014 '535 0.011 'i-% 0.90 2210 | 2.355  -1.253| -1.631 | 0036  0.023
0.605 -230 0,007 -2.15 0.95 2736 | 2911 -1.038 | -1.504 | 0002 0.031
0.013 -1.89 0.99 3747 | 3981 -0.624 | -1.260 | 0237 0.055
0.032 -149 0.999 4800 | 5203  -0.153 | -0.981 | 0.703 0.104
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Figure 7: Probability of Crack Detection Curves Showing Detectable Flaw Lengths for
CVM Sensor - Data Analysis Using One-Sided Tolerance Intervals

CONCLUSIONS

The effect of structural aging and the dangerous combination of fatigue and
corrosion has produced a greater emphasis on the application of sophisticated health
monitoring systems. In addition, the costs associated with the increasing
maintenance and surveillance needs of aging structures are rising. Corrective
repairs initiated by early detection of structural damage are more cost effective
since they reduce the need for subsequent major repairs and may avert a structural
failure. Global SHM, achieved through the use of sensor networks, can be used to
assess overall performance (or deviations from optimum performance) of large
structures such as aircraft, bridges, pipelines, large vehicles, and buildings. The
ease of monitoring an entire network of distributed sensors means that structural
health assessments can occur more often, allowing operators to be even more
vigilant with respect to flaw onset.

Through the use of in-situ CVM sensors, it is possible to quickly, routinely, and
remotely monitor the integrity of a structure in service and detect incipient damage
before catastrophic failures occur. These sensors can be attached to a structure in
areas where crack growth is known to occur. On a pre-established engineering
interval, a reading will be taken from an easily accessible point on the structure.
Each time a reading is taken, the system performs a self-test. This inherent fail-safe
property ensures the sensor is attached to the structure and working properly prior
to any data acquisition.



This study showed the viability of using the One-Sided Tolerance Interval
(OSTI) approach to determine the Probability of Detection for a fixed sensor
detecting a crack which is propagating in a known direction in the vicinity of the
sensor. The OSTI approach yields a reasonable estimate for the CVM crack
detection capability even with small data sets. In several structural categories
studied, the CVM sensors provided crack detection well before the crack
propagated to the critical length determined by damage tolerance analyses. In
addition, there were no false calls experienced in the fatigue crack detection tests.
The sensitivity, reliability, and cost effectiveness of the CVM sensor system was
demonstrated in both laboratory and field test environments.

This program is also establishing an optimum OEM-airline-regulator process
and determining how to safely adopt SHM solutions. Close consultation with
regulatory agencies is being used to produce a process that is acceptable to both the
aviation industry and the FAA. The activities conducted in this program facilitate
the evolution of an SHM certification process including the development of
regulatory guidelines and advisory materials for the implementation of SHM
systems via reliable certification programs. Formal SHM validation will allow the
aviation industry to confidently make informed decisions about the proper
utilization of SHM.
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