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ABSTRACT

     Extensive Structural Health Monitoring (SHM) studies have highlighted the 
ability of various sensors to detect common flaws found in composite and metal 
structures with sensitivities that meet or exceed current damage detection 
requirements.  Reliable SHM systems can automatically process data, assess 
structural condition, and signal the need for human intervention.  While ad-hoc 
efforts to introduce SHM into routine aircraft maintenance practices are valuable in 
leading the way for more widespread SHM use, there is a significant need for 
formal SHM certification efforts to exercise and define the process of producing 
routine use of SHM solutions.  SHM certification must address the full spectrum of 
issues ranging from design to performance and deployment to continued 
airworthiness.  Currently, there are no guidelines for SHM system designers or 
agreed-upon procedures for quantifying the performance of SHM systems.  The 
FAA Airworthiness Assurance Center (AANC) at Sandia Labs, in conjunction with 
Boeing, Delta Air Lines, Structural Monitoring Systems and Anodyne Electronic 
Manufacturing, is conducting a study to develop and carry out a certification 
process for SHM.  By conducting a focused assessment of a particular aircraft 
application, all aspects of SHM integration are being addressed.  While it is 
important to recognize the unique validation and verification tasks that arise from 
distinct differences between SHM and nondestructive inspection (NDI) deployment 
and flaw detection, it should be recognized that some portions of the methodology 
needed to determine NDI performance can be adapted to the validation of SHM 
systems.  In this study, statistical methods were applied to laboratory and flight test 
data to derive Probability of Detection (POD) values for SHM sensors in a fashion 
that agrees with current NDI requirements.  

_____________
Dennis Roach, Sandia National Labs, PO BOX 5800, Albuquerque, NM 87185
Tom Rice, Sandia National Labs, PO BOX 5800, Albuquerque, NM 87185
Stephen Neidigk, Sandia National Labs, PO BOX 5800, Albuquerque, NM 87185
David Piotrowski, Delta TechOps, 1775 M H Jackson Service Road, Atlanta, GA 30354
John Linn, Boeing, 2600 Westminster Boulevard, Seal Beach CA, 90740

SAND2015-4452C



INTRODUCTION

     Multi-site fatigue damage and hidden cracks in hard-to-reach locations are 
among the major flaws encountered in today’s extensive array of aging structures 
and mechanical assemblies.  The costs associated with the increasing maintenance 
and surveillance needs of aging structures are rising.  The application of Structural 
Health Monitoring (SHM) systems using distributed sensor networks can reduce 
these costs by facilitating rapid and global assessments of structural integrity.  
These systems also allow for condition-based maintenance practices to be 
substituted for the current time- or cycle-based maintenance approach thus 
optimizing maintenance labor.  Other advantages of on-board distributed sensor 
systems are that they can eliminate costly, and potentially damaging, disassembly, 
improve sensitivity by producing optimum placement of sensors with minimized 
human factors concerns in deployment and decrease maintenance costs by 
eliminating more time-consuming manual inspections.  Through the use of in-situ 
sensors, it is possible to quickly, routinely, and remotely monitor the integrity of a 
structure in service [1].  This requires the use of reliable structural health 
monitoring systems that can automatically process data, assess structural condition, 
and signal the need for specific maintenance actions.

     Current aircraft maintenance operations require personnel entry into normally-
inaccessible or hazardous areas to perform mandated, nondestructive inspections.  
To gain access for these inspections, structure must be removed, sealant must be 
removed and restored, fuel cells must be vented to a safe condition, or other 
disassembly processes must be completed.  These processes are not only time 
consuming but they provide the opportunity to induce damage to the structure.  The 
use of in-situ sensors for monitoring the condition of aircraft structure, coupled with 
remote interrogation, can be employed to overcome a myriad of inspection 
impediments stemming from accessibility limitations, complex geometries, and the 
location and depth of hidden damage.  Furthermore, prevention of unexpected flaw 
growth and structural failure could be improved if on-board health monitoring 
systems are used to more regularly assess structural integrity [2, 3].  The ease of 
monitoring an entire network of distributed sensors means that structural health 
assessments can occur more often, allowing operators to be even more vigilant with 
respect to flaw onset.

     Comparative Vacuum Monitoring (CVM) is a simple pneumatic sensor 
technology developed to detect the onset of cracks. CVM sensors are permanently 
installed to monitor critical regions of a structure.  The CVM sensor is based on the 
principle that a steady state vacuum, maintained within a small volume, is sensitive 
to any leakage [4].  A crack in the material beneath the sensor will allow leakage 
resulting in detection via a rise in the monitored pressure.  Figure 1 shows top-view 
and side-view schematics of the self-adhesive, elastomeric sensors with fine 
channels etched on the adhesive face along with a sensor being tested in a lap joint 
panel.  When the sensors are adhered to the structure under test, the fine channels 
and the structure itself form a manifold of galleries alternately at low vacuum and 
atmospheric pressure.  Vacuum monitoring is applied to small galleries that are 



placed adjacent to the set of galleries maintained at atmospheric pressure.  If a flaw 
is not present, the low vacuum remains stable at the base value.  If a flaw develops, 
air will flow from the atmospheric galleries through the flaw to the vacuum 
galleries.  When a crack develops, it forms a leakage path between the atmospheric 
and vacuum galleries, producing a measurable change in the vacuum level.  This 
change is detected by the CVM monitoring system shown in Figure 2.  It is 
important to note that the sensor detects surface breaking cracks once they interact 
with the vacuum galleries.

Figure 1:  Schematics Depicting Operation of CVM Sensor and Polymer Sensor
Mounted on the Outer Surface of a Riveted Lap Joint

Figure 2:  Crack Detection Monitoring with CVM System and 
Pressure Response Used to Indicate the Presence of a Crack

PERFORMANCE TESTING OF CVM SENSORS

     The goal of this project is to produce sufficient data and to conduct the proper 
interface with regulatory agencies to certify CVM sensor technology for specific 
aircraft applications.  Towards that end, probability of flaw detection assessments 
were coupled with on-aircraft flight tests to study the performance, deployment, and 
long-term operation of CVM sensors on aircraft.  Statistical methods using one-
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sided tolerance intervals were employed to derive Probability of Detection (POD) 
levels for SHM sensors.  The result is a series of flaw detection curves that can be 
used to propose CVM sensors for aircraft crack detection.  The test specimens were 
wing box fittings from the Boeing 737 which was the chosen CVM application 
from Delta’s fleet.  Figure 3 shows the details of the wing box fitting application 
and installation of CVM sensors for the flight test program.  Fatigue tests were 
completed on the wing box fittings using flight load spectrums (see Fig. 4) while 
the vacuum pressures within the various sensor galleries were simultaneously 
recorded.  A fatigue crack was propagated until it engaged one of the vacuum 
galleries such that crack detection was achieved and the sensor indicated the 
presence of a crack by its inability to maintain a vacuum. 

Figure 3:  Wing Box Fitting Application and Installation of CVM Sensors on
Delta Air Lines Aircraft for Flight Tests

     In order to properly consider the effects of crack closure in an unloaded 
condition (i.e. during sensor monitoring), a crack was deemed to be detected when a 
permanent alarm was produced and the CVM sensor did not maintain a vacuum 
even if the fatigue stress was reduced to zero.  Figure 5 shows the fatigue test set-up 
used to grow cracks and a close-up photo of a fatigue crack as it engages the first 
vacuum gallery of a CVM sensor.  Crack detection lengths ranged from 0.145” to 
0.245” in length for the wing box fitting application.  The crack detection lengths 
correspond to permanent alarm levels for cracks engaging CVM sensors and the 
structure in an unloaded condition.



     In addition to the lab-based certification tests, a series of 68 sensors were
mounted on wing box fittings in seven different B-737 aircraft in the Delta Air 
Lines fleet.  All sensors have been monitored every 90 days for the past 15 months, 
producing over 400 sensor response data points.  These flight tests demonstrated the 
successful, long-term operation of the CVM sensors in actual operating 
environments.  This environmental durability study compliments the laboratory 
flaw detection testing described below as part of an overall CVM certification 
effort.  

Figure 4:  B-737 Wing Box Fitting with CVM Sensor Installed and
Test Set-Up to Produce Fatigue Crack Growth Along Rivet Row

Figure 5: Overall Set-Up for Monitoring Crack Growth with CVM Sensor System and
Close-Up Showing Fatigue Crack Crossing into CVM Sensor

DATA ANALYSIS USING ONE-SIDED TOLERANCE INTERVALS

     Some portions of the methodology needed to quantify NDI performance can be 
adapted to the validation of SHM systems.  However, it is important to recognize 



the unique validation and verification tasks that arise from distinct differences 
between SHM and NDI deployment and flaw detection.  SHM reliability 
calculations will depend greatly on the complexity of the structure and geometry of 
the flaw profile.  For example, corrosion damage has a widely-varying flaw shape, 
both in the surface dimensions and in the changing depth.  Contrast this with a 
fatigue crack that grows in a known propagation path such that the damage scenario 
can be described in a single parameter: crack length.  In this latter case, the 
simplicity of such a one-dimensional entity allows for a more direct calculation of 
the reliability of the SHM system detecting such damage.  The Probability of 
Detection for a fixed sensor detecting a crack which is propagating in a known 
direction in the vicinity of the sensor can be determined using the One-Sided 
Tolerance Interval (OSTI) approach.  The OSTI estimates the upper bound which 
should contain a certain percentage of all measurements in the population with a 
specified confidence.  Since it is based on a sample of the entire population (n data 
points), the confidence is less than 100%.  Thus, the OSTI is greatly affected by two 
proportions: 1) the percent coverage which is the percent of the population that falls 
within the specified range (normally chosen as 90%), and 2) the degree of 
confidence desired (normally chosen as 95%).

     Because of physical, time or cost constraints, it is often impractical to inspect an 
entire population.  Instead, a small sample of the total population is tested and the 
data is used to gauge how well the entire population conforms to specifications.  In 
traditional statistical process control, a significant number of data points are 
required in order to get a reasonably accurate estimate of process capability.  This is 
because capability is usually calculated to cover a fixed multiple standard 
deviations.  But this percentage only holds true for larger sample sizes; that is, 
greater than 50.  As the sample size decreases, there is greater uncertainty in 
knowing the true location of the mean and the true magnitude of the population 
variance.  Therefore, the estimate of the range of values encompassing a given 
percentage of the population must necessarily increase to compensate.  In order to 
maintain a reasonably accurate estimate of the capability of a process for smaller 
sample sizes, it is necessary to adjust the number of multiple sample standard 
deviations used to define the region covering the desired proportion of the 
population distribution with a given confidence.  An OSTI can be used for this 
purpose.

     The data captured is that of the flaw length at the time for which the CVM 
provided sustainable detection.  With these assumptions there exists a distribution 
on the flaw lengths at which detection is first made.  In this context, the probability 
of detection for a given flaw length is just the proportion of the flaws that have a 
detectable length less than that given length.  That is, the reliability analysis 
becomes one of characterizing the distribution of flaw lengths and the cumulative 
distribution function is analogous to a Probability of Detection (POD) curve.  
Assuming that the distribution of flaws is such that the logarithm of the lengths has 
a Gaussian distribution, it is possible to calculate a one sided tolerance bound for 
various percentile flaw sizes.  To calculate a one sided tolerance bound, it is 
necessary to find factors Kn,γ,α to determine the confidence ɣ such that at least a 
proportion (α) of the distribution will be less than X + (Kn, ɣ,α )S where X and S are 



estimators of the mean and the standard deviation computed from a random sample 
of size n.  There may also be situations where the process capability is measured 
relative to a single-sided limit.  These situations arise when a product characteristic 
need only meet a minimum specification limit or remain below a maximum 
specification limit.  In this case, the desired POD value is the maximum crack 
length associated with the 90% POD level so the one-sided tolerance interval is 
used.  The K factor for an OSTI can be obtained from standard statistical tables.  

     From this reliability analysis a cumulative distribution function is produced to 
provide the maximum likelihood estimation (POD).  This stems from the one-sided 
tolerance bound for the flaw of interest using the equation:

T POD(90, 95) = X + (K n,ɣ,α)(S) (1)

Where,
T = Tolerance interval for crack length corresponding to 90% POD with a 

95% confidence
X = Mean of detection lengths
K = Probability factor (~ sample size and confidence level desired)
S = Standard deviation of detection lengths
n = Sample size
α = Detection level
ɣ = Confidence level

The formula in equation (1) is set-up to produce the upper bound for the tolerance 
interval which represents the actual POD value.

     In order to ensure the validity of a log-normal, or Gaussian, distribution on the 
flaw lengths, the data should plot linearly on a semi-log scale and the data should be
clustered near the 50th percentile.  The assumption of normality can also be tested 
by applying the Anderson-Darling test [5].  The Anderson-Darling test yields a P-
value that can be compared to the chosen significance level to determine whether or 
not the assumption of normality should be rejected.  The significance level, a, is 
chosen to be 0.05.  Any value of P less than a = 0.5 indicates that there is sufficient 
evidence to reject the assumption of normality.  A normal probability plot was 
created using Minitab® statistical software.  Figure 6 shows two plots of sample 
CVM crack detection data which indicates that a log-normal distribution is a correct 
assumption.  In addition, the Anderson-Darling test returns the required value of P 
> 0.05.

     With the same parameters described above, the maximum likelihood estimate 
describing the upper bound or optimal performance on the Probability of Detection 
for the OSTI approach can be calculated as:

(2)



     Data acquired from CVM fatigue tests were used to calculate the 90% POD level 
for CVM crack detection on 0.1” thick 2024-T3 aluminum structure subjected to 
tension-tension fatigue loading.  Table I summarizes the crack detection data and 
shows the calculated quantities for equation (1) in the log transform.  Twelve data 
points (bare surface) and ten data points (primer surface) were used in lieu of the 51 
or greater that are required in conventional POD calculations.  Due to the limited 
number of data points, the reliability calculations induce a penalty by increasing the 
magnitude of the K (probability) factor. As a result, while most of the crack 
detection levels were less than 0.015”, the overall POD value (95% confidence 
level) for CVM crack detection was calculated from equation (1) as 0.023”.  The K 
values correspond to the desired ɣ (confidence level) of 95%.  This POD curve, 
representing the 95% confidence level, is plotted in Figure 7.  The maximum 
likelihood estimated POD function, representing the optimum performance for 
CVM crack detection, was calculated from equation (2) and is plotted alongside the 
95% confidence bound.  As the number of data points increases, the K value will 
decrease and the POD numbers could also decrease.  In this particular instance, it 
was desired to achieve crack detection before the crack reached 0.1” in length so 
this goal was achieved.  In over 150 fatigue tests conducted using CVM sensors
there were no false calls produced by the sensors in any of the tests.

Figure 6:  Plots of CVM Crack Detection Data where Linear Plots Show that the
Data Does Not Follow a Normal Distribution (linear scale) but

Does Adhere to a Log-Normal Distribution (semi-log scale)

TABLE I:  CVM CRACK DETECTION VALUES FROM 0.1” THICK ALUMINUM PLATE



Figure 7:  Probability of Crack Detection Curves Showing Detectable Flaw Lengths for
CVM Sensor - Data Analysis Using One-Sided Tolerance Intervals

CONCLUSIONS

The effect of structural aging and the dangerous combination of fatigue and 
corrosion has produced a greater emphasis on the application of sophisticated health 
monitoring systems.  In addition, the costs associated with the increasing 
maintenance and surveillance needs of aging structures are rising.  Corrective 
repairs initiated by early detection of structural damage are more cost effective 
since they reduce the need for subsequent major repairs and may avert a structural 
failure.  Global SHM, achieved through the use of sensor networks, can be used to 
assess overall performance (or deviations from optimum performance) of large 
structures such as aircraft, bridges, pipelines, large vehicles, and buildings.  The 
ease of monitoring an entire network of distributed sensors means that structural 
health assessments can occur more often, allowing operators to be even more 
vigilant with respect to flaw onset.

     Through the use of in-situ CVM sensors, it is possible to quickly, routinely, and 
remotely monitor the integrity of a structure in service and detect incipient damage 
before catastrophic failures occur.  These sensors can be attached to a structure in 
areas where crack growth is known to occur.  On a pre-established engineering 
interval, a reading will be taken from an easily accessible point on the structure.  
Each time a reading is taken, the system performs a self-test.  This inherent fail-safe 
property ensures the sensor is attached to the structure and working properly prior 
to any data acquisition.



     This study showed the viability of using the One-Sided Tolerance Interval 
(OSTI) approach to determine the Probability of Detection for a fixed sensor 
detecting a crack which is propagating in a known direction in the vicinity of the 
sensor.  The OSTI approach yields a reasonable estimate for the CVM crack 
detection capability even with small data sets.  In several structural categories 
studied, the CVM sensors provided crack detection well before the crack 
propagated to the critical length determined by damage tolerance analyses.  In 
addition, there were no false calls experienced in the fatigue crack detection tests.  
The sensitivity, reliability, and cost effectiveness of the CVM sensor system was 
demonstrated in both laboratory and field test environments.

     This program is also establishing an optimum OEM-airline-regulator process 
and determining how to safely adopt SHM solutions.  Close consultation with 
regulatory agencies is being used to produce a process that is acceptable to both the 
aviation industry and the FAA.  The activities conducted in this program facilitate 
the evolution of an SHM certification process including the development of 
regulatory guidelines and advisory materials for the implementation of SHM 
systems via reliable certification programs.  Formal SHM validation will allow the 
aviation industry to confidently make informed decisions about the proper 
utilization of SHM.  
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