SEM 2015 Annual Conference and Exposition on
Experimental and Applied Mechanics SAND2015- 4432C

Mechanical Behavior and
Damage Mechanisms of
Encapsulant-filled Elastomers

comn v soiness v Jay D. Carroll, Kevin Long,
Lisa Deibler, Kurtis Ford

Sandia
National _ _ _
Laboratories Sandia National Laboratories

Exceptional
service
in the

¥ U.S. DEPARTMENT OF I’ Y A} DQ’&

. A (A 7 \ -
national ENERGY A LN o
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

interest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

6/4/2015



What is GMB-filled Sylgard®? A Neona
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= Syntactic foam
= Sylgard silicone elastomer: Dimethylvinylated and trimethylated silica
= Glass micro-balloons: Hollow spheres of soda-lime borosilicate glass
= Used in potting materials to protect components against corrosion,
shock, etc.
= @Glass micro-balloons added for many reasons
= Increase stiffness
= Lower thermal expansion coefficient.
= Decrease density
= Lower cure shrinkage

Sylgard GMB
Pure Sylgard [(undamaged)
Coefficient of Thermal Expansion (ppm/C) 270 185
Young's Modulus (MPa) 1.84 13
Bulk Modulus (MPa) 920 71
Glass Transition Temperature (°C) -60 -45
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Sylgard® 184/A16 GMB composition

Sylgard composition
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100 pbw Sylgard 184 base resin

10 pbw Sylgard 184 curing agent

10 pbw 3M A16 glass microballoons
10 pbw silicone accelerator

Cured 16 hours at 21°C.

ALIIDmDmmmmE?

Sandia
m National

Laboratories

Sylgard® 184

3M A16 Glass Microballoons:

Target crush strength (90% survival ):
500 psi, 3.45 MPa

True Density: 0.16 g/cc

Average particle size: 70 um

Particle size range: 35-115 pm
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Specimens
— Compression
Af~ _ Platens
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(14 mm)
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Hysteresis in stress-strain curves

Pure Sylgard can be loaded repeatedly with no damage
(minor hysteresis).
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Sylgard-GMB exhibits the Mullins effect
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No damage occurs until previous peak-load is achieved. )

Damage Mechanisms in
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Figure 7. Shear cracks formed during plateau region on syn-
tactic foam.

Taken after Gupta Dissertation 2003

6/4/2015 Jay Carroll, Sandia National Laboratories



SEM images after loading provide insight Sanda
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After compressive loading a thin disk (inner surface
from tearing apart after loading)

Shattered ’

GMBs indicate
-

fracture during | s

-

loading

Intact GMBs  wllh

indicate
delamination

==

20 ym i
lu_l EHT =10.00 kV WD=116 mm Signal A= SE2 Width =299.1 pm

“Hard-boiled egg” structure indicates this GMB was
broken before gel point. Sylgard flowed into GMB void.
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Internal fracture surface from loading specimen to @ Sandia

EHT =10.00 kV WD=118mm Signal A= SE2 Width = 3.188 mm EHT =10.00 kV WD= 9.3 mm Signal A=BSD Width =570.9 ym

Undulating fracture surface
= Most GMBs broken
= Some GMB:s intact

Nominal Stress (MPa)
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preparation.

Neither specimen experienced
compressive loading before fracture.

Tearing fracture shows some signs of
delamination and GMB fracture.

Cutting with a razor blade fractures all
GMBs in path.

Cut surface

TP NUICL~ &
1 5l

EHT =10.00 kV WD =10.8 mm Signal A= SE2 Width = 1.666 mm I I EHT =10.00 kV WD = 95 mm Signal A= SE2 Width = 1.666 mm
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Typical Qualitative Macroscale Response of Filled i
Rubbery Thermosets Under Cyclic Loading

Elastic Response
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Time dependence in pure Sylgard vs Sylgard-GMB i) e
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Pure Sylgard (no GMB) Rate Effects Sylgard GMB Rate Effects
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=  Pure Sylgard has no measurable rate dependence. =  Sylgard/GMB has some rate dependence, particularly
Rate effects are related to GMBs. at slower speeds.
= Stress relax test had a 1 minute hold at 25% on =  Stress relax test had a 1 minute hold at 25% on
loading and 48% on unloading. Pure Sylgard showed loading and 48% on unloading. Sylgard GMB exhibits
little stress relaxation. significant stress relaxation.
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Phenomenological Macroscale Constitutive Model: ) s,
Hyperelastic Yeoh Model With Discontinuous, Continuous taboratories
Damage of Both Shear (Isochoric) and Volumetric Deformation

O.H. Yeoh. Rubber Chemistry

Kinematics of the structure and a material point and Technology, 63 (1950)
Material Point Motion Deformation Gradient
Fzg—;:mvx, J = det (F) >0

Jacobian of the Motion

_ _ Isochoric Deformation Tensors
Structure Material Point

F=J3F, b=FF =J3FF'=J%b

Strain Enerqgy Per Unit Current Volume First Invariant of the ISOCh?”C b B
» Isotropic function of isochoric and volumetric deformation invariants I, = traceb.
« Kachanov-style scalar damage in 4 damage variables

« Temperature dependence only through thermal expansion

O (T0, Ty, dSy diyy diy) = (1= iy, — dSs,) Wiso | Ta| + (1= diy = diy) hoat [J],
Viso [1] = 5 (s (T = 3) + 2 (1= 3)" s (1 - 3)").

Yool [J] = % (82JaAT + BloglJ] + J 7 —1).
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Phenomenological Macroscale Constitutive Model: i Sandia

National

Hyperelastic Yeoh Model With Discontinuous, Continuous taboratories
Damage of Both Shear (Isochoric) and Volumetric Deformation

Non-Linear Shear Response s = i1+ 2410 (Ty = 3) + 3p15 (T, — 3)°
_—
Infinitesimal Shear Modulus \
Kirchoff Stress S VAL L Tiso + Tvol; ockup Benavier
“Tob T~ “ob
o =gy (1 =ty = 5,) (B 1) = (1, = )

K

2(1—dd ¢ )(2JaAT+J2—1)1:(1—dd c )TO

Tovol = vol — “wol vol — “wol vol»

: . : Maximum Strain . .
Discontinuous Damage Evolution  Energy Densites Continuous Damage Evolution

- c _ jcMAX o _BiSO [t]
L X 7] =2 (1= (g0
dz’so - diso 1 - eXp | — dc.lSAT : [ ]
e ﬁvol t
dc ;= dd\/{AX 1 — exp | -2
MAX [t [[1] vt = oo JESAT
it =y (1= e (M z
e Integrated_ t

> /67:80 vol t| = |¢i50 vol |dt,

6/4/2015 Jay Carroll, Sandia National Laboratories



Elastic and Damage Model Calibrations to ) o
Uniaxial Compression Data

5
= [sochoric Damage only — HYD
= Discontinuous and Continuous — ElaSﬁCf
Mechanisms o 4 { — Experiment
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HYD model reasonably fits the
uniaxial compression data
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The Importance of the Boundary Value Problem (BVP): ) e,
Laboratories
Uniaxial Compression vs. Uniaxial Strain
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Although both BVPs similarly damage syglard GMB, |sochor|c damage
contributes very little to the uniaxial strain response

Volumetric damage may not be negligible
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Model Performance Under Cyclic
Hydrostatic Pressurization is Incorrect

Data is Time Dependent = No Time Dependence in the Model

Apply Pressure/Measure Volume Strain
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Future work ) Netona
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= Micromechanics model development

= Supporting experiments

" |In situ deformation
= Microscope
= CT scanning
= Digital image correlation (DIC) or digital volume correlation (DVC).

= Constrained compression

-~

0% Compression

In situ synchrotron CT
compression of GMB-
filled Sylgard.

21.5% Comprassion

Patterson et. Al,
Microsc. Microanal. 20
(suppl 3), 2014

57.0% Compression

i
0 micrometers 1000

Figure 3: Compression of syntactic Sylgard foam with 100 pm hollow glass beads. Sample 1s nearly
incompressible with a high Poisson ratio.
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Bonus Slides
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Basic Mechanical Properties

Pure Sylgard
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