
Procedia Computer Science 00 (2015) 1–8

Procedia
Computer
Science

www.elsevier.com/locate/procedia

MapReduce SVM Game

Craig M. Vineyard, Stephen J. Verzi, Conrad D. James, and James B. Aimonea,
Gregory L. Heilemanb

aSandia National Laboratories, Albuquerque, New Mexico 87185-1327 USA
Email: cmviney@sandia.gov

bDepartment of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131 USA

Abstract

Despite technological advances making computing devices faster, smaller, and more prevalent in today’s age, data gener-
ation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide
a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed
and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is
an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem
decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets
may be computed independently and recombined to yield the net desired result. However, not all machine learning
algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of
local interactions between players without requiring a central authority and are iterative by nature rather than requir-
ing extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce
paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present
a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show
an illustrative example of applying this algorithm.

c© 2011 Published by Elsevier Ltd.

Keywords: Support vector machine, Game theory, Machine learning, MapReduce

1. Introduction

As computational costs have decreased over the past decades, the prevalence of computing devices in
everyday life has increased immensely. Rather than simply using a few of the increasingly more efficient
computational devices, instead more and more computing devices are used in ever expanding ways. Con-
sidering computing as a resource, this phenomenon is described by Jevons paradox [1]. Coupled with this
prolific increase in computing is the ability to collect and record all sorts of data. Computing devices are
no longer constrained to existing as large bulky items, but rather are increasingly more mobile, and as such
may be stowed in pockets or strapped on wrists. Effectively, data may be generated perpetually throughout
the day such as by fitness trackers logging steps, tracking vital signs, and even generating statistics when
users are asleep.

Amidst the emergence of the big data era, computing advances have not kept up with the ability to
process the big data explosion. Parallel computing is a natural solution, with the goal of trying to process

SAND2015-4428C



2 / Procedia Computer Science 00 (2015) 1–8

Fig. 1. Support Vector Machine Maximum Margin Principle and Equivalent Geometric SVM

greater amounts of data at once. However, conventional supercompuing approaches have remained expen-
sive, and additionally, not all problems are well suited for high performance computing implementations.
For instance, while neural networks in the brain are fundamentally parallel and distributed, artificial neural
networks models are limited in their parallelizability due to constraints imposed the learning algorithms em-
ployed to train them. Consequently, algorithmic approaches for utilizing advances in computing technology
and data availability are needed.

Game-theoretic algorithms are often innately distributed, consisting of local interactions between players
without requiring a central authority and are iterative by nature rather than requiring extensive retraining.
As such, game theory applied to machine learning provides a novel, alternative perspective to addressing the
big data problem. In this paper we will describe the classic pattern classification Support Vector Machine
(SVM) algorithm, describe means by which it can be applied to parallel computing platforms, and then
show how our game-theoretic variant of SVM can likewise be applied. We then provide illustrative results
highlighting this approach.

2. SVM

The Support Vector Machine (SVM) approach to learning seeks to find the separating hyperplane that
maximizes the margin between the patterns in the classes it is separating, and these patterns serve as the
support vectors [2][3]. Conceptually, this is similar to taking into account the long term classification goal
as opposed to settling for the first discriminant which yields no training error. Furthermore, Bennett et
al. proved there is a geometric interpretation which is equivalent to the dual of the canonical quadratic
optimization approach to SVM [4]. This approach first constructs the convex hulls, the smallest convex set
of points which fully encompass the set, around each of the data classes. Next it finds the closest points to
each-other on each respective convex hull. The resulting discriminant is the perpendicular bisector of the
line segment formed by these points. Figure 1 illustrates both the fundamental SVM principle as well as the
geometric SVM approach. In the left half of the figure, the green rectangle represents the margin between
the classes and the resulting discriminant is the black line central to this region. The right half of the figure
depicts the identical discriminant resulting from the geometric approach.

Fundamentally, both the canonical variant of SVM and the geometric interpretation focus upon identi-
fying the support vectors from the rest of the training data. As the size of the training data increases, this
becomes intractable and reduction or parallelization techniques become necessary. One such approach is the
Cascade SVM model by Graf et al. in which the overall problem is broken up into phases of smaller opti-
mization problems. By dividing the overall problem into phases, non-support vectors are eliminated in early
stages of processing and only prospective data points are passed forward to later stages which are effectively
able to be operated upon a smaller optimization problem to ultimately identify the final support vectors [5].
Doing so additionally allows for parallelization of the SVM algorithm as the smaller optimizations may
be solved independently and spread across multiple processors. Next we will describe a game theoretic



/ Procedia Computer Science 00 (2015) 1–8 3

Fig. 2. Basic SVM Game Algorithm

approach to SVM and subsequently show how its innate parallelism allows for it to be implemented in a
distributed manner analogous to the Cascade SVM approach.

3. SVM Game

With a desired outcome or a goal in mind, game theoretic mechanism design develops a framework
defining player actions and the effect of these actions in efforts to attain the desired goal [6]. Using the geo-
metric SVM learning paradigm as a desired goal, we have developed an iterated game to identify which data
patterns are closest to the opposing class and thus define the position and shape of the resulting discriminant
[7]. Our SVM Game is a two player iterated game where the data patterns are the players. As a Condorcet
method, our game evaluates pairwise interactions between data points [8]. Each iteration of the game ran-
domly selects two players from the same class and one data pattern from the opposing class. The pattern
from the opposing class is not a player in the game, but rather provides a reference to determine which
player is closer to the opposing class [9]. In canonical SVM, an alpha value (α) is a scalar multiplier of the
support vectors. All data points initially start with the same finite amount of α, and through optimization
the α is redistributed to the support vectors in amounts corresponding to their influence on the discriminant.
Likewise, in our game, each player (data point) starts with an initial (equal) quantity of α. For each iteration
of the game, competing players pass or hold a percentage of their α. Individual players do not choose which
action to take (pass or hold), but rather their actions are dictated by their proximity to the reference point
from the opposing class. In this sense, rather than players choosing a strategy, their actions correspond to
innate properties of the players [10]. Fig. 2 shows the basic SVM Game algorithm just described.

Additionally, as an extension to the basic SVM Game, a coalitional SVM Game provides stability as
well as a means of addressing non-linear problems. In this game variant, each player (data point) has a
coalition partner which is an affiliation of a data point with a single member of the opposite class believed
to be the closest member of the opposing class based upon data seen so far. Coalition partners are one-way
pairings which may be many to one. Effectively, this builds coalitions within a given class of the grouping of
like-minded players who all agree upon the preferred (closest) player of the opposing class. Every iteration
of the coalitional SVM game allows each interacting player to consider the relative distance to both the
reference point from the opposing class as well as their coalition partner. When all players in a given class
form the same coalition, they are in agreement as to which player is the closest point amongst the opposing
class and this unanimous Condorcet winner allows a linear discriminant to be constructed if both classes
form single coalitions. If a unanimous decision cannot be reached this illustrates that a Condorcet winner
does not exist and rather a non-linear solution is needed. In lieu of an unanimous Condorcet winner, rather



4 / Procedia Computer Science 00 (2015) 1–8

Fig. 3. Coalitional SVM Game Algorithm

the irreducible coalitions constitute Smith Sets which are a partitioning of the global problem such that
within each of the Smith sets there is a local Condorcet winner [11]. Since each Smith Set consists of a local
unanimous Condorcet winner, a global non-linear solution may be constructed by the composition of these
local solutions. The coalitional SVM Game algorithm is shown in Fig. 3, and for more details regarding the
SVM Game see [7].

4. MapReduce SVM Game

Since the SVM Game is innately distributed, it is a natural extension to apply the SVM Game to a
parallel and distributed computational environment. MapReduce is a programming model for processing
parallelizable problems across huge datasets using a large number of nodes [12]. First, in the “Map” step
the master node takes the input and divides it into smaller sub-problems which are then distributed to the
worker nodes. The worker nodes then process the smaller problems, and pass their individual answers back
to the master node. In the “Reduce” step the master node collects the answers to all the sub-problems and
combines them in some way to form the answer to the original problem. The MapReduce programming
model is illustrated in Fig. 4.

The SVM Game is directly amenable to implementation in a MapReduce programming model paradigm.
Game iterations are independent of one another in the sense that only the players involved need to communi-
cate and they need not send the result of an interaction to a centralized authority. By partitioning the overall
problem into a desired number of Mapped smaller sub-problems, each of these partitions may play the SVM
Game to yield local winners. In the Reduce step, the local winners from the Map partitions are combined,
and then the game is played on these points to yield the global solution (analogous to the Cascade SVM
approach for canonical SVM). Fig. 5 depicts the general MapReduce SVM Game algorithm. The Map step
occurs in lines 2 through 5 in which a partition function generates the sub-problems which may then played
in parallel by the SVM Game. The Reduce step occurs on lines 6 and 7 in which the results of the Map
partitions are combined and serve as the input to a subsequent call to the SVM Game algorithm. In lines 4
and 6 of the algorithm shown, the desired variant of the SVM Game class of algorithms may be evoked.

5. Results

Next we provide results showing the ability for the SVM Game to be partitioned in a MapReduce like
manner. The upper left plot in Fig. 6 illustrates the full data used for this example. The two classes are



/ Procedia Computer Science 00 (2015) 1–8 5

Fig. 4. MapReduce Distributed Computing Paradigm

Fig. 5. MapReduce SVM Game Algorithm

linearly separable Gaussian distributions, each comprised of 50 data points. The MapReduce paradigm is
not necessary for a problem of this size; however, for demonstrative purposes it allows the technique to be
clearly demonstrated. For simplicity, we have opted to partition the overall class into five smaller problems,
each consisting of ten data points per class. For this example, the partitioning is done randomly yielding the
sub-problems shown by the remaining plots of Fig. 6. With each sub-problem having played the SVM Game
independently, the red squares highlight the player from each class with the most alpha as a result of the
game play. Alternatively, remaining coalitions may be returned as the result of the sub-problem game play.
These winning points are returned in the Reduce step, at which point a subsequent round of the SVM Game
is played only on these winning points to yield the data points from each class that produce the resulting
discriminant. Fig. 7 depicts the result of the Reduce step. The upper half of the figure shows only the five
local winners from the sub games and the resulting discriminant, while the lower half of the figure includes
the full data set.

For this illustration we have run the Basic SVM Game with a fixed number of iterations. Doing so has
the benefit of each sub-problem requiring the same amount of computational time and yielding one resulting
answer that is returned for the Reduce step. Alternatively, the Coalitional SVM Game could also be used
while allowing each sub-problem to run to convergence. Such an approach may result in both unequal pro-
cessing time per node running the sub-problem as well as a variable number of coalitions returned from each
sub-problem. As before, doing so confers the stability property as well as the ability to address non-linear
data. Just as the irreducible coalitions comprising the Smith Set in a canonical implementation provide a
means of generating a piecewise linear discriminant, likewise any irreducible coalitions of the sub-problems
may be included in the final game play of the Reduce step and all resulting irreducible coalitions may then
shape the piecewise linear solution to the global problem. The same pre-processing approaches previously



6 / Procedia Computer Science 00 (2015) 1–8

Fig. 6. Distributed MapReduce Paradigm Proof of Concept Example

Fig. 7. Resulting Discriminants from Playing SVM Game on Results of Map Partitions



/ Procedia Computer Science 00 (2015) 1–8 7

described may be applied prior to the Map partitioning step to address overlapping, noisy, or inconsistent
data.

As a caveat, to guarantee each local Map sub-problem does not yield an errant solution analogous to
a local minima, each partition must play against the complete opposing class. However, if representative
samplings may be generated from the opposing class, a smaller sub-sample of the opposing class may be
used to reduce the memory requirements for the Map partitions. It is also possible that some local errors
may be corrected for in the subsequent Reduce step combining the results of the individual sub problems.
For example, by examining the individual results of the Map sub-problems shown in Fig. 6, one can see
that each Map sub-problem did not all yield optimal results. In particular, consider Map 2 in the lower left.
If more game iterations are run, the positive (blue plus) class will select the data point to the right and up
from the currently selected point marked by the red box. This point is clearly closer to the opposing class,
but this discrepancy ultimately did not degrade the final result because regardless of which of these points is
selected, either is further from the negative (red circle) class than the winning positive point of Map 3 which
is the closest point on the convex hull of the entire class and is identified as such in the Reduce step.

6. Conclusion & Future Work

We are not the only ones to apply SVM to the MapReduce distributed programming paradigm. Sun et al.
and Catak et al. have applied SVM to Twitter and Hadoop MapReduce programming models respectively
[13] [14]. These approaches apply the Cascade SVM approach to the MapReduce paradigm explicitly,
whereas the original work by Graf et al. describes how to partition SVM problems such that they may be
solved either in sequential segments on a single processor (with the benefit of making each sub-problem
computationally tractable), or distributed across multiple processors in a canonical computing paradigm.

Fundamentally, playing a MapReduce SVM Game is simply a means of constraining the game iterations
played with the benefit of allowing for the game iterations to be played in parallel. The game iterations
played on the Map partitions are simply individual game iterations whose possible reference points and
opposing players are selected from a sub-population rather than from the overall distribution. Likewise,
in the Reduce step, playing further game iterations only on the results attained from the individual Map
games is analogous to selectively choosing players rather than doing so uniformly. Thus, conceptually the
MapReduce programming paradigm can be employed such that it does not impact the SVM Game play
mechanisms but rather only constrains the player selection process, and does so in a manner that allows for
the game to be implemented on parallel compute clusters.

As future work, we plan to investigate the trade-offs associated with how the distributed problem is con-
structed. As presented here (and depicted in Fig. 4) we have used a single layer hierarchy where all the
Maps are played in parallel and combined in a single Reduce step. Alternatively, a multi-layer hierarchy
could also be employed such that intermediate Reduce steps could be employed at intermediate layers. A
potential benefit of such a hierarchical approach would be smaller Map sub-problems requiring fewer game
iterations be played. Taken to the extreme, Map partitions would consist of only two data points, and the
subsequent game play would eliminate a data point from consideration with each Map. The resulting hier-
archy would require a logarithmic number of layers to combine the hierarchy of all two point sub-problems.
Operating upon two data points at a time to refine the overall solution would be similar to the Sequential
Minimal Optimization (SMO) approach of chunking a quadratic programming problem into pairs of data
points which sequentially work towards the global solution [15]. However, this approach would natively
allow all the pairwise evaluations at a given step to occur concurrently rather than sequentially. In conjunc-
tion with exploring the trade-offs of how to partition problems, we plan to benchmark the MapReduce SVM
Game on larger problems than the demonstrative proof of concept illustration we have shown here.

Additionally, we would also like to investigate sampling strategies for how Maps are partitioned. The
simplest approach is to do so randomly, however domain knowledge or more sophisticated sampling tech-
niques which can guarantee properties such as how representative a sample is with respect to the overall
distribution may prove beneficial.

Training large neural network models such as deep learning networks is a slow, computationally inten-
sive process. If the learning phase can be parallelized that is one possible means of improvement, but not all



8 / Procedia Computer Science 00 (2015) 1–8

learning algorithms are well suited for parallelization. Various research efforts have employed this approach
such as parallelized stochastic gradient descent by Zinkevich et al. which allows gradient descent based
learning algorithms to be parallelized [16]. An additional possible benefit of the research we have presented
here is to provide an alternative approach to train up a large neural network. Scholkopf et al. have shown
how the canonical SVM algorihtm may be used to train a Radial Basis Function (RBF) network [17], so
likewise another extension of this work would be to use our MapReduce SVM Game to train a large RBF
or other deep network.

Many game-theoretic interactions are not single instance occurrences, but rather consist of repeated
game play allowing players to adjust strategies as well as compete against multiple opponents. Effectively,
a game-theoretic approach is also amenable for addressing the evolving nature of big data problems. Rather
than requiring extensive retraining, additional game play iterations can be run to update the model as addition
data is received. This is analogous to the ability to partition and recombine SVM Game interactions, as we
have shown here in the MapReduce paradigm, but extended such that through repeated game iterations the
problem decomposition occurs over time as additional data is received. For a description of how repeated
iterations of the SVM Game allow the algorithm to address non-stationary data such as an evolving data
stream see [18].

Leveraging the innate distributed nature of game-theoretic interactions, we have presented an alternative
approach to SVM which is directly parallelizable in a MapReduce programming paradigm and furthermore
provides an alternative strategic perspective to the problem.

Acknowledgment

This research was possible in part by LDRD program support from Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear
Security Administration under contract DE-AC04-94AL85000.

References

[1] B. Alcott, Jevons’ paradox, Ecological economics 54 (1) (2005) 9–21.
[2] V. N. Vapnik, V. Vapnik, Statistical learning theory, Vol. 2, Wiley New York, 1998.
[3] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification (2nd Edition), 2nd Edition, Wiley-Interscience, 2001.
[4] K. P. Bennett, E. J. Bredensteiner, Duality and geometry in svm classifiers, in: Proceedings of the Seventeenth International

Conference on Machine Learning, ICML ’00, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000, pp. 57–64.
URL http://dl.acm.org/citation.cfm?id=645529.657972

[5] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, V. Vapnik, Parallel support vector machines: The cascade svm, in: Advances
in neural information processing systems, 2004, pp. 521–528.

[6] N. Nisan, Introduction to mechanism design (for computer scientists), Algorithmic game theory 209 (2007) 242.
[7] C. M. Vineyard, G. L. Heileman, S. J. Verzi, A Game Theoretic Coalitional Support Vector Machine Classifier, under Review

(2015).
[8] J. Kleinberg, Networks, Crowds, and Markets, Cambridge University Press, 2010.
[9] C. M. Vineyard, G. L. Heileman, S. J. Verzi, R. Jordan, Game theoretic mechanism design applied to machine learning classifi-

cation, in: Cognitive Information Processing (CIP), 2012 3rd International Workshop on, IEEE, 2012, pp. 1–5.
[10] K. Mitchell, J. Ryan, Game theory models of animal behavior.
[11] J. H. Smith, Aggregation of preferences with variable electorate, Econometrica 41 (6) (1973) 1027–41.
[12] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM 51 (1) (2008)

107–113.
[13] Z. Sun, G. Fox, Study on parallel svm based on mapreduce, in: International Conference on Parallel and Distributed Processing

Techniques and Applications, Citeseer, 2012, pp. 16–19.
[14] F. Ö. Çatak, M. E. Balaban, A mapreduce based distributed svm algorithm for binary classification, Turkish Journal of Electrical

Engineering & Computer Science.
[15] J. Platt, et al., Sequential minimal optimization: A fast algorithm for training support vector machines.
[16] M. Zinkevich, M. Weimer, L. Li, A. J. Smola, Parallelized stochastic gradient descent, in: Advances in Neural Information

Processing Systems, 2010, pp. 2595–2603.
[17] B. Scholkopf, K.-K. Sung, C. J. Burges, F. Girosi, P. Niyogi, T. Poggio, V. Vapnik, Comparing support vector machines with

gaussian kernels to radial basis function classifiers, Signal Processing, IEEE Transactions on 45 (11) (1997) 2758–2765.
[18] C. M. Vineyard, S. J. Verzi, C. D. James, J. B. Aimone, G. L. Heileman, Repeated play of the svm game as a means of adaptive

classification, in: IJCNN 2015, IEEE, 2015.


