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Motivation: Sandia Fracture Challenge LU

* In 2012, Sandia hosted a blind assessment challenge of predicting ductile fracture, open to the
international solid mechanics community.

Overlay: Predictions (colors) compared to experiments (gray)
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* This detailed study revealed several common deficiencies, including:
* The lack of shear calibration data
* Discrepancies caused by imperfections in specimen manufacturing
* Many models could not capture shear failure
» Difficulties in regularization / mesh sensitivity
* Difficulty setting length scale in non-local models
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* Prediction bounds typically based off parameter ‘uncertainty’ P *
* Trade-off between expedience and accuracy. |




Motivation: 2014 Sandia Fracture Challenge (@&

Challenge Definition:
* S-shaped Ti-6Al-4V specimen with holes

copi and notches loaded with a set of clevis
SFC Specimen ;:Zago(')i pins at two displacement rates (25.4 mm/s
Geometry (right); | the notch) and 0.0254 mm/s)

Anisotropic, * Predict
Rate-Dependent coD?2 * Failure path
Tensile (hole  Force at particular COD gage values
Properties of Ti- ahead of * Force-COD curves
6Al-4V (bottom) the notch) e Provided Information
* Specimen geometry and pre-test

measurements
* Tensile test data for rolling and
transverse material directions
Tensile Engineering Stress vs. Strain . Shear test data of rolling and

1400 . . .
00 transverse material directions
glOOO ﬁ
i s00 / \\\\ Issues:
! \ « No standard shear testing protocol for
B ductile metals
2°° « Need method that can be easily done in

000 004 008 012 016 020 a regular experimental testing lab at two
Extensometer Strain (mm/mm) =
loading rates
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Shear Testing Techniques ) e,

T vertical

actuator
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losipescu (V-Notched Beam) Test Dunand and Mohr (2013) Butterfly Geometry for Multi-Axial
(ASTM D5379) for Composites Ductile Fracture Testing
Punch Geometry (ASTM D732) Arcan Multi-Axial Testing (Ghahremaninezhad and
for Plastics Ravi-Chandar, 2013)

These methods are either difficult to implement for sheet Ti-6AL-4V
or not straightforward to implement in a regular experimental testing lab




V-Notched Rail Test ) e,

ASTM D7078:
Shear testing for composite materials = Advantages:

= Large area of gripping

= Easy-to-machine specimen geometry

o Loy = Ease of testing sheet material
90° V-notch . . .
Standard = Useful geometry for anisotropic materials
Specimen (right); = Testing in a common uniaxial load frame
Standard V- . . .
Natehed Rail Testing at a large range of displacement

rates

Fixture (Bottom)

Test Machine Adapter\

Fixture Halves

= Commercially available standard grips

= Disadvantages:
= No literature on test used for metals

= Non-negligible system compliance when
testing metals

Gripping Bolts %

= Non-trivial grip alignment of two
independent grip halves

= Potential for insufficient gripping pressure
of metal specimens

V-notch rail test had the most promise for the Ti-6Al-4V shear test, requiring a few modifications




Modified Setup for Testing Ti-6Al-4V LL

Adjustable Combined Loading Shear (CLS) Fixture

Modified V-Notched Specimen for the V-notch Rail Shear Test from Wyoming Test Fixtures

Load Cell Load I

= |

"
=100 Horizontal
Grip Insert

< lLateral
LVDT 2

Specimen
Touching
Edge of
Opening

Actuator Motion Actuator Motion

=  Specimen Modification:

60° notch to reduce central shear area
Longer grip section allowing for more gripping area and higher grip pressures

= Test Setup Enhancements:

Axial LVDT for local displacement measurement
Lateral LVDTs to monitor potential rotations of the fixture
Strain gage rosettes on front and back of each specimen

Sandia
National _
Laboratories

Specimen installation procedure: tighten bolts incrementally up to 67.8 N-M (50 ft-Ibs) each,

not allowing any strain gage to rise above 100-microstrain



Lateral Compliance Characterization L
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Diff. LVDT Displacement (mm)

Setup for Lower Fixture
— Shear Fixture Lateral Stiffness and Relative Rotation
| : 800 0.04
==—rs 600 / 0.03
400 - 1 — 0.02
S S B P i — 0.01
- 0.00
] T
200 \ o
400 -0.02
600 -0.03
BO0- | 0 b -0.04
-0.01 000 001 002 003 004 005 006 007 008 0.09
Avg. LVDT Displacement (mm)
= - —— Upper: LateralLoad  ----- Lower: Lateral Load
Rod for Manual Gripped Rod ——— Upper: Diff (Offset LVDT 2,3) ~ ====- Lower: Diff (Offset LVDT 2, 3)
Application of End Bearing
Lateral Load and Clevis

= The lateral stiffness of the upper fixture is greater than the lower fixture.

= The upper fixture has more rotation for a given load than the lower fixture as seen in the

difference between LVDT 2 and LVDT 3.

= The V-notched specimen tests had negligible lateral displacements, implying that the
specimens did not exhort significant lateral loads on the fixture.
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Axial Compliance Characterization ) s

Ti-6Al-4V Shear Compliance Bar: Series2 - Run 1

w0 - First run

5 - compliance test

30 + with Ti-6Al-4V

2% s lat left);
. 7 ——8.896-kN plate (upper left);
_E_zo f —13.345-kN Subsequent
315 t ——17.793-kN compliance test

e . 222400 with same Ti-6Al-

5+ #4 Slip | —26.689kN

0 T 7 —| accumulation — 31138kN 4V plate (IOWGI’

-5 g +—+—+ —+——+ ——+— = |\Nlth|ﬂ\r5t|(\)a|dn T —35:586kN ’eft);

s 5 & xS 'S o & Ti-6Al-4V solid
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Shear Fixture Displacement, LVDT 1 (mm) (rlght)
Ti-6Al-4V Shear Compliance Bar: Cycle Set 3

03 = Performed cyclic loading of an solid alloy

35 . .

N V4 steel plate and a solid Ti-6Al-4V plate at

i 7 | —sass4N increments of 4.448 kN (1000-Ibf)
= I —8.896-kN . o . . .
£}  lasasan = The fixture exhibited significant compliance
815 o i . . . .
2 N ;;ii ‘;: = Noticed considerable slip of the plates in

T No slip Toesen . : :
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0 after firstload |~ —31.138N zero upon unload)
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Specimen Slip Characterization Lufre

Ti-6Al-4V Shear Compliance Bar: Series 2 - Run 1 (S|Ip) =8.528 * 104 * (Load-4 448)1.435 mm
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=  Slip could be removed from the axial LVDT

. No Slip
data for loads after the 4.448-kN level using ./ Removed for 0
the empirical slip formula. . [<—— tosassin
= Noslip should be removed from decreasing 000 050 100 150 200 250 300
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Ti-6Al-4V Results: Strain Gages
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|I1 National

Laboratories
These strain-gage tests estimate a shear modulus of Ti-6Al-4V of 44 GPa,
consistent with literature values.
Shear Stress vs. Central Shear Strain Shear Stress vs. Central Shear Strain
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Engineering shear strain calculated from strain gage rosettes as per ASTM D7078 prescribes

Ti-6Al-4V exhibits rate dependence in shear: stiffer response from fast rate tests (25.4 mm/s)
as compared to the slow rate tests (0.0254 mm/s)

Rate dependence has a greater effect on the early plastic behavior than material direction




Ti-6Al-4V Results: Load-Displacement
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Both material direction and rate dependent affect large-deformation plasticity
seen in the global load-displacement behavior.

Load vs. Axial LVDT 1: VP Series
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VA Series: Rolling Direction Aligned with Shear Direction

= Note: The Axial LVDT 1 measurement here includes contributions from fixture compliance and
specimen slip. At 20 kN, the combined effects contribute ~0.27 mm to the axial LVDT 1 value.

= Approaches to removal of effects of fixture compliance and specimen slip:
= Apply afirst-order linear correction so that the modulus matches the strain-gage data

= Explicitly remove the specimen slip using the empirical formula previously derived, and also remove
compliance by determining fixture displacement-load behavior from modeling the setup and subtract

the elastic behavior of the plate



Ti-6Al-4V Fracture Surfaces rh) pea_

= Cracks did not intersect
the root of the 60° notch

= Failure surfaces for the
fast rate tests (25.4 in/s)
are similar for the rolling
(VA) and transverse (VP)
directions

= Failure surfaces for the
slow rate tests (0.0254
in/s) are dissimilar for
the rolling and
transverse directions

Failure of each rolling
direction and
displacement rate had
repeatable behavior

Failure Surface Failure Surface

Ruler Scale: Smallest Division is 0.254 mm (0.01 in)
_
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Conclusions and Future Work ) e

=  Demonstrated V-notched rail test for
shear characterization of Ti-6Al-4V

= Performed tests at two loading rates
(quasi-static and moderate rates)

= Measured shear modulus consistent
with literature

= Performed repeatable tests, showing
rigorous testing procedures

= Characterized fixture compliance and
specimen slip in the grips

[ ] |mprovements / Future Work Load vs. Axial LVDT 1: VA Series

= Develop improved gripping technique 20 |
to prevent specimen slip 25

= Perform full-field Digital Image
Correlation measurements to provide

Load (kN)
o B
—

. . 10
shear strain measurements to failure ) /
= Team with computationalists to o / | | | | |
. . . 0.00 0.50 1.00 1.50 2.00 2.50 3.00
= Characterize fixture behavior Axisl VDT 1 (mm)
= Establish testing protocol for ease of VAL (Slow) VA2 (Slow) ----- VA3 (Fast) - - - VA4 (Fast)

constitutive model calibration




