

Characterizing Solute Drag on Perfect and Extended Dislocations

RYAN B. SILLS^{1,2} AND WEI CAI¹

¹MECHANICAL ENGINEERING, STANFORD UNIVERSITY

²SANDIA NATIONAL LABORATORIES, LIVERMORE, CA

4th International Conference on Material Modeling

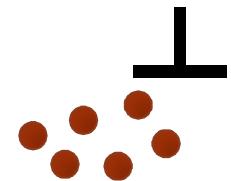
May 27-29, 2015, Berkeley, CA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- Nature of solute drag
- Numerical drag calculation
- Results

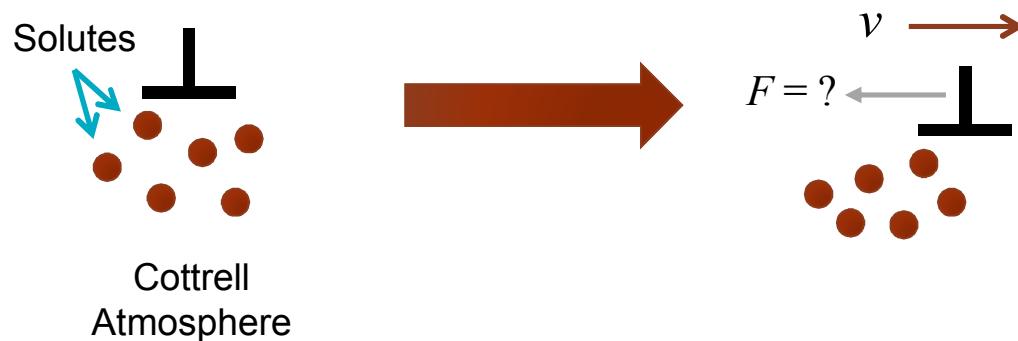
Nature of solute drag



Cottrell atmosphere and solute drag

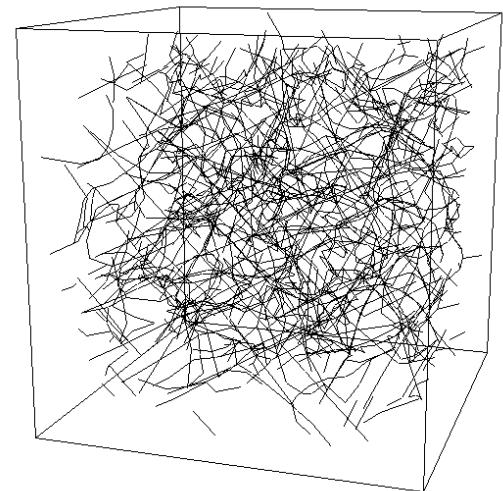
Solid solutions are ubiquitous in metallic systems

- Alloying
- Contaminants (e.g. hydrogen)



Including solute drag in dislocation dynamics

- Interested in large-scale simulations
- Full simulation of solute field not feasible
 - › Very fine computational grid required
- Our approach: Use mobility law to incorporate drag effects

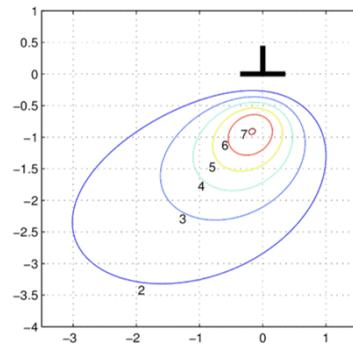


$$\mathbf{F}_{\text{drag}}(\mathbf{v}) = \mathbf{F}_{\text{drive}} \quad \longrightarrow \quad \mathbf{v} = \mathbf{M}(\mathbf{F}_{\text{drive}})$$

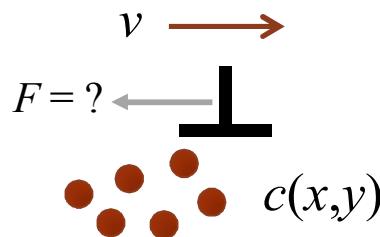
→ Need to determine $\mathbf{F}_{\text{drag}}(\mathbf{v})$

Mobility Law

Numerical drag calculation



Steady-state drag calculation



Focus on achieving convergent solution

- Enabled by non-singular dislocation theory (Cai et al., 2006)

Consider extended dislocations

Cottrell and Jaswon (1949)
Yoshinaga and Morozumi (1971)
Takeuchi and Argon (1979)
James and Barnett (1985)
Hirth and Lothe (1982)
Fuentes-Samaniego et al. (1984)
Zhang and Curtin (2008)

Solute concentration field calculation

$$\frac{\partial c}{\partial t} = -\nabla \cdot \mathbf{J} = 0 \quad (\text{steady state})$$

Finite difference and solve with Newton's method

Drag force calculation

$$\sigma_{xy} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [c(x', y') - c_0] \sigma_{xy}^{\text{solute}}(x_c - x', y_c - y') dx' dy'$$

Background concentration

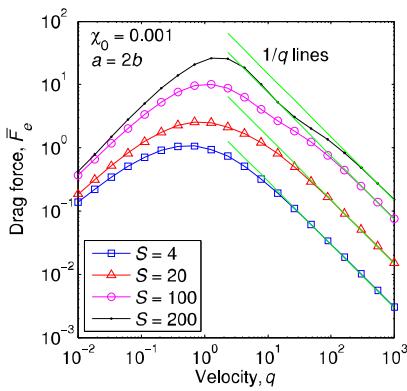
Stress field of a solute

Evaluate with adaptive quadrature in MATLAB

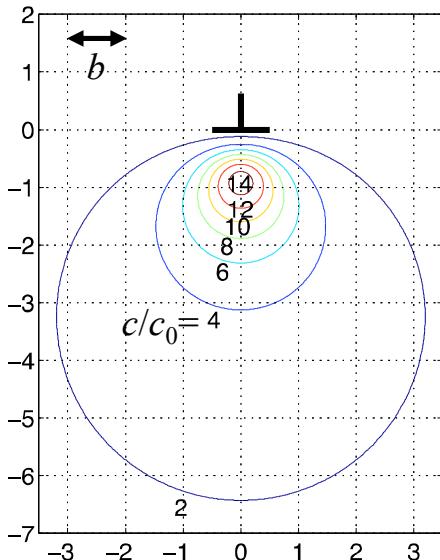
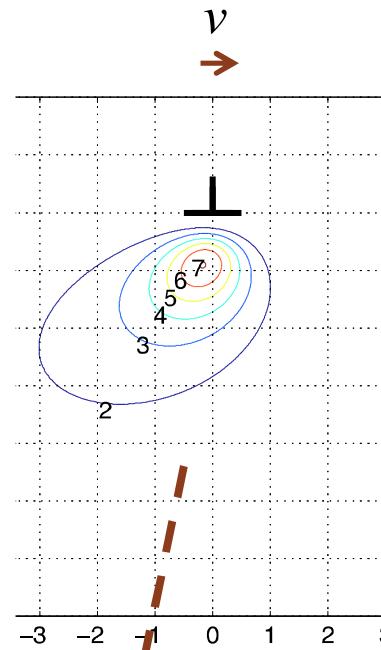
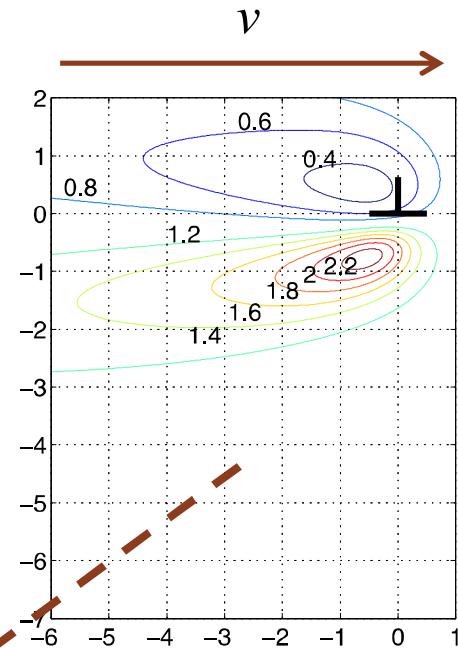
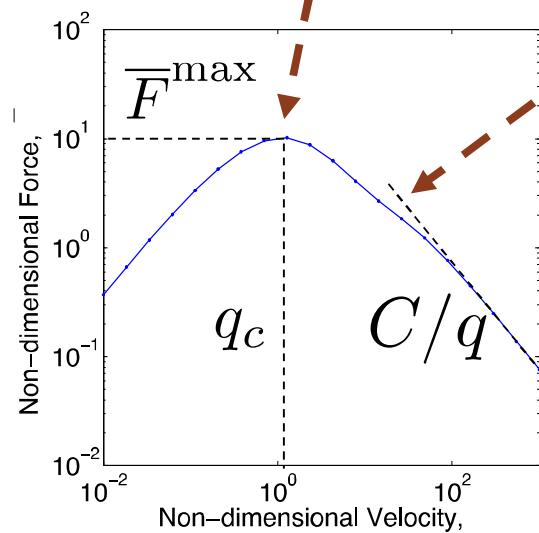
$$F = \sigma_{xy} b$$

Stanford University

Results



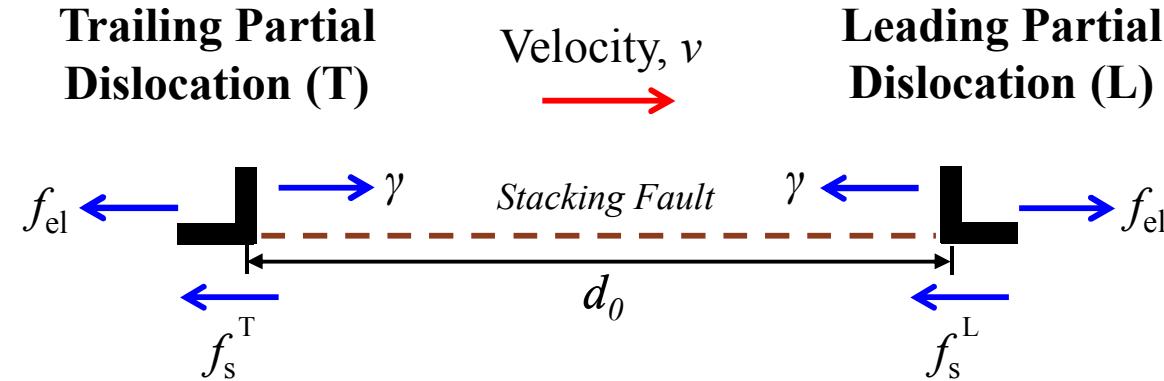
Force-velocity curve



$$\bar{F} = \bar{F} \left(q, c_0, S, \theta, \frac{\hat{\gamma}}{\mu b}, \frac{a}{b} \right)$$

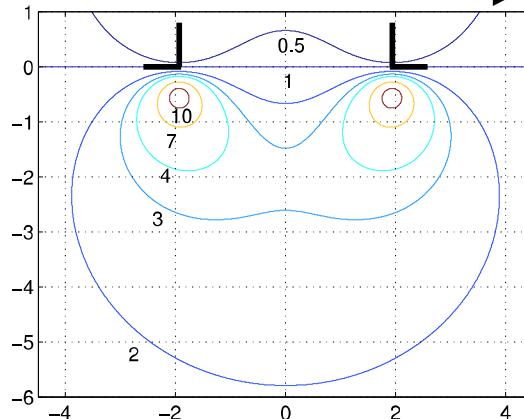
Non-dimensional Force
Expression

Extended dislocations – Partial separation distance

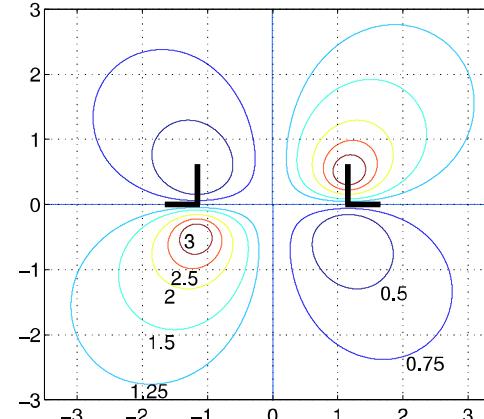


$$f_s^T(d) - f_s^L(d) = f_2(d_0) - f_{el}(d)$$

Edge, $\theta = 90^\circ$ $\mathbf{b} \rightarrow$

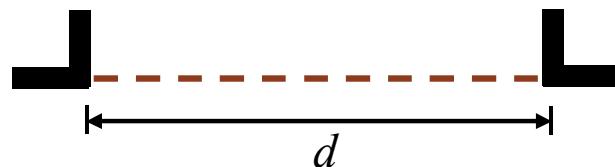


Screw, $\theta = 0^\circ$ $\mathbf{b} \odot$



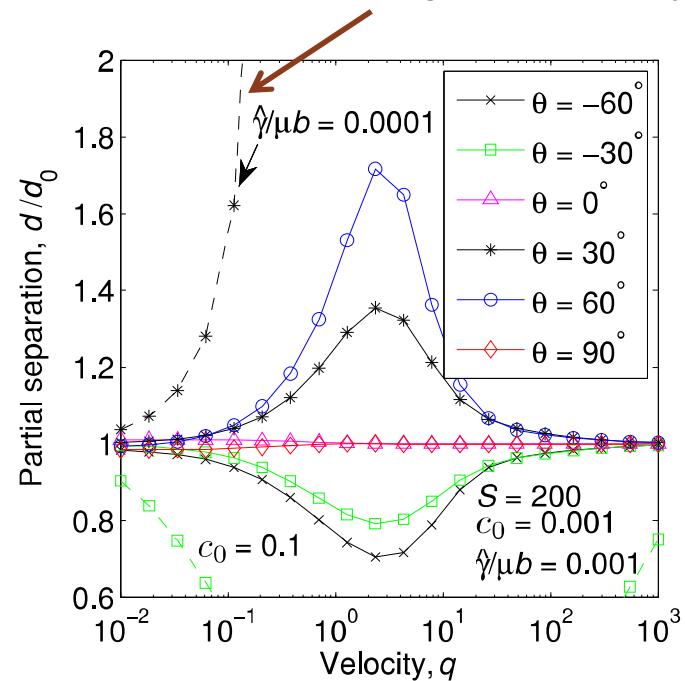
Extended edges experience 4x more drag than extended screws

Extended dislocation results



d_0 = Solute-free separation distance

Separation distance goes to infinity!



- Deformation twinning in low SFE metals possibly promoted by solutes
 - Stainless steel with H (San Marchi et al., 2011)
 - Stainless steel with N (Mullner et al. 1993)

Summary

- Analytical form for force-velocity curve and DD mobility law

$$\overline{F}(q) = \frac{Cq}{q^2 + \left(C/\overline{F}^{\max} - 2q_c\right)q + q_c^2}$$

- Can incorporate solute drag in DD simulations
- Extended screws see 75% less drag than extended edges
- Atmosphere can change partial separation significantly
 - Independent of changes in SFE
- Manuscript in-preparation
 - *Solute drag on perfect and extended dislocations*, R. B. Sills and W. Cai