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Static Random Access Memory

* Highest speed — <1 ns write time

» Larger cell size — typically requires 6 transistors

* Lower density than DRAM

* P depends strongly on f

 Max SRAM on chip: Intel Xeon E7 — 45 MB SRAM cache

SRAM Cell Schematic Intel Xeon E5 SRAM
___Word Line (WL) e 55/ Intel 14nm SRAM Cell
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Dynamic Random Access Memory

- State stored in capacitor charge

« Lower cost, higher density than SRAM Stacked DRAM Cell
* Volatile and changes memory state if
not refreshed periodically (64 ms |
P ly (64 ms) 1
« ~20 nm cells in production as of 2015 L TG

— Is there a path to continued P
scaling?

L c=cpe
« DRAM Challenges:

— DRAMSs struggling to maintain Micron Stacked DRAM
reasonable equivalent oxide
thickness

— Dielectric for cells below 20 nm still
TBD

— DDRXx interfaces have high power
requirements (although DDR4 is an

Sandia
improvement @ nda,
P ) Figure Courtesy Dieter Schroder, A Laboratories
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3D DRAM

Micron, Hotchips 2011

DRAM Layers
"

* Micron/intel Hybrid Memory Cube
- DRAM die stacked on logic
« Connected via through-silicon-via

« Major energy savings Logic Layer

\ Wide Data Path

7DRAM

Logic Chip

Technology IDD BW GB/s Power (W) mW/GB/s pj/bit real pl/bit
SDRAM PC133 1GB Module 3.3 1.50 1.06 4.96 4664.97 | 583.12 762
DDR-333 1GB Module 2.5 2.19 2.66 5.48 2057.06 | 257.13 245
DDRII-667 2GB Module 1.8 2.88 5.34 5.18 971.51 |121.44 139
DDR3-1333 2GB Module 1.5 3.68 10.66 5.52 517.63 | 64.70 52
DDR4-2667 4GB Module 1.2 5.50 21.34 6.60 309.34 | 38.67 39
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NAND Flash Memories

» Serial access; slower than NOR
* Low bit cost
* High density: F=18 nm in 2015

« Small cell size (5-6 F?), since no source
contact required

* Monolithically stacked introduced in
2014 (Ex. Samsung VNAND)

» Block erase required
» Write/Erase: Fowler-Nordheim
« Challenges:

— Non-scalable tunneling dielectric
need > 6 nm for retention

— Floating gate interference:
capacitance coupling between
floating gates

— Reduced coupling ratio
with scaling
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# NOR Flash Memories
WLp—H—?—II[l_'

 Fast random access, similar to RAM

* Lower voltage (7-10V)

* Write: Hot electron injection, high V,
* Erase: Fowler-Nordheim

 Erased as blocks

« Area: 9-11F2 (need source contact)
« Embedded code (cellular phones, etc.)

* Challenges:

— More severe drain disturbance with

continuous scaling

— Severely limited scaling below

32nm

Courtesy Dieter Schroder, ASU
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Emerging Memory s

* We are in a significant era for memory
* NAND Scaling:

_ Amazing progress in recent years: Samsung has a 32 layer
process enabling 256 megabit per die

— 3D will quench density issues temporarily
— Reliability suffers with scaling; 12 nm is theoretical FG limit
« DRAM Scaling:
— Struggling to maintain reasonable eq. oxide thickness
— Dielectric for cells <20 nm still TBD
 Limitations in sight for both of these giants!
» Storage Class Memory
— Magnetic to DRAM latency gap
* End of transistor scaling: no obvious new technology

* End of flash/DRAM scaling: several new technologies @ Sandia

. National
on the horizon! e
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Storage Class Memory:
A Game Changer

* Very fast
 Large area
« Volatile

 Expensive
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Emerging Memory Taxonomy

Menllory
\'ol;ltile Nom';)latile
SRAM Ba sel-line Protot.y pical Eme;'ging
DRAM I— Flash — FeR AM —  Ferroclectric Memory
|: Stand-alone |: NOR — PCM FeFET
Embedded NAND MRAM FTJ
—{ STT-RAM | [ ReRAM

- Electrochemical Metallization Bridge

Metal Oxide - Bipolar Filamentary

—  Metal Oxide - Unipolar Filamentary |

— Metal Oxide - Bipolar Nonfilamentary

— Mottt Memorv

— Carbon Memory

— Macromolecular Memory

— Molecular Memory

. Sandia
www.itrs.net National _
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Resistive Crossbar Memories

C1 C, Cs3 Cs

* F=Feature size “—'\%\ .\’%\. \,%\. \%\-
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Marinella and Zhrinov, in Emerging Sandia
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Bipolar Metal Oxide ReRAM

- “Hysteresis loop” is simple method to visualize operation
— (real operation through positive and negative pulses)

* Hypothesized oxide resistance switching mechanism
— Positive voltage/electric field: low R — O-2 anions leave oxide
— Negative voltage/electric field: high R — O2anions return

« Common switching materials: TaO,, HfO,, TiO,, ZnO

» Despite progress, details of switching mechanism still debated

L
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Electrochemical

Metallization Bridge B
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Panasonic MN101L ReRAM MCU

* First bipolar metal oxide commercial product
* Power and time saving over flash MCU

ReRAM
Microcomputer

ReRAM
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Phase Change RAM

Bit Word Phase Change
Line Line Plate Material

* Type of Resistive RAM
* GST most common material
* In commercial production
— Samsung, Micron
» Set — crystallize, long pulse

* Reset — amorphize, short high
current pulse

Heater

— o
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Courtesy D.K. Schroder, ASU Kang et al, IEDM 2011 Laboratories
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Phase Change RAM

» Challenges
— High reset current (~ 500 pA)
— Retention loss with scaling
* Possible solution
— Small contact area
— Heat confinement

Samsung 512 Mb Array

ddggdgouew

Write Energy (pJ/bit) i F‘CM ceII

PCM
M RAM-

This
Work

s
z
s = § l"_’ sﬂrmde
iyl o <5 exclusion mask
1 “H Numonyx PCM cell consists of a
0.01 %%HH AL layer of Ge,Sb,Te, , embedded in a

dielectric structure and in contact
with two electrodes U@ Sandia

National

Liang, TED 59, 1155-1162, April 2012 Laboratories

Images courtesy Dieter Schroder, AS



' Microsystems
Science, Technelogy & Components

Magnetic RAM

» Magnetic tunnel junction (MTJ)

* Field switched MRAM: complex cell architecture,
high write current (~ mA)

« Spin Transfer Torque: current through MTJ, much
lower switching current (~ pA)

— Given new life to the MRAM industry

Current

Current

MTJ Bypass Line

Cladding

Bit line

Landing
ad

11l

Si substrate

r
Write Word Lineg

Field Switched MRAM SST MRAM

Sandia
National
Courtesy Dieter Schroder, ASU Laboratories



% MRAM: Current State of the Art

Everspin DDR3 Samsung 17 nm MTJ
Compatible STT-MRAM

Everspin.com Kim et al, IEDM 2011
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Ferroelectric RAM

Bit Word .
- Similar to DRAM cell Line Line Plate Terroelectric

* Uses ferroelectric film capacitor Metal

. o Pt, Ru)
» State is stored as the polarization
of the FE film

* Nearly unlimited endurance
 Moderate retention
* Process very finicky
« Commercial devices:
- TI
— RAMTRON (now Cypress)
— Fujitsu

—

Courtesy D.K. Schroder

CYPRESS INTRODUCES
The industry’s first 4-Mbit serial F-RAM™

@ Sandia
National
Laboratories
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Carbon Memory

Three material systems
1. Nanotube (single nanotube and layers)
2. Graphene

3. Amorphous carbon based resistive memory
Many possible mechanisms!

NRAM Cell

low conductance high conductance
nantero.com
Kreupl, ERD Memory Workshop, 2014 @ Sandia

National
Laboratories
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Emerging Memory Comparison

Biggest challenge for ReRAM:
Catch-up

STT-MRAM

Flash (NOR-NAND)

ReRAM/Memristor

Production (30 nm) Production (16 nm) Development Production (65 nm) | Production (45 nm)
Min device size (nm) 20 18 <1 16 <10
Density (F’) 6 4+ 4 8-20 4F
Read Time (ns) <10 10° 2 10 20
Write Time (ns) <10 10° 2 13 50
Write Energy (pJ/bit) 0.005 100 <1 4 ( 6 ﬁ
Endurance (W/E Cycles) >10% 10* 10*2 10*? M/
Retention 64 ms >10y >10y weeks, / >10y
BE Layers FE FE 4 7( 10-12 ) / 4

7 ~—

Process complexity High/FE High/FE Low/BE A High/BE Low/BE

Biggest challenge for STT-MRAM: Balancing

Retention/Scaling/Temperature/Write current

Biggest challenge for PCM:

High erase current

***DISCLAIMER: Due to 10s of thousands of references on these technologies -
many of these numbers are not universally agreed on!

@ Sandia
National
Laboratories
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space computing?

 Where have many emerging memories ended up?
— As a rad-hard product targeting aerospace applications!
« Commercially available rad-hard nonvolatile memories
« NG EEPROM: 1Mbit, 100ms write, 104 cycles, 1.25um RHCMOS
« BAE C-RAM: 4Mbit (planned 20 Mbit), 70ns write
« Honeywell MRAM: 16Mbit die, 140ns write, 102 cycles
* Rad-hard memory requires a rad-hard CMOS base process

e

Rad Hard 256K EEPROM
northropgrumman.com baesystems.com

honeywell.com  ~==— ——rer = JN18S
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Questions?
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# Session Overview

« 7:00 Introduction and Emerging Memory Technologies
— Matt Marinella
» 7:20 Resistive Memory for Space Applications
— David Hughart
« 7:30 Hybrid Memory Cube
— Dave Resnick
« 8:00 Processor in Memory and Storage
— Erik Debenedictis
» 8:30 Discussion

» 8:45 Wrap-up, conclusions and next steps...

@ Sandia
National
Laboratories



} Discussion

Key Constraints for Memory Systems in Space
1. Environmental constraints

2. Interfacing and SWaP (size weight and power)
constraints

3. Usage patterns

_ ationa
Orbital.com Laboratories
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* Environmental Constraints

 Memory must be able to withstand
— Radiation effects
— Thermal cycling
— Launch survival
— Mission Duration
» CubeSat life is 18months
« As high as 100 years for deep space missions
» Also requires:
— Adequate cooling

— Hermetic sealing, esp if a device has problems operating
in a vacuum

@ Sandia
National
Laboratories



- Size, Weight, and Power

— Cubesat: 10x10x10 cm, 3 Ibs
* Must consider redundancy requirements

 Emerging memories have significantly lower read
and write power than magnetic, flash, and DRAM

* Few space compatible high speed interfaces

Nasa.gov

(&)

Science, Technology & Components

A
% SWaP and Interface Considerations
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Usage Patterns

'\; \ Mictosysiems

» Terrestrial usage patterns of storage devices: R>>W
— More reads than writes
— Standard disk devices are tuned for R>>W
— File system layout assumes R>>W

« Space usage patterns: W2 R

— Number of write can be equal to or greater than number
of reads

— Volatile and non-volatile storage is important
— Patterns can be large block streaming or small entities

— Random access can occur for either of those patterns.
Sometimes there are more writes than reads as data is
discarded after initial assessment.

* These requirements impact both device technologies and
also on the file system layout

- Hardware/Software codesign @ —

National _
Laboratories
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Final Points, Summary, Next Steps

Sandia
National
G/ 102015 Matthew Marinella @ Laboratories
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Emerging Ferroelectric Memories

Ferroelectric

FET [ ]
P P
] |
- TP Ma, ERD Memory Workshop-2014
“On,, b “Off”
cerroclectric |
Tunnel =
Junction

v Sandia
National
Wen et al, Nature 2013 Laboratories
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ITRS Requirements for SCM

Benchmark [A] Target
Parameter ;
HDD [B] NAND flash [C] DRAM Mem;gntype Storage-type SCM
. ~100ps
Read/Write latency 3-5 ms <100 ns <100 ns 1-10ps
(block erase ~1 ms)
Endurance (cycles) unlimited 10%-10° unlimited >10° >10°
Retention >10 years ~10 years 64 ms >5 days ~10 years
ON power (W/GB) ~0.04 ~0.01-0.04 0.4 <0.4 <0.04
Standby power ~20% ON power <10% ON power | ~25% ON power |<1% ON power| <1% ON power
Areal density ~10"" bit/cm’ ~10" bit/cm’ ~ 10’ bit/cm’ >10" bit/cm’ >10"" bit/cm’
Cost ($/GB) 0.1 2 10 <10 <3-4

Sandia
ITRS ERD 2011 Natigna|
¢/10/°2015 Matthew Marinella @ Laboratories
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Supercomputers

* FLOPS: floating point operations per second

« Exaflop: 10" operations per second

* US would like to have an Exascale Computer by 2018(ish)

« Exascale computers will have a lot of hardware

* 10-100 petabytes main memory
— 10-100 million DRAM chips

* 100’s of exabytes storage
— Millions of hard drives

qqqqq

TALE OF THE TAPE:
SUPERCOMFUTER
V5. GAME CONSOLE
S, SONY
FLAYSTATION 3

DATE OF CRIGIN 2006

PEAK
PERFORMAMCE 1.3 teraflops

PHYSICAL SIZE 150 =guare meters 0.08 square meter

1.B teraflops*

POWER
CONSUMPTION 800 000 watts <200 watts

= Foi GPU: CPU adds another 0.2 teraflons
P. Kogge, IEEE Spectrum, 48, 48-54, 2011.
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Power

K computer
— Power: 13 MW
* Tianhe
— Power: 4 MW .
* Roadrunner A e I B
— Power: 7 MW - enough to power 5000 homes
» Palo Verde Nuclear Generating Station
— Power: 3 GW {ammmmm—
* Typical Coal Fired Power Plant
— Power: 500 MW
1 MW = $1,000,000/year power bill
« X pJ per operation = X MW per 10'® operations/sec (Exaflop)

Will Exascale need dedicated Nuclear Power Plant?

Sandia
National
AG/10/2015 Matthew Marinella @ Laboratories



Energy per Flop
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DRAM Bytes per Flop
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Common Requirements

« Space and supercomputing stand to benefit from
commercial progress in emerging NVMs:

— Low power
— Fast read/write
— High endurance
— High density
— Long retention
— Non-volatility
* Resiliency and fault-tolerance
« HPC and space benefit from radiation hard
—SEU is a problem for supercomputers

National

@ Sandia
AG/10/2015 Matthew Marinella Laboratories
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Array Architecture

* How do we architect ReRAM as a main memory array?

 What new issues will we face when converting from
DRAM array - ReRAM

* This process has been started for PCM
— Example — PCM architecture and write scheme below
* Do we need wear leveling?
* Work needed for ReRAM (can learn from PCM techniques)

Qureshi et al, HPCA 2010.

Target R Load best guess
[ RANK 3 parameter
| RANK 2
| RANK 1 L
RANK 0
RDGO .
Write
WRQo BANK 0 L
READ REQ Eﬁﬂ' , Calculate new
"—wnm | Bank+ Read Resistance programming pulse
~{[— [ !
WRITE REQ a = P
. . e N
. . 2 N
PROCESSOR CHIP R _~Ts resistance in™_ No
e . 3
~_larget bandwidth
DRAM CACHE whe? BANK 7 || ? o
_.[ A— | ey ,_//'

es ]’ Sandia
PCM-BASED MAIN MEMORY . Finish Natigna| .
¢/10/°2015 Matthew Marinella @ Laboratories



