

**Sandia
National
Laboratories**

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-4328PE

DOE Crude Oil Characterization Research Study – Project Update

**Crude Oil Quality Association Meeting
Hyatt Regency
Minneapolis, MN
June 11, 2015**

**Ted Aulich, Process Chemist Senior Research Manager
Chad Wocken, Chemical Engineering Senior Research Manager**

RESEARCH AND DEVELOPMENT
PROGRAMS, OPPORTUNITIES FOR
TECHNOLOGY COMMERCIALIZATION
WORLD-CLASS
CENTERS OF EXCELLENCE
ENVIRONMENTAL
TECHNOLOGIES
FOR RENEWABLE AND CLEAN OUR
AIR, WATER, AND SOIL
INDUSTRY, GOVERNMENT, AND THE
RESEARCH COMMUNITY

EERC
Energy & Environmental Research Center
Putting Research into Practice

RESEARCH AND DEVELOPMENT
PROGRAMS, OPPORTUNITIES FOR
TECHNOLOGY COMMERCIALIZATION
WORLD-CLASS
CENTERS OF EXCELLENCE
ENVIRONMENTAL TECHNOLOGIES
FOR RENEWABLE AND CLEAN OUR
AIR, WATER, AND SOIL
INDUSTRY, GOVERNMENT, AND THE
RESEARCH COMMUNITY

UND THE UNIVERSITY OF
NORTH DAKOTA

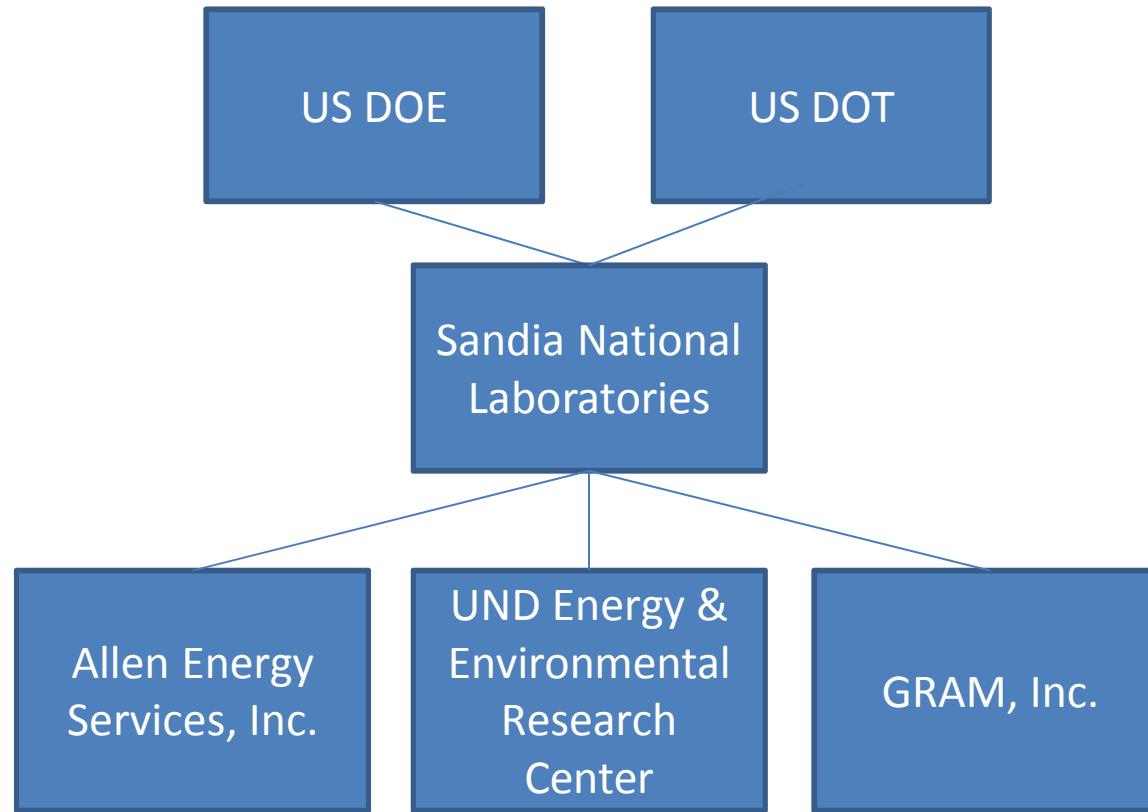
Technical Team

- David Lord (Ph.D., Env E.), Principal member of technical staff
 - Geotechnology & Engineering Department, Sandia National Laboratories
- Anay Luketa (Ph.D., Mech E.), Principal member of technical staff
 - Fire Science & Technology Department, Sandia National Laboratories
- Chad Wocken (B.S., Chem E.), Senior research manager
 - University of North Dakota Energy & Environmental Research Center
- Steven Schlasner (Ph.D., Chem E., MBA), Research engineer, PE (OH, OK)
 - University of North Dakota Energy & Environmental Research Center
- Ted Aulich (B.S., Chemistry), Senior research manager
 - University of North Dakota Energy & Environmental Research Center
- Ray Allen (B.S. Chem E.), PE (TX)
 - President of Allen Energy Services engineering consulting firm

WORLD-CLASS Project Governance

CENTERS OF EXCELLENCE
ENVIRONMENTAL TECHNOLOGIES

RESEARCH AND DEVELOPMENT
CENTERS OF EXCELLENCE
ENVIRONMENTAL TECHNOLOGIES


- US DOE funding agency point-of-contact
 - Richard Elliott, PE, CEM
 - ◆ U.S. Department of Energy, Office of Fossil Energy, Office of Oil & Natural Gas
 - ◆ rick.elliott@hq.doe.gov
 - ◆ 202-566-0859
- US DOT agency point-of-contact
 - Joseph Nicklous
 - ◆ U.S. Department of Transportation, Office of Hazardous Materials Safety
 - ◆ Pipeline and Hazardous Materials Safety Administration
 - ◆ joseph.nicklous@dot.gov
 - ◆ 202-366-4545

WORLD-CLASS RESEARCH INSTITUTE

Project Governance

CENTERS OF EXCELLENCE
ENVIRONMENTAL TECHNOLOGIES

RESEARCH INSTITUTE
CENTERS OF EXCELLENCE
ENVIRONMENTAL TECHNOLOGIES

Crude by Rail – Safety Concerns and Responses

Tight oil physical and chemical properties

- ◆ NDPC, PHMSA, AFPM, COQA, CCQTA crude oil characterization studies
- ◆ DOE Tight Oil Flammability & Transportation Spill Safety Project – Sandia and EERC

Adequacy of transport rules/regulations

- ◆ PHMSA rule released May 1, 2015

Rail integrity (equipment, procedures)

- ◆ FRA, PHMSA

Packaging (rail tanker construction)

- ◆ FRA, PHMSA

Tight oil conditioning and stabilization practices

- ◆ ND Industrial Commission Oil Conditioning Order #25417

DOE/DOT Crude Oil Characterization Research Study

Phase I – Problem Definition

- Review publicly available literature/data on tight oil sampling, properties, combustion – complete
- Prepare crude oil sampling, analysis, and experimental plan – final review ongoing

Phase II – Sampling, Analysis, and Experimental Plan (SAE Plan)

Subject to Federal Budget

- Sample and analyze tight and conventional crudes
- Develop models, refine with small- and rail car-scale combustion testing
- Assess if, how, and to what extent properties impact hazard

Q4 2014

Q1 2015

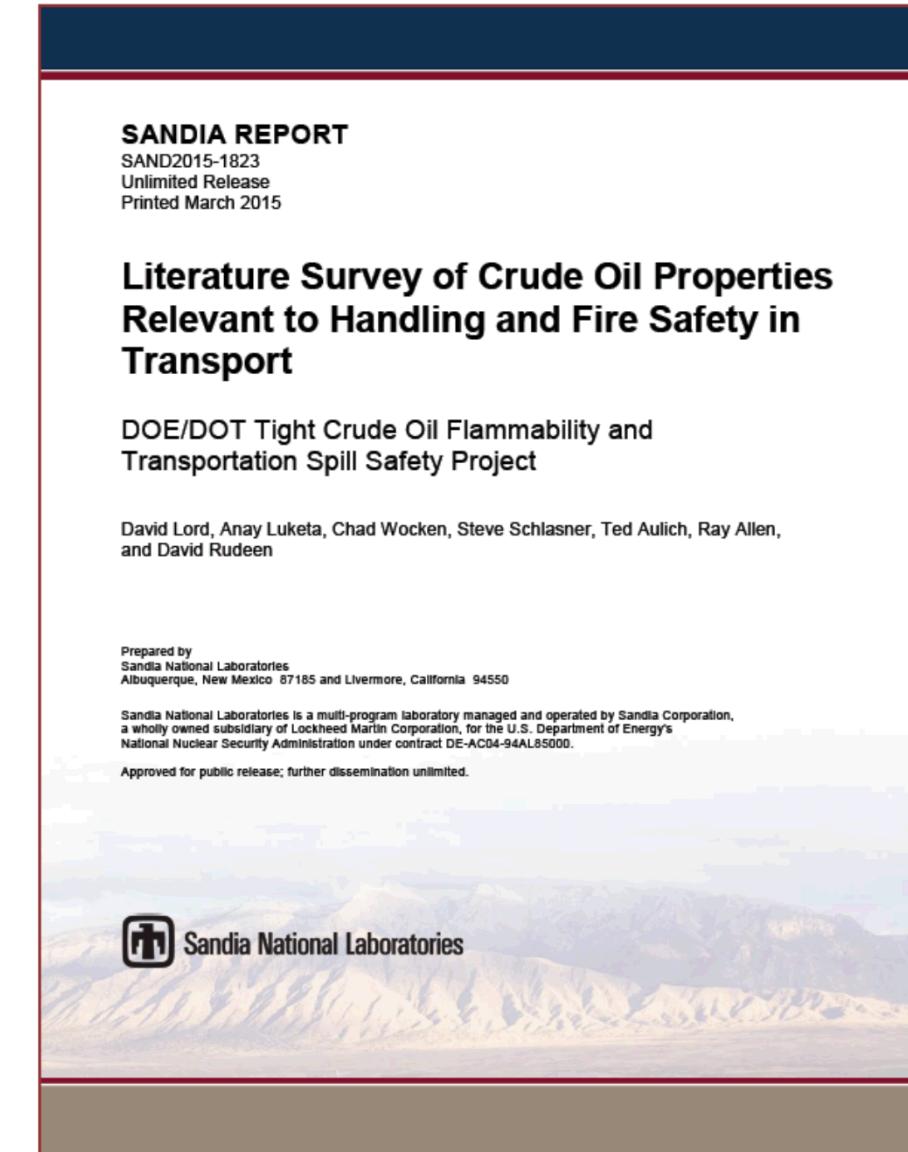
Q2 2015

Q3 2015

Q4 2015

Q1 2016

Q2 2016


Proposed testing: ~5-meter-diameter pool fire tests at Sandia Labs.

Literature/Data Survey Execution

- Conducted by Sandia National Laboratories, EERC, Allen Energy Services, and GRAM Inc.
- Primary sources include NDPC, PHMSA, AFPM, COQA, and CCQTA crude characterization studies, and data from U.S. Strategic Petroleum Reserve (SPR).
- Published in March 2015 as Sandia Report SAND 2015-1823 – Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

<http://energy.sandia.gov/tight-oil-study/>

- Variability in criteria and procedures used in crude oil sample selection, acquisition, and analysis makes comparison—between crudes and/or against standard—difficult, especially for crudes containing dissolved gases and volatile liquids.
 - Supply chain point
 - Extent of conditioning employed
 - Sampling technique (open, closed, on-line)
 - Analysis method

Literature/Data Survey Outcomes – 2

- Clear relationships between crude oil properties and probability or severity of rail accident combustion events have not been established.
- Multiple parameters (flashpoint, flammability limits, auto-ignition temp, ignition energy, burn velocity, others) needed to define flammability.
- Energy generated from an accident has the potential to exceed flammability impact of above and other crude property-based criteria.

RESEARCH AND DEVELOPMENT
PROGRAMS, OPPORTUNITIES
FOR TECHNOLOGY COMMERCIALIZATION

WORLD-CLASS

CENTERS OF EXCELLENCE

ENVIRONMENTAL TECHNOLOGIES

RESEARCH AND DEVELOPMENT
PROGRAMS, OPPORTUNITIES FOR
TECHNOLOGY COMMERCIALIZATION

WORLD-CLASS

CENTERS OF EXCELLENCE

ENVIRONMENTAL TECHNOLOGIES

Sandia-conducted fireball experiment.

Crude Oil Sampling, Analysis, and Experimental (SAE) Plan

- Sandia National Laboratories, EERC, and Allen Energy Services recently submitted an SAE plan to DOE.
- Objectives include:
 - Evaluating sampling methods, identifying best method(s) for crudes with dissolved gases.
 - Developing database of tight and conventional crude properties (determined under standard sampling and analytical protocol).
 - Identifying any significant differences between tight and conventional crudes.

SAE Plan – 2- CLASS

- Objectives, con't:
 - Identifying any properties that could contribute to increased likelihood and/or severity of transport-related combustion events.
 - Identifying and quantifying crude conditioning system operational parameters that impact transport safety-critical properties.
 - Developing preliminary recommendation of properties to include as compliance metrics in “crude oil safe transport specification.”

SAE Plan Tasks

- Update Literature Review with New and Emerging Data
- Evaluate Sampling Methods
- Combustion Experiments and Modeling
- Sampling and Analysis of Tight and Conventional Oils
- Large-Scale Combustion Testing and Computational Fluid Dynamics Modeling
- Comprehensive Crude Oil Characterization

Task 1: Update Literature Review with New and Emerging Data

- Sandia Report SAND 2015-1823 – Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport was published March 2015.
<http://energy.gov/fe/articles/sandia-national-laboratories-releases-literature-survey-crude-oil-properties-relevant>
- Crude oil characterization work is ongoing, new and emerging data will be reviewed and an updated SAND Report will be prepared.
- Provides an opportunity to modify subsequent crude oil characterization tasks based on emerging data.

Task 2: Evaluate Sampling Methods

Evaluate multiple sampling methods for application to crude oils containing volatile hydrocarbons

- Closed Method – ASTM D3700-14, floating piston cylinder
- Closed Method – ASTM D1265 and/or GPA 2174, water displacement
- Closed Method – ASTM D3700, syringe method
- Open Method – ASTM D5842, fuel sampling for volatility measurement
- Flow-Through Method – ASTM D4177,

Analysis for volatility and composition to assess ability of each method to provide representative sample collection

- Results compared to data collected with a mobile lab/test separator

Sample collection of tight oil from two rail terminals

- Tight oils comprise majority of rail transported crude

Best method will be employed for subsequent tasks

Task 3: Combustion Experiments and Modeling

Assess combustion hazards of both tight and conventional oils

- Identify crude properties that affect the combustion event hazards
- Assess the impact of identified properties
- Develop a prioritized list of properties/parameters that need to be included in subsequent sampling, analysis, and experimental activities

Acquire large samples of crude oil, using procedures that maintain the integrity and representativeness of the oil and conduct combustion tests at Sandia National Laboratory

- 2-meter pool fire tests (150-gallons/test)
- 5-meter pool fire tests (1,000-gallons/test)
- 5-gallon fireball tests
- 500-gallon fireball tests

Computational Fluid Dynamic (CFD) Simulations of Vapor Dispersion

- Evaluate dispersion of vapors for tight and conventional crude oils
- CFD vapor composition inputs based on test measurements of gas composition at different levels of heating
- Support hazard evaluation regarding flash fires and explosions

Task 4: Sampling and Analysis of Tight and Conventional Oils

Develop a comprehensive data set that characterizes multiple crude oil types

- Illustrate differences in crude oil properties and composition
- Support combustion property modeling efforts
- Enable prioritization of future crude characterization based on geography, environmental conditions, well life, and supply chain.

Acquire samples using previously selected methods representing

- Two tight oils (example: Eagle Ford, Bakken)
- Two conventional oils (example: WTI)
- One heavy crude (example: oil sands, rail-bit)

Conduct comprehensive crude oil analysis

- Volatility (VPCRx, light ends including inert gasses, flashpoint)
- Detailed hydrocarbon analysis (assay)
- API, molecular weight, specific heat, conductivity, viscosity, metals, cold flow properties

Task 5: Large-Scale Combustion Testing and Computational Fluid Dynamics Modeling

Large-scale tests may be conducted based on findings of previous activities (Tasks 1-4)

- Collect empirical data to validate computational models and enable prediction of full-scale combustion events

Acquire large samples of crude oil, using procedures that maintain the integrity and representativeness of the oil and conduct combustion tests at Sandia National Laboratory

- Large-scale pool fire tests
- Large-scale fireball and BLEVE tests

Computational Fluid Dynamic Simulations

- Evaluate the impact of crude oil properties on combustion
- Simulate effect of combustion properties on a rail tanker under different environmental conditions

Task 6: Comprehensive Crude Oil Characterization

Develop a comprehensive data set that characterizes multiple crude oil types and all the factors influencing their properties

- Scope of sampling and analysis will be based on findings of previous tasks – determination of properties impacting handling and transport safety will dictate relative value of further crude oil characterization

Acquire samples using previously selected methods representing

- Five oil plays
- Multiple sample points between well and refinery
- Summer and winter months
- Multiple times across the production life of a well

Conduct comprehensive crude oil analysis

- Volatility (VPCR_x, light ends including inert gasses, flashpoint)
- Detailed hydrocarbon analysis (assay)
- API, molecular weight, specific heat, conductivity, viscosity, metals, cold flow properties

Contact Information

Energy & Environmental Research Center

University of North Dakota

15 North 23rd Street, Stop 9018

Grand Forks, ND 58202-9018

World Wide Web: www.undeerc.org

Telephone No. (701) 777-5273

Fax No. (701) 777-5181

Ted Aulich, Senior Research Manager

taulich@undeerc.org

Chad Wocken, Senior Research Manager

cwocken@undeerc.org