
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-*****

Mixed-Integer
Programming of The
Constellation Scheduling
Problem

Christopher G. Valicka, PhD*
M. Danny Rintoul, PhD

William E. Hart, PhD

WG-8 Space Acquisition, Testing and
Operations

June 25th, 2015

*Correspondence: cgvalic@sandia.gov

SAND2015-4321C

Overview

• A remote sensing constellation scheduling problem

• What is needed in a constellation scheduling tool?

• Modeling with Pyomo

 Preliminary results

• Future work

2

Optimization Models for Managing Mobile
Sensors

• Problem:

 Manage a collection of mobile sensors that are scheduled to monitor
physical locations in space and time

 Examples: stationary video cameras, drones, satellites

• Challenge:

 Sensors have highly flexible capabilities

• Assumption:

 The performance of the mobile sensors will be evaluated w.r.t a fixed
set of activities

3

How is an Activity Defined?

• Start time

 Time window: list of potential start times

 Duration: fixed and known before building schedule

• Configuration: operational configuration needed to observe a location

 Physical location:

 The location that needs to be observed; precise requirements
depend on the sensor technology

• Quality: a minimum observation quality. Impacted by sensor location,
time of day, etc.

• Priority: importance relative to other activities

• Category: hierarchical importance (required, essential, desired)

4

Activity Categories

• Activities are categorized into the following:

 Category 1: Unique to a given sensor. Must be scheduled.

 Example: activities scheduled for the safety and proper operation
of a sensor

 Category 2: Cannot be scheduled during Category 1 activities. In
general, of high priority. In some cases, preempted by a Category 3
activity

 Example: periodic sensor calibration activities

 Category 3: Cannot be scheduled during Category 1 activities. The
vast majority of activities to be scheduled. In general, lower priority
than Category 2 activities.

 Example: observation activities

5

Overview

• A remote sensing constellation scheduling problem

• What is needed in a constellation scheduling tool?

• Modeling with Pyomo

 Preliminary results

• Future work

6

A Constellation Scheduling Tool Should Be…

7

What to Optimize- What is the Strategy?

• Minimize the number of sensors needed to observe a given set of activities

• Minimize the amount of time it takes to observe a given set of activities

• Minimize the number of schedule gaps

• Maximize the average or total priority of scheduled activities

• Maximize the quality of scheduled activities

• …, etc.

• Hybrid strategies

8

Initial work has focused on scheduling the largest number of high
priority, high quality activities

Related Work

• Community practice uses rule-based techniques

• Academic research is divided into two camps

 Heuristics (Globus et. al 2004)

 Genetic algorithms (Lining et. Al 2009)

 Simulated annealing (Peng et. al 2011)

 Greedy local (Dungan et. al 2011)

 Ant colony optimization (Wang et. al 2009)

 Exact methods (less research)

 Integer programming (Liao, 2007)

– Simple models

9

Why do Optimization Modeling?

0.1

0.4

0.5

0.95

1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

S
o

lu
ti

o
n

 T
im

e

Solution Confidence (Optimality)

Generic
Heuristics

Simulation

Custom
Heuristics

OR-Based
Heuristics

MIP Solvers

• The goal is to manage
the tradeoff between
solution time and
optimality

• Many national
security problems
require near
real-time answers

 95% solution is
acceptable

10

Benefits of OR-Based Heuristics

• Scheduling problems can be notoriously hard to solve

• An OR-based heuristic:

 Apply a MIP solver using an optimality tolerance (e.g. 5%)

 Final solution guaranteed to be near optimal

 Small optimality tolerances can significantly reduce time to solution

• MIPs facilitate exploration of alternate formulations

 Quickly assess different formulations

 Objective functions, constraint equations

• Sensitivity analysis

 Determine active/limiting constraints

 Rigorously determine the effects of changing objectives, constraints,
and decision variables

11

Overview

• A remote sensing constellation scheduling problem

• What is needed in a constellation scheduling tool?

• Modeling with Pyomo

 Preliminary results

• Future work

12

Pyomo Overview

Idea: a framework for Python used to formulate optimization models

 Provide a natural syntax to describe mathematical models

 Formulate large models with a concise syntax

 Separate modeling and data declarations

 Enable data import and export in commonly used formats

Highlights:

 Python provides a
clean, intuitive syntax

 Python scripts provide
a flexible context for
exploring the structure
of Pyomo models

13

simple.py
import pyomo.environ as pyomo

M = ConcreteModel()
M.x1 = Var()
M.x2 = Var(bounds=(-1,1))
M.x3 = Var(bounds=(1,2))
M.o = Objective(expr=M.x1**2 +

(M.x2*M.x3)**4 + \
M.x1*M.x3 + \

M.x2*sin(M.x1+M.x3) +
M.x2)

model = M

Pyomo Example: The Knapsack Problem

Item Weight Value

hammer 5 8

wrench 7 3

screwdriver 4 6

towel 3 11

max vi xi

i1

N



s.t. wixi

i1

N

 Wmax

xi  {0,1}

Given the set of items, each with a weight and a value, determine
which to place in a knapsack so that the total weight is less than or
equal to Wmax and so that the total value is a large as possible.

Max weight: 14

14

Solution: The Knapsack Problem

from pyomo.environ import *

v = {'hammer':8, 'wrench':3, 'screwdriver':6, 'towel':11}

w = {'hammer':5, 'wrench':7, 'screwdriver':4, 'towel':3}

W_max = 14

model = ConcreteModel()

model.ITEMS = v.keys()

model.x = Var(model.ITEMS, within=Binary)

model.value = Objective(

expr = sum(v[i]*model.x[i] for i in model.ITEMS),

sense = maximize)

model.weight = Constraint(

expr = sum(w[i]*model.x[i] for i in model.ITEMS) <= W_max)

15

How does a MIP solver find an optimal solution?

• Linear-programming branch-and-bound algorithm

 Initial formulation is linear

 Relax the decision variables’ integrality constraint

 Attempt to solve the linear program

 Linear programs will either be: infeasible, have a set of optimal
solutions, or have exactly one optimal solution

 If solution is found, branch on a fractional variable (two sub-MIPs)

 Continue and in doing so create a search tree

 New MIPs from branched variables: node

 Original MIP: root node

 Integer solutions become incumbents; node becomes permanent leaf

 Discard infeasible LP solutions and incumbent inferior solutions

 Incumbents are valid upper/lower bounds, best incumbent is best
bound, difference is optimality gap

16Overview of Pyomo

Preliminary Results – Two MIP Formulations

• Solutions within 99.5% optimal quickly (~10s of seconds – minutes)

 provably optimal can
takes hours

• Produce schedules over an
arbitrary timeframe

 Re-plan or rebuild schedules
after adhoc changes

• Create schedules for multiple
sensors, simultaneously

• Guarantees Category 1 activities
make the schedule

• Alternative is faster, facilitates transition costs, but more restrictive
17

Overview

• A remote sensing constellation scheduling problem

• What is needed in a constellation scheduling tool?

• Modeling with Pyomo

 Preliminary results

• Future work

18

Future Work- Quality scale:

• Build a composite quality score, tentatively normalized between 0 and 1
based on:

 Geometric access

 Coverage

 Probability of detection (PD)

 Closely Spaced Objects (CSO)

• Quality score will also incorporate weather

• Certain portions typically built in advance with others updated near
scheduling time

• Collaborating with sensor performance experts

19

qi,k,t

Future Work: Stochastic Programming Scenarios

• We are currently considering generating scenarios based on:

 Uncertain activity timewindows

 New high priority activities (go/no-go activities)

 Uncertainty in quality scores (weather)

• Key challenges:

 What data to model uncertainties do we have or can we obtain?

 Lots of realization data, missing forecast data

 How frequently is uncertain information updated?

20

Future Work- Related Efforts

• Currently drawing from remote sensor scheduling examples

 Example sensor activities (durations, configurations, scheduling
constraints)

• Formulation aims to be sensor agnostic

 Variety of Mobility constraints (orbits)

 Different sensor and mission types

• Also working on computational geometry algorithms to group and
optimally position activity locations

 Multiple sensors observing a single activity

 Sub-activity partitioning problems

• Additional activity constraints and solver tuning

21

Backup Slides

2/13/15 22Overview of Pyomo

Pyomo is Open Source

• Transparent and reliable (developed at Sandia w/ external collaborators)

• Fosters community involvement

 Extend the modeling language

 Develop new solvers / algorithms

 Interface with additional external utilities

• Flexible licensing

 Pyomo released under 3-clause BSD license

 No restrictions on deployment or commercial use

• Interfaces with open-source and commercial solvers

 IPOPT, GLPK, CBC, PICO, GUROBI, CPLEX

23

Going forward, GUROBI will replace CPLEX as the preferred solver

For More Information

See the new Pyomo homepage

 www.pyomo.org

The Pyomo homepage provides
a portal for:

 Online documentation

 Installation instructions

 Help information

 Developer links

Coming soon:

 A gallery of simple
examples

24

http://www.pyomo.org

Constellation Scheduling Mixed Integer Program

• Where:

 : whether activity k starts at time t on sensor i

 : quality associated with starting activity k at time t on sensor i

 : duration and priority of activity k

 : set of feasible start times for activity k before time t

 : scaling constant (e.g. 100) 25

max
(i,k, t pkdkqk, t)

pkdkqk
*

kK


 , i  I, k  K, t  T

s.t.

wk  i,k, t

iI , tT

 , k  K

wk 1, k  K1

wk 1, k  K \ K1

qk
'i,k, t  qi,k,ti,k, t, k  K1

iI , kK , tT



i,k, t 
kK

 1 i,k,t, i  I, t  T
kK , tC (k, t)



i,k, t  {0,1} i  I, k  K, t  T

i,k,t
qi,k,t

dk, pk

C(k, t)


Constellation Scheduling Knapsack Formulation

• Where:

 : whether activity a starts in knapsack k on sensor i

 : duration of knapsack k of sensor I; max/min knapsack duration

 : quality associated with starting activity a in knapsack k of sensor i

 : duration and priority of activity k

 : scaling constant (e.g. 100) 26

max
(i,a, k pkdkqi,a, k)

pkdkqk
*

kK


 , i I, a A, k  K

s.t.

wk  i,a, k

iI , tT

 , a  A

wk 1, k  K1

wk 1, k  K \ K1

Wmin Ui, k Wmax i  I, k  K

Ui, k 
kK

 Thorizon i I

i,a, k | K |
aA, kK

 Thorizon i  I

i,a, kdk 
aA

 Ui,k i  I

i,a, k  {0,1} i  I, a  A, k  K

i,a,k

Ui,k,Wmax,Wmin

dk, pk



qi,a,k

Why Model within Python?

Full-Featured Library

 Language features includes functions, classes, looping, namespaces, etc

 Introspection facilitates the development of generic algorithms

 Python’s clean syntax facilitates rapid prototyping

Open Source License

 No licensing issues w.r.t. the language itself

Extensibility and Robustness

 Highly stable and well-supported

Support and Documentation

 Extensive online documentation and several excellent books

 Long-term support for the language is not a factor

Standard Library

 Includes a large number of useful modules

Portability

 Widely available on many platforms

27

