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Abstract: Past numerical investigations of the performance of porous media to enhance heat transfer in helium-cooled devices neglected the susceptibility of multi-channel heat sinks to parallel flow instabilities even though experimental
evidence suggests it may be a problem for narrow channel devices. In previous work, our simulations have shown that helium micro-jets do not experience changes in flow distribution due to non-uniform heating. However, jets are

difficult to fabricate for large area refractory metal components. The same is not true for narrow channel devices filled with porous media. Although these refractory devices are easier to fabricate, the effects of downstream hot gas
expansion can influence the incoming flow distribution in multi-channel configurations.

Computational Fluid dynamics modeling can reveal the subset of conditions that will lead to deleterious flow mal-distributions in multi-channel geometries containing porous media. Such phenomena rarely occur in devices with large
channels made of high thermal conductivity materials, but are easily produced in small-channel refractory metal devices. In these devices, flow mal-distributions result from highly localized heat fluxes due to off-normal transient events or

from non-uniformity in the heat flux profile at leading edges and divertor strike-points. Unfortunately, the nominal flow conditions compatible with efficient Brayton cycle power conversion favor the low flow rate, high delta-T devices that
are most vulnerable to instabilities and flow bypass.

In the 1990’s Sandia performed high heat flux testing on a wide variety of moderate pressure
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at Sandia’s Plasma Materials Test Facility. They sometimes resulted in runaway surface
temperature excursions leading to surface melting. The observations occurred when applying a
spatially non-uniform high heat flux over a small area or a single coolant channel in a parallel
channel device for cases where the AT in the helium was well above 100 °C.

It was noted that until recently, no one reported computational fluid dynamics calculations
predicting flow mal-distributions in multichannel devices. Present helium jet designs are not as
sensitive to flow mal-distributions because unlike porous media, the jets reside in a low
temperature region of the device regardless of the heat flux location and tend to have large, o o
open exhaust ducts. This article presents some preliminary CFD analysis that does predict flow 0 60 120 180 240 300
mal-distributions in porous media using the ideal gas law and lumped numerical models of the ime )

media. Our study provides valuable insight on the limited set of circumstances or boundary
conditions under which instabilities or flow mal-distributions can occur in porous media. PN1 — No Foam (open tee-tube)

Porous Media Experiments

Flow instabilities only occur with large AT in the helium (Brayton)
» look at non-uniform heating (k;, important)
= a) sintered tungsten pellets
= b) moly foam-filled tee tube ducts
Highly geometry dependent (channels & manifolding)
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Open tee-tube model (769k cell hexahedral mesh)

K=163 W/mK
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ﬁ*‘%’*“‘* 4 Foam-filled tee-tube model (817 k cell polyhedral mesh)

Slotted jet concepts are
S B susceptible to flow

instabilities! Slot tailoring

K=163 W/mK
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MPa, 10 g/s, 9"=30 MW/m? foam porosity = 85% and variable manifolding
required.

Foams or engineered pressure drops, if

No foam, 127 mm x 2 mm slot tolerable, can mitigate the effect.




Results (30 MW/m?) L
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Steady state analysis using CCM+ implicit solver with 1000 iterations to convergence.
|ldeal gas law used with realizable k-¢ two-layer turbulence
4 MPa, 10 g/s, 300 K inlet conditions. Applied 30 MW/m? on 600 mm? heated area. y
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-- Conclusions --

These numerical experiments showed mal-distributions of helium mass flow are more prevalent in refractory metal devices with small channel
sizes under significant heat load producing helium ATs of several hundred degrees. Large channel, high thermal conductivity devices are not as
likely to develop flow distribution problems. Also, high pressure drop, dense porous media devices are more resilient to temporal instabilities than
higher porosity devices at the cost of more pumping power.
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. Part value (C)
Channel Comparisons 7 e 1 Sogasiar
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Outlet apat e AM=20%
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Channel 1 4.90E-03 1.96E02
Fart value (kg/s) TeeTubewd
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Total: 3.730533e+02

Large open-channel devices showed very minor effects due to spatially

non-uniform heating.

In contrast, the narrow channel devices showed

significant flow redistribution scaling with the AT of the helium. Although
temporal variation was minimized by adding high density foam in narrow
channels, constant, spatially non-uniform heating was shown to produce
even greater reductions in the hot channel mass flow compared to an
open narrow channel.
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