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Experiment: Side View 
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Experiment: Front View 
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Higher Charges Lead to Plate Tearing 
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Experimental Set-up (DIC Particulars) 

DIC Parameters for displacement measurement: 
•  Spatial Resolution: 0.22 in/pixel (5.5 mm/pixel) 
•  Subset: 3.7 in. (94 mm) 
•  Step Size: 0.65 in. (16.5 mm) 
•  Average Noise Floor: 0.08x10-3 in. in-plane [O(0.25 in.)] 

and 3.5x10-3 in. out-of-plane [O(5 in.)] 
•  Frame Rate: 36,000 frames/sec. (27µs/frame) 
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Displacement Measurement Example 
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Strain Measurements 

Parameters for Strain Measurement: 
•  Lagrangian Strain 
•  First Pass: Calculate strain by averaging 4 constant strain triangles 
•  Second Pass: Use 5x5 strain window with Gaussian averaging 
•  Virtual strain gage size is 2.86 in. (73 mm). 
•  Region of influence for strain calculation is 6.4 in. (163 mm) 

First Principal Strain 
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Computational Approach 

•  Fully coupled Eulerian/Lagrangian analysis via Zapotec 
•  Eulerian domain contains air, explosive, plate, fixture 
•  Lagrangian domain has plate and fixture 
•  2-step incremental explict coupling approach 
•  Step 1. Insert Lagrangian material into Eulerian domain 
•  Step 2. Transfer Eulerian pressures to Lagrnagina domain 

Lagrangian Domain (shell elements for plate) 

Eulerian Domain 
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DIC Measurement 

Model Prediction 
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Plate Tearing: Strain Measurement 
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•  Many ductile failure models for tearing are strain-based 
•  Strain measurements depend on the strain window size if gradients are present 
•  Likely that any strain localization that led to tearing was smaller than the speckles 
•  It can not be captured with present techniques. 

Radial strain with strain windows of 2.9 and 5.5 in.  
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•  Model predicts maximum equivalent plastic strain greatest in the vicinity of 
the location where failure started in the experiments 

•  Being able to predict under what conditions failure will occur based solely on 
the problem parameters, however, remains a challenge. 

Predicted equivalent plastic strain 

Plate Tearing: Current State 
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•  DIC displacement measurements provided a good description of the plate behavior 

•  Strains from DIC measurements not as accurate in regions of high gradients 

•  DIC measurements instrumental in finding a deficiency in the blast model 

•  Model predicts plate deflections very well 

•  Further work is ongoing to enable predictions of plate tearing. 

 Conclusions 


