

WANDERER Energy Performance Data Summary and Projections

June 1, 2015

POC: Steve Buerger, sbuerge@sandia.gov

Sandia
National
Laboratories

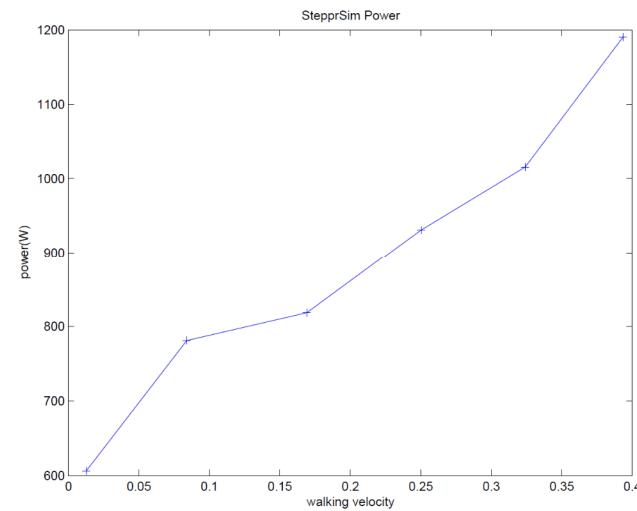
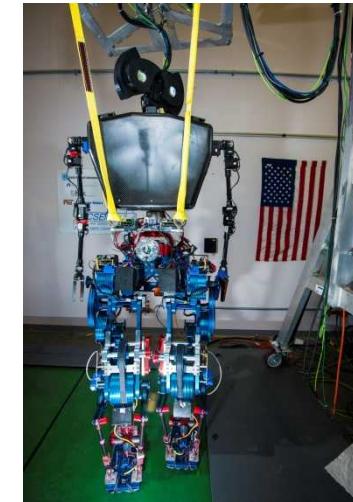
*Exceptional
service
in the
national
interest*

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Demonstrated WANDERER Performance

- Long walk, onboard batteries and computers, full robot
 - 1.001 km traveled
 - 90 minutes of walking
 - Up to 40 minutes continuous forward stepping at full speed
 - Full walking speed: 0.2 m/s
 - Overall average speed: 0.185 m/s
 - Includes stepping in place, periodically speeding up & slowing down
 - Total energy consumed walking: 680 Wh
 - Average power during all walking: 453 W
 - Cost of Transport: 2.74
- Walking in a “good groove” (~10 minute stretches)
 - Average power: 410 W
 - Average speed: 0.2 m/s
 - Cost of Transport: 2.3

Anticipated Full Battery Performance



- Battery capacity is 2350 Wh
- Extrapolating from long walk
 - Distance: 3.46 km
 - Time: 311 min (5 h 11 min)
- Extrapolating from “good groove” walking
 - Distance: 4.13 km
 - Time: 344 min (5 h 44 min)

Approximate Power Budget

- Total System: ~430 W (<1/2 power of small microwave oven)
 - Overhead: ~100 W
 - Control PC & smart router: ~40 W
 - Distributed logic & communications: ~40 W
 - FET switching: ~10 W
 - Arms during walking: ~10 W
 - Locomotive power: ~350 W
 - Hip adduction / abduction: ~10 W
 - Hip flexion / extension: ~50 W
 - Hip rotation: ~30 W
 - Knees: ~65 W
 - Ankles: ~175 W
 - Back: ~0 W

Reducing Cost of Transport (1)

- Reduce COT by walking faster
 - Power depends *weakly* on speed in low speed, low power regime
- STEPPR (uncompensated) simulations
 - Speed $\uparrow 2x$, Locomotive power $\uparrow 25\text{-}40\%$
 - So, Speed $\uparrow 2x$, COT $\downarrow 30\text{-}38\%$
- STEPPR data
 - @ 0.15 m/s: 750 W
 - @ 0.3 m/s: 920 W
 - Speed $\uparrow 2x$, Locomotive power $\uparrow 23\%$
 - COT $\downarrow 39\%$
 - Uncompensated, no battery mass

Reducing Cost of Transport (2)

- Limited WANDERER data, pre-tuning
 - @ 0.2 m/s: $P_{avg} \sim 530$ W
 - @ 0.25 m/s: $P_{avg} \sim 560$ W
 - Speed $\uparrow 25\%$, $P_{avg} \uparrow 6\%$, COT $\downarrow 15\%$
 - Implies Speed $\uparrow 2x$, $P_{avg} \uparrow 20\%$, COT $\downarrow 42\%$
- WANDERER COT extrapolations, with stable faster walking:
 - Present (real data):
 - 0.2 m/s, $P_{avg} = 330$ W + 100 W, COT 2.4
 - Extrapolate based on simulations, STEPPR & WANDERER
 - @0.4 m/s, $P_{avg} = (406$ W to 460 W) + 100 W, COT 1.39 to 1.57
 - @0.6 m/s, $P_{avg} = (460$ W to 565 W) + 100 W, COT 1.01 to 1.24
 - @0.8 m/s, $P_{avg} = (500$ W to 647 W) + 100 W, COT 0.81 to 1.05

As speed approaches 1 m/s, COT should drop well <1

Impact of Support Elements (SEs)

- STEPPR, joint by joint:
 - Ankle: 205 W → 185 W (10% saved)
 - Knee: 275 W → 60 W (78% saved)
 - Hip Adduction: 370 W → 200 W (46% saved)
- STEPPR, full system (locomotive power only):
 - @ 0.15 m/s, uncompensated: 870 W
 - @ 0.15 m/s, compensated: 550 W (37% saved)
- WANDERER, by estimating SE compensation:
 - Ankle: 275 W → 175 W (36% saved)
 - Knee: 315 W → 65 W (80% saved)
 - Hip adduction: 77 W → 7 W (90% saved)
 - Full system: 750 W → 330 W (56% saved)